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Abstract
Objective: To	develop	and	validate	a	multimodal	combinatorial	model	based	on	whole-	
brain	magnetic	 resonance	 imaging	 (MRI)	 radiomic	 features	 for	 predicting	 cognitive	
decline	in	patients	with	Parkinson's	disease	(PD).
Methods: This	study	included	a	total	of	222	PD	patients	with	normal	baseline	cog-
nition,	of	whom	68	had	cognitive	 impairment	during	a	4-	year	 follow-	up	period.	All	
patients	underwent	MRI	scans,	and	radiomic	features	were	extracted	from	the	whole-	
brain	MRI	images	of	the	training	set,	and	dimensionality	reduction	was	performed	to	
construct	a	radiomics	model.	Subsequently,	Screening	predictive	factors	for	cognitive	
decline	 from	clinical	 features	and	 then	combining	 those	with	a	 radiomics	model	 to	
construct	 a	multimodal	 combinatorial	model	 for	 predicting	 cognitive	decline	 in	PD	
patients.	Evaluate	the	performance	of	the	comprehensive	model	using	the	receiver-	
operating	characteristic	curve,	confusion	matrix,	F1	score,	and	survival	curve.	In	ad-
dition,	the	quantitative	characteristics	of	diffusion	tensor	imaging	(DTI)	from	corpus	
callosum	were	selected	from	52	PD	patients	to	further	validate	the	clinical	efficacy	
of	the	model.
Results: The	multimodal	 combinatorial	model	 has	 good	 classification	 performance,	
with	areas	under	the	curve	of	0.842,	0.829,	and	0.860	in	the	training,	test,	and	vali-
dation	 sets,	 respectively.	 Significant	 differences	 were	 observed	 in	 the	 number	 of	
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1  |  INTRODUC TION

Parkinson's	 disease	 (PD)	 is	 a	 common	 neurodegenerative	 disease	
that	has	become	one	of	the	fastest-	growing	neurological	diseases	in	
terms	of	incidence	rate,	disability	rate,	and	mortality,	second	only	to	
Alzheimer's	disease	(AD),1 there are over 7 million people worldwide 
suffering	from	PD.2	Cognitive	impairment	is	one	of	the	more	com-
mon	nonmotor	symptoms	in	PD,	including	mild	cognitive	impairment	
in	PD	(PD-	MCI)	and	PD	dementia	(PDD),	where	PD-	MCI	is	an	inde-
pendent	risk	factor	for	PDD.3 Epidemiological studies show that the 
incidence	rate	of	PD-	MCI	is	high,	up	to	42.5%,	and	can	appear	in	the	
early	stage	of	PD.4	Among	patients	with	more	than	ten	years	of	med-
ical	history,	the	incidence	rate	of	PDD	accounts	for	46%.5	When	PD-	
MCI	progresses	to	PDD,	it	seriously	affects	patients'	social	function	
and	quality	of	life.	Therefore,	the	early	diagnosis	and	intervention	of	
PD-	MCI	have	crucial	clinical	significance.6

With	the	continuous	development	of	medical	 imaging	technol-
ogy	as	indicated	by	MRI	in	neuroimaging,	abnormal	brain	function,	
microanatomical	structure,	and	pathological	changes	in	PD	patients	
have	gradually	been	 revealed.	Changes	 in	brain	 tissue	microstruc-
ture	 precede	 morphological	 changes,	 but	 those	 microstructural	
changes	 cannot	 be	 observed	 by	 the	 naked	 eye	 on	 structural	MRI	
(sMRI)	images	in	early	PD	patients.7	Although	functional	MRI,	such	
as	neuromelanin-	sensitive	MRI	and	quantitative	susceptibility	map-
ping	(QSM),	plays	a	vital	role	in	the	diagnosis	of	PD,8,9 the diagnostic 
utility	of	these	technologies	highly	depends	on	changes	in	scanners	
and	acquisition	protocols.10	Other	methods,	such	as	fluorodeoxyglu-
cose	positron	emission	tomography	(FDG	PET)	and	dopamine	trans-
porter	single-	photon	emission	computed	tomography	(DAT-	SPECT),	
also	play	essential	 roles	 in	diagnosing	PD.11,12	However,	 these	 are	
expensive	models	with	relatively	low	accessibility,	and	they	cannot	
be	widely	used	 in	clinical	practice.	Therefore,	developing	a	simple,	
noninvasive	method	to	identify	asymptomatic	PD	patients	with	po-
tential	cognitive	decline	is	a	massive	challenge	for	clinical	and	imag-
ing physicians.13

In	recent	years,	the	emergence	of	radiomics	has	provided	a	novel	
method	for	studying	various	neurodegenerative	diseases,	including	
PD.14	Radiomics	can	be	used	to	transform	digital	medical	images	into	
high-	dimensional	data	that	can	be	mined	to	support	clinical	decision-	
making.15	 Early	 radiomic	 features	 are	 often	 used	 in	 the	 study	 of	

tumor	lesions.	In	recent	years,	an	increasing	number	of	studies	have	
applied	this	method	to	diagnose	neurodegenerative	diseases,	includ-
ing	auxiliary	clinical	diagnosis,	treatment	guidance,	and	progression	
prediction	 for	 PD.16	 Research	 by	Betrouni	 et	 al.17 has shown that 
before	conventional	MRI	imaging	methods	detect	brain	tissue	atro-
phy,	radiomic	features	can	already	be	used	to	detect	differences	in	
the	brain	between	PD	patients	and	healthy	controls,	suggesting	that	
radiomics	analysis	can	reflect	the	variation	and	distribution	of	local	
tissue	characteristics	in	early	stages	of	PD	patients,	capturing	subtle	
structural	changes.	Our	previous	research	was	based	on	the	use	of	
T1WI	structural	 images	 to	 identify	 radiomic	 features	of	 the	entire	
white	matter	of	the	brain,	which	have	essential	value	for	diagnosing	
PD.18	Based	on	the	above	research	results,	we	assume	that	a	radio-
mics	model	constructed	using	conventional	T1WI	can	also	be	used	
to	 identify	 high-	risk	 populations	 in	 PD	patients	who	may	 develop	
PD-	MCI,	and	their	predictive	performance	can	be	improved	by	the	
addition	of	relevant	clinical	features.

This	study	aimed	to	extract	features	of	the	brain's	entire	gray	and	
white	matter	from	conventional	T1WI	images	and	construct	a	radio-
mics	model	for	 identifying	PD-	MCI	patients.	Second,	a	multimodal	
combinatorial	model	was	 constructed	 based	 on	 radiomic	 features	
and	relevant	clinical	features	to	predict	high-	risk	populations	where	
PD	normal	control	(PD-	NC)	may	progress	to	PD-	MCI.

2  |  MATERIAL S AND METHODS

2.1  |  Patient information

The	 case	data	 used	 in	 this	 study	 came	 from	 the	PPMI	 and	NACC	
databases.	 The	 Parkinson's	 Progression	 Markers	 Initiative	 (PPMI)	
(http://	www.	PPMI-		info.	org)	 is	 the	 first	global	collaborative	project	
composed	of	researchers,	 funders,	and	research	participants	dedi-
cated	 to	 identifying	 biomarkers	 to	 improve	 PD	 treatment.	 It	 is	 a	
multicenter	collaborative	PD	open-	source	database	with	neuropsy-
chological	scales,	MRIs,	and	genetic	data.	The	National	Alzheimer's	
Coordinating	Center	(NACC)	(https:// naccd ata. org)	was	established	
in	1999;	it	is	a	large-	scale	compilation	of	longitudinal	data	for	healthy	
control	 (HC)	 participants	 and	 patients	 with	mild	 cognitive	 impair-
ment	 (MCI),	 AD,	 and	 other	 neurodegenerative	 diseases,	 including	

cognitive	decline	PD	patients	and	corpus	callosum-	related	DTI	parameters	between	
the	low-	risk	and	high-	risk	groups	distinguished	by	the	model	(p < 0.05).	The	survival	
curve	analysis	showed	a	statistically	significant	difference	in	the	progression	time	of	
mild	cognitive	impairment	between	the	low-	risk	and	the	high-	risk	groups.
Conclusions: The	building	of	 a	multimodal	 combinatorial	model	 based	on	 radiomic	
features	from	MRI	can	predict	cognitive	decline	in	PD	patients,	thus	providing	adap-
tive	strategies	for	clinical	practice.

K E Y W O R D S
cognitive	impairment,	magnetic	resonance	imaging,	models,	Parkinson's	disease,	radiomics
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standardized clinical and neuropathological research data collected 
from	AD	 centers	 across	 the	United	 States.19,20	 For	 ethical	 review	
information	on	the	data,	please	refer	to	the	website.	This	study	in-
cluded	222	patients	with	a	baseline	diagnosis	of	PD-	NC.	The	inclu-
sion	criteria	were	as	follows:	all	patients	with	an	initial	diagnosis	of	
PD-	NC	were	followed	up	for	4 years,	underwent	MRI	examinations,	
and	had	complete	 clinical	data.	The	exclusion	criteria	were	as	 fol-
lows:	 (1)	 the	 original	MRI	DICOM	 file	was	 incorrect	 and	we	were	
unable	to	extract	radiomic	features;	and	(2)	biological	indicator	and	
scale	 evaluation	 data	 were	 missing.	 All	 patients	 underwent	 brain	
MRI	and	detailed	neuropsychological	tests	at	the	initial	assessment.	
We	 randomly	 divided	 183	 patients	 from	 the	 PPMI	 database	 into	
a	training	set	 (n = 129)	and	a	test	set	 (n = 54)	 in	a	7:3	ratio.	Among	
them,	50	patients	progressed	to	PD-	MCI	during	a	4-	year	follow-	up	
period	and	were	classified	as	 the	progression	group,	while	 the	 re-
maining	133	patients	were	classified	as	the	nonprogression	group.	
The	39	patients	collected	from	the	NACC	database	were	used	as	an	
external	validation	set,	of	which	18	patients	progressed	to	PD-	MCI	
during	a	4-	year	follow-	up	period	and	were	classified	as	the	progres-
sion	group,	while	 the	 remaining	21	patients	were	classified	as	 the	
nonprogression	group.	The	specific	screening	process	can	be	found	
in Figure S1.

We	 also	 collected	 the	 corresponding	 clinical	 data	 for	 this	
study,	 including	 neural	 scale	 information	 such	 as	 the	Montreal	
Cognitive	 Assessment	 (MoCA)	 score,	 Epworth	 Sleepiness	 Scale	
score,	 and	 Geriatric	 Depression	 Scale	 score	 and	 clinical	 data	
such	as	 age,	 sex,	 and	education	 level.	A	multimodal	 combinato-
rial	model	was	established	using	the	training	set,	and	the	model's	

reliability	was	verified	using	 the	 test	 set.	 In	addition,	 to	 further	
validate	the	model's	generalization	performance,	we	used	a	vali-
dation	set	for	model	validation.	The	specific	process	is	shown	in	
Figure 1.

2.2  |  Radiomic features preprocessing

All	 experimental	 data	 were	 obtained	 through	 scanning	 with	 a	
1.5T/3.0T	MRI	system,	including	T1WI	images	of	all	patients	and	DTI	
images	of	some	patients.	To	further	reduce	the	impact	of	image	scan-
ning	parameters	on	feature	extraction,	we	preprocessed	the	struc-
tural	 T1	 image,	 including	 converting	 voxel	 values	 to	 1 × 1 × 1 mm3. 
We standardized the image grayscale level to 1–32 levels to eliminate 
the	influence	of	anisotropy	on	feature	extraction.21	Afterward,	the	
preprocessed images were imported into the statistical parameter 
mapping	SPM12	software	(version	V2.5.5)	on	the	MATLAB	platform	
(MathWorks,	MA,	USA).	The	images	were	automatically	segmented	
into	gray	matter,	white	matter,	 and	cerebrospinal	 fluid	 (CFS)	using	
the	 ITK-	SNAP	 software	 package	 (http://	www.	itksn	ap.	org/	pmwiki/	
pmwiki.	php),	with	further	manual	correction;	this	includes	(1)	remov-
ing	the	nonbrain	tissue,	brainstem,	and	cerebellum	and	(2)	correcting	
segmentation	errors	 in	brain	tissue.	The	manual	correction	of	MRI	
was	 independently	 performed	 by	 two	 experienced	 neuroradiolo-
gists	who	were	unaware	of	 the	clinical	data.	After	manual	 correc-
tion,	the	segmented	brain	tissue	regions	are	imported	as	masks	into	
PyRadiomics	software	for	feature	extraction.22	 In	addition,	we	se-
lected	DTI	examinations	from	52	PD	patients	for	validation	analysis	

F I G U R E  1 Architecture	of	the	proposed	PD	progression	prediction	model.
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in	subsequent	studies.	The	details	of	DTI	feature	extraction	can	be	
found	in	Data	S1.

2.3  |  Radiomic features extraction

The	PyRadiomics	platform	was	used	to	extract	radiomic	features	
of	the	volume	of	interest	(VOI).	The	extracted	features	include	the	
following	 two	categories:	 (1)	original	 image	 features:	① 14 types 
of	shape-	based	features;	②	18	types	of	first-	order	statistics;	and	
③	texture	features,	including	22	types	of	gray-	level	cooccurrence	
matrix	(GLCM)	features,	16	types	of	gray-	level	run-	length	matrix	
(GLRLM)	features,	16	types	of	gray-	level	size	zone	matrix	(GLSZM)	
features,	 and	14	 types	of	 gray-	level	 dependency	matrix	 (GLDM)	
features;	and	(2)	features	related	to	the	filter	class:	①	wavelet	(WT)	
features;	and	②	Laplacian	transforms,	etc.	A	total	of	3396	radiomic	
features	 were	 extracted,	 including	 1132	 gray	 matter	 (GM)	 fea-
tures,	1132	white	matter	(WM)	features,	and	1132	CFS	features.	
Detailed	feature	information	can	be	found	in	Table S1.	These	fea-
tures	were	extracted	based	on	the	region	of	interest	and	manually	
modified	 by	 radiologists	 to	 obtain	 the	most	 consistent	 features	
among	 different	 radiologists,	 thereby	 ensuring	 robustness.	 The	
correlation	 coefficients	 (CCs)	 of	 each	 feature	 between	 feature	
set	A	 (from	 radiologist	 A)	 and	 feature	 set	 B	 (from	 radiologist	 B)	
were	 calculated	 using	 Spearman	 rank	 correlation.	 Features	with	
CC > 0.8	were	considered	robust	features.23

2.4  |  Feature dimensionality reduction and 
composition of the radiomics model

To	 reduce	 the	 high-	dimensional	 burden	 on	 model	 training,	 the	
above	features	obtained	from	the	training	set	were	used	to	elimi-
nate	 redundant	 and	 irrelevant	 features	 using	 minimum	 redun-
dance	maximum	 relevance	 (mRMR),	 and	 then	 the	 least	 absolute	
shrinkage	 and	 selection	 operator	 (LASSO)	 was	 used	 for	 dimen-
sionality	 reduction	 processing,	 with	 the	 optimal	 parameters,	 ɑ,	
to	 construct	 a	 penalty	 function	 to	 eliminate	 variables	with	 zero	
coefficient	values.	We	used	tenfold	cross-	validation	to	obtain	the	
optimal	penalty	parameter	for	LASSO	and	retained	features	with	
nonzero	 regression	 coefficients.	 Redundant	 or	 nonreproducible	
features	were	combined	or	excluded	to	screen	out	the	most	valu-
able	 and	 relevant	 features.	 Finally,	 based	on	 the	 remaining	 radi-
omic	features	filtered	out	from	the	training	set,	logistic	regression	
was	 used	 to	 construct	 a	 radiomics	model,	 and	 the	 score	 values	
for	 each	 patient	were	 calculated	 using	 the	marker	 formula.	 The	
score	values	 reflect	 the	possible	probability	of	PD-	NC	progress-
ing	to	PD-	MCI,	which	is	called	the	Rad-	score.	The	area	under	the	
curve	(AUC)	of	the	receiver-	operating	characteristic	(ROC)	curve	
was	used	to	evaluate	the	accuracy	of	the	radiomics	model	in	the	
training,	test,	and	validation	sets.	For	detailed	information	on	di-
mensionality	reduction,	please	refer	to	the	Data	S2.

2.5  |  Construction and verification of a multimodal 
combinatorial model

The	independent	predictors	were	selected	from	clinical	features	and	
radiomics model in the training set by using the reverse stepwise 
selection	method	based	on	 the	Akaike	 information	criterion	 (AIC),	
and a multimodal combinatorial model was established on this basis. 
To	 verify	 the	 improvement	 in	 model	 performance	 after	 including	
a	 radiomics	model,	we	 used	 the	 ROC	 curve	 and	AUC	 to	 evaluate	
the	 performance	 of	 the	multimodal	 combinatorial	 model,	 radiom-
ics	model,	and	related	independent	predictive	factors.	We	used	the	
Hosmer–Lemeshow	test	to	analyze	the	goodness-	of-	fit	of	the	mul-
timodal combinatorial model and used calibration curves to visually 
evaluate	the	consistency	between	the	predicted	MCI	probability	and	
the	actual	MCI	probability.	 In	addition,	we	used	Delong	 testing	 to	
determine	 the	 differences	 between	 the	 multimodal	 combinatorial	
and	other	model.	 Finally,	 the	 confusion	matrix	 and	F1	 score	were	
used	to	describe	the	performance	of	the	multimodal	combinatorial	
model.

2.6  |  Clinical validation

The	 model	 was	 constructed	 on	 the	 PPMI	 data,	 according	 to	 the	
optimal	cutoff	values	 in	the	training	set,	 the	training	and	test	sets	
patients	 were	 divided	 into	 low-	risk	 and	 high-	risk	 groups,	 and	 the	
performance	of	 the	model	 on	 the	NACC	data	was	 evaluated.	 The	
number	 of	 individuals	 progressing	 to	 PD-	MCI	 in	 the	 low-	risk	 and	
high-	risk	 groups	 was	 compared,	 and	 the	 difference	 in	 the	 MCI	
progression	 rate	was	 examined.	Considering	 the	 lack	 of	 biological	
interpretability	of	radiomic	features,	this	study	also	included	DTI	pa-
rameters	to	verify	the	performance	of	biomarkers	constructed	from	
radiomic	features.

2.7  |  Statistical analyses

All	statistical	analyses	were	conducted	using	R	statistical	software	
(v.	3.5.1),	MedCalc	software	(V.11.2;	2011	MedCalc	software	bvba,	
Mariakerke,	Belgium),	and	SPSS	(software	version	22,	IBM,	Armonk,	
NY,	USA).	The	“mRMRe”	package	in	R	statistical	software	was	used	
to	filter	the	correlation	and	nonredundancy	of	the	radiomic	features.	
The	LASSO	logic	in	the	“Glmnet”	software	package	was	used	to	se-
lect	predicted	features.

We	tested	the	compliance	of	the	quantitative	data	with	normal	
distribution	 via	 the	 Kolmogorov–Smirnov	 test	 and	 Shapiro–Wilk	
test.	Continuous	variables	for	normal	distribution	were	presented	
as	 the	mean ± standard	deviation	and	compared	using	 the	 t-	test.	
For	 non-	normal	 distribution	 data,	 variables	 were	 expressed	 as	
medians	 (interquartile	 ranges,	 IQRs)	 and	 analyzed	 using	 Mann–
Whitney U	test.	Categorical	variables	were	recorded	as	frequen-
cies	(%),	and	the	chi-	squared	test	or	Fisher's	exact	test	was	used	
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to	 evaluate	 the	 association	 of	 categorical	 variables.	 The	metrics	
in	 the	 ROC	 curve	 (such	 as	AUC,	 sensitivity,	 and	 specificity)	 and	
F1	score	were	used	to	evaluate	model	performance.	All	statistical	
data	were	bidirectional,	and	a	p	value	less	than	0.05	was	consid-
ered	statistically	significant.

3  |  RESULTS

3.1  |  Comparison of clinical factors

The	baseline	clinical	characteristics	of	222	PD	patients	in	the	train-
ing,	test,	and	validation	sets	are	summarized	in	Table 1. In the train-
ing,	test,	and	validation	sets,	35	patients	(27.1%),	15	patients	(27.8%),	
and	18	patients	(46.2%)	developed	PD-	MCI	within	4 years	after	PD	
diagnosis,	respectively.	The	majority	of	patients	who	developed	PD-	
MCI	within	the	prescribed	time	window	were	male.	Compared	with	
patients	without	PD-	MCI,	 patients	with	PD-	MCI	 showed	 a	higher	
incidence	of	 Symptom1.	 In	 the	 training	 set,	 there	were	 significant	
differences	in	Age	and	MoCA	between	the	progression	and	nonpro-
gression	groups,	with	p	values	of	0.039	and	0.003,	respectively.	In	
addition,	the	test	set	showed	a	statistically	significant	difference	in	
GDS	between	 the	progression	 and	nonprogression	groups,	with	p 
values	of	0.021.

3.2  |  Construction and verification of 
radiomic markers

After	mRMR	and	LASSO	dimensionality	reduction,	8	radiomic	fea-
tures	 remained,	 including	 5	GM	 and	 3	WM	 features.	 The	 feature	
weights are shown in Figure 2.	 The	 radiomics	model	 constructed	
based	on	these	8	features	has	good	predictive	performance	on	the	
training,	 test,	 and	 validation	 sets.	 The	AUC	values	 in	 the	 training,	
test,	and	validation	sets	were	0.819,	0.793,	and	0.828,	respectively,	
with	sensitivity	values	of	0.743,	0.733,	and	0.889	and	specificity	val-
ues	of	0.766,	0.846,	and	0.667,	respectively	(Figure 3).

3.3  |  Construction of a multimodal 
combinatorial model

Multivariate	 logistic	 regression	 showed	 that	 two	 clinical	 features	
(MoCA	score,	Symptom1)	and	Rad-	score	were	independent	predic-
tors	of	 cognitive	decline	 in	PD	patients.	A	multimodal	 combinato-
rial	model	was	 constructed	 based	 on	 the	 independent	 predictors,	
and	a	visual	nomogram	was	established	(Table 2 and Figure 4A).	The	
nomogram	scores	were	given	based	on	the	weights	of	independent	
predictors,	and	the	scale	 length	of	 the	nomogram	variable	 is	posi-
tively	correlated	with	its	impact	on	the	prediction	of	PD-	MCI.	Out	of	
the	three	factors,	the	Rad-	score	label	contributed	the	most	to	pre-
dicting	 the	outcome	 (the	 longest	 scale),	 followed	by	MoCA	 score.	
The	 high-	probability	 segment	 of	 the	 Rad-	score	 label	 corresponds	

to	the	high-	score	area	(score	axis),	and	the	low-	probability	segment	
corresponds	to	the	low-	score	area.	Patients	with	low	MoCA	scores	
had	a	higher	probability	of	progressing	to	PD-	MCI	than	those	with	
high	scores.	Patients	with	Symptom1	have	an	 increased	chance	of	
progressing	 to	 PD-	MCI.	 The	 scores	 of	 all	 factors	 were	 added	 up	
to	 obtain	 the	 total	 score,	which	was	 perpendicular	 to	 (probability	
axis	of	progression	to	PD-	MCI)	obtain	the	probability	of	 individual	
final	progression	 to	PD-	MCI.	The	multimodal	 combinatorial	model	
performed	 better	 than	 clinical	 features	 (MoCA	 score,	 Symptom1)	
in	 the	 training,	 test,	and	validation	sets.	The	AUCs	 in	 the	 training,	
test,	 and	validation	 sets	were	0.842	 (95%	CI,	 0.767–0.900),	 0.829	
(95%	CI,	0.702–0.918),	and	0.860	(95%	CI,0.711–0.950),	with	sensi-
tivities	of	0.857,	0.733,	and	0.889,	respectively,	and	specificities	of	
0.745,	0.821,	and	0.714,	 respectively	 (Figure 4B–D).	The	Hosmer–
Lemeshow	 test	 showed	 that	 the	 multimodal	 combinatorial	 model	
did	not	overfit	(p > 0.05),	and	the	calibration	curve	showed	that	the	
predictive	performance	of	the	multimodal	combinatorial	model	was	
consistent	with	the	actual	MCI	progression	state	(Figure 4E–G).	The	
Delong	test	showed	that	there	was	a	significant	difference	(p < 0.05)	
in	 the	 diagnostic	 performance	 of	 the	 multimodal	 combinatorial	
model	and	the	independent	predictive	factors	MoCA	and	Symptom1	
in	the	training,	test,	and	validation	sets,	and	there	was	no	significant	
difference	compared	to	the	radiomics	model	 (Table 3).	Finally,	The	
confusion	matrix	was	used	to	describe	the	performance	of	the	mul-
timodal	combinatorial	model	(Figure 5),	the	F1	score	in	the	training,	
test,	and	validation	sets	were	0.627,	0.667,	and	0.842,	respectively.

3.4  |  Verification of the multimodal 
combinatorial model

Among	52	patients	with	DTI	quantitative	characteristics,	 the	 frac-
tional	anisotropy	(FA),	mean	diffusivity	(MD),	and	axial	diffusion	(AD)	
values	of	the	corpus	callosum	fiber	bundle	showed	significant	differ-
ences	in	the	low-		and	high-	risk	groups,	while	the	relative	anisotropy	
(RD)	values	were	not	statistically	significant.	The	same	results	were	
observed	 in	 the	 nonprogression	 and	 progression	 groups	 (Figure 6 
and Table 4).	Survival	analysis	was	performed	using	the	log-	rank	test	
and	showed	statistically	significant	differences	 in	MCI	progression	
time	 between	 the	 low-	risk	 and	 high-	risk	 groups	 in	 the	 PPMI	 and	
NACC	databases	(Figure 7).

4  |  DISCUSSION

This	 study	 used	 radiomic	 features	 from	 conventional	 magnetic	
resonance structural images to construct a radiomics model. We 
conducted	 a	 systematic	 and	 quantitative	 review	of	 the	 prediction	
of	 clinical	 status	 evolution	 in	PD-	NC	 individuals	 over	 4 years.	 The	
results	 indicate	that	the	predictive	performance	of	the	multimodal	
combinatorial	model	is	significantly	better	than	that	of	clinical	fea-
tures	 alone	 (MoCA	 score,	 Symptom1),	 indicating	 that	 a	 radiomics	
model	 based	 on	 the	whole	 brain	 can	 be	 used	 to	 identify	 patients	



6 of 12  |     JIAN et al.

TA
B

LE
 1
 
C
om
pa
ra
tiv
e	
an
al
ys
is
	o
f	c
lin
ic
al
	d
at
a	
fo
r	t
ra
in
in
g,
	te
st
,	a
nd
	v
al
id
at
io
n	
se
ts
.

Ch
ar

ac
te

ris
tic

s

PP
M

I
N

A
CC

Tr
ai

ni
ng

 s
et

 (n
 =

 1
29

)
Te

st
 s

et
 (n

 =
 5

4)
Va

lid
at

io
n 

se
t (

n =
 3

9)

N
on

pr
og

re
ss

io
n 

(n
 =

 9
4)

Pr
og

re
ss

io
n 

(n
 =

 3
5)

p-
 Va

lu
e

N
on

pr
og

re
ss

io
n 

(n
 =

 3
9)

Pr
og

re
ss

io
n 

(n
 =

 1
5)

p-
 Va

lu
e

N
on

pr
og

re
ss

io
n 

(n
 =

 2
1)

Pr
og

re
ss

io
n 

(n
 =

 1
8)

p-
 Va

lu
e

Se
x	
(n
,	%
)

M
al
e

55
	(5
8.
5%
)

24
	(6
8.
6%
)

0.
40

1
28
	(7
1.
8%
)

11
	(7
3.
3%
)

1.
00

0
10
	(4
7.
6%
)

12
	(6
6.
7%
)

0.
23

2

Fe
m
al
e

39
	(4
1.
5%
)

11
	(3
1.
4%
)

11
	(2
8.
2%
)

4	
(2
6.
7%
)

11
	(5
2.
4%
)

6	
(3
3.
3%
)

A
ge
	(y
ea
r),
	m
ea
n	
(S
D
)

62
.6
 ±
 7.
1

65
.5
 ±
 7.
0

0.
03

9*
64
.2
 ±
 7.
2

66
.3
 ±
 1
0.
0

0.
37

2
68
.5
 ±
 6
.0

72
.4
 ±
 8
.3

0.
08

3

M
oC
A
,	m
ed
ia
n	
(IQ
R)

28
.0
	(2
7.
0,
	2
9.
0)

27
.0
	(2
6.
0,
	2
8.
0)

0.
00

3*
*

28
.0
	(2
7.
0,
	2
9.
0)

27
.0
	(2
6.
0,
	2
8.
0)

0.
10

8
29
.0
	(2
7.
0,
	3
0.
0)

27
.0
	(2
4.
5,
	2
9.
0)

0.
06

9

G
D
S,
	m
ed
ia
n	
(IQ
R)

1.
0	
(0
.0
,2
.0
)

2.
0	
(1
.0
,3
.0
)

0.
06
5

1.
0	
(0
.0
,2
.0
)

2.
0	
(1
.0
,3
.0
)

0.
02

1*
2.
0	
(1
.0
,3
.0
)

2.
0	
(1
.0
,4
.0
)

0.
56
8

Ed
uc
yr
s,
	m
ed
ia
n	
(IQ
R)

16
.0
	(1
4.
0,
	1
8.
0)

16
.0
	(1
4.
0,
	1
8.
0)

0.
94

6
16
.0
	(1
5.
0,
	1
8.
0)

16
.0
	(1
4.
0,
	1
8.
0)

0.
39

3
18
.0
	(1
6.
0,
	1
8.
0)

18
.0
	(1
5.
5,
	1
8.
5)

0.
56
8

Sy
m
pt
om
1	
(n
,	%
)

N
o

23
	(2
4.
5%
)

3	
(8
.6
%
)

0.
07

9
9	
(2
3.
1%
)

1	
(6
.7
%
)

0.
31

8
20
	(9
5.
2%
)

16
	(8
8.
9%
)

0.
45
8

Ye
s

71
	(7
5.
5%
)

32
	(9
1.
4%
)

30
	(7
6.
9%
)

14
	(9
3.
3%
)

1	
(4
.8
%
)

2	
(1
1.
1%
)

Sy
m
pt
om
2	
(n
,	%
)

N
o

26
	(2
7.
7%
)

9	
(2
5.
7%
)

1.
00

0
8	
(2
0.
5%
)

3	
(2
0%
)

1.
00

0
N
A

a
N
A

a
N
A

Ye
s

68
	(7
2.
3%
)

26
	(7
4.
3%
)

31
	(7
9.
5%
)

12
	(8
0%
)

Sy
m
pt
om
3	
(n
,	%
)

N
o

9	
(9
.6
%
)

5	
(1
4.
3%
)

0.
65
5

10
	(2
5.
6%
)

4	
(2
6.
7%
)

1.
00

0
12
	(5
7.
1%
)

8	
(4
4.
4%
)

0.
42

9

Ye
s

85
	(9
0.
4%
)

30
	(8
5.
7%
)

29
	(7
4.
4%
)

11
	(7
3.
3%
)

9	
(4
2.
9%
)

10
	(5
5.
6%
)

Sy
m
pt
om
4	
(n
,	%
)

N
o

83
	(8
8.
3%
)

31
	(8
8.
6%
)

1.
00

0
37
	(9
4.
9%
)

13
	(8
6.
7%
)

0.
65
2

19
	(9
0.
5%
)

12
	(6
6.
7%
)

0.
06

6

Ye
s

11
	(1
1.
7%
)

4	
(1
1.
4%
)

2	
(5
.1
%
)

2	
(1
3.
3%
)

2	
(9
.5
%
)

6	
(3
3.
3%
)

Sy
m
pt
om
5	
(n
,	%
)

N
o

75
	(7
9.
8%
)

31
	(8
8.
6%
)

0.
36

8
31
	(7
9.
5%
)

13
	(8
6.
7%
)

0.
82

8
N
A

a
N
A

a
N
A

Ye
s

19
	(2
0.
2%
)

4	
(1
1.
4%
)

8	
(2
0.
5%
)

2	
(1
3.
3%
)

H
y	
(n
,	%
)

N
o

45
	(4
7.
9%
)

14
	(4
0%
)

0.
54
9

22
	(5
6.
4%
)

6	
(4
0.
0%
)

0.
43

7
N
A

a
N
A

a
N
A

Ye
s

49
	(5
2.
1%
)

21
	(6
0.
0%
)

17
	(4
3.
6%
)

9	
(6
0%
)

ES
S	
(n
,	%
)

N
o

77
	(8
1.
9%
)

32
	(9
1.
4%
)

0.
29

2
30
	(7
6.
9%
)

13
	(8
6.
7%
)

0.
67
5

N
A

a
N
A

a
N
A

Ye
s

17
	(1
8.
1%
)

3	
(8
.6
%
)

9	
(2
3.
1%
)

2	
(1
3.
3%
)

RB
D
	(n
,	%
)

N
o

62
	(6
6.
0%
)

20
	(5
7.
1%
)

0.
47

2
30
	(7
6.
9%
)

8	
(5
3.
3%
)

0.
17

1
12
	(5
7.
1%
)

11
	(6
1.
1%
)

0.
80

2

Ye
s

32
	(3
4.
0%
)

15
	(4
2.
9%
)

9	
(2
3.
1%
)

7	
(4
6.
7%
)

9	
(4
2.
9%
)

7	
(3
8.
9%
)

A
bb
re
vi
at
io
ns
:	A
ge
	(y
ea
r),
	A
ge
	a
t	E
nr
ol
lm
en
t;	
Ed
uc
yr
s,
	Y
ea
rs
	o
f	E
du
ca
tio
n;
	S
ym
pt
om
1,
	In
iti
al
	s
ym
pt
om
	(a
t	d
ia
gn
os
is)
-	R
es
tin
g	
Tr
em
or
;	E
SS
,	E
pw
or
th
	S
le
ep
in
es
s	
Sc
al
e	
Sc
or
e;
	G
D
S,
	G
er
ia
tr
ic
	D
ep
re
ss
io
n	
Sc
al
e	

Sc
or
e;
	H
y,
	H
oe
hn
	&
	Y
ah
r	(
O
FF
	S
ta
te
);	
M
oC
A
,	M
on
tr
ea
l	C
og
ni
tiv
e	
A
ss
es
sm
en
t	s
co
re
	(a
dj
us
te
d	
fo
r	e
du
ca
tio
n)
;	N
A
,	n
ot
	a
va
ila
bl
e;
	R
BD
,	R
ap
id
	E
ye
	M
ov
em
en
t	S
le
ep
	B
eh
av
io
r	D
is
or
de
r	S
co
re
;	S
ym
pt
om
2,
	In
iti
al
	

sy
m
pt
om
	(a
t	d
ia
gn
os
is)
-	R
ig
id
ity
;	S
ym
pt
om
3,
	In
iti
al
	s
ym
pt
om
	(a
t	d
ia
gn
os
is)
-	B
ra
dy
ki
ne
si
a;
	S
ym
pt
om
4,
	In
iti
al
	s
ym
pt
om
	(a
t	d
ia
gn
os
is)
-	P
os
tu
ra
l	I
ns
ta
bi
lit
y;
	S
ym
pt
om
5,
	In
iti
al
	s
ym
pt
om
	(a
t	d
ia
gn
os
is)
-	O
th
er
.

a N
ot
	a
va
ila
bl
e	
fo
r	a
ll	
N
AC
C	
st
ud
y	
pa
rt
ic
ip
an
ts
.

*p
 <
 0
.0
5.
	*
*p
 <
 0
.0
1.



    |  7 of 12JIAN et al.

who	progress	from	PD-	NC	to	PD-	MCI.	In	addition,	the	multimodal	
combinatorial	model	constructed	by	combining	these	feature	types	
significantly	 improves	 the	 prediction	 performance.	 This	 may	 also	
provide	a	beneficial	tool	for	the	clinical	screening	of	potentially	high-	
risk	populations	for	PD-	MCI.

MRI,	 as	 a	 noninvasive	 and	 intuitive	 reflection	of	 brain	 tissue	
structure,	 has	 become	 one	 of	 the	 essential	measurement	meth-
ods	for	PD	research.24	T1-	based	structural	MRI	methods,	such	as	
VBM	analysis	of	several	brain	regions,	including	the	hippocampus,	
have	been	widely	used	in	studying	PD	evolution.25	However,	these	
brain	regions	reflect	only	the	local	pathological	mechanisms	of	the	
disease	rather	than	the	pathological	changes	that	evolve	from	PD-	
NC	 to	 PD-	MCI.	 In	 this	 study,	 we	 developed	 a	 new	whole-	brain	
radiomics	model	to	determine	the	high-	risk	population	of	PD-	NC	
patients	who	may	progress	to	PD-	MCI.	Our	research	results	indi-
cate	that	the	radiomics	model	has	good	diagnostic	efficacy,	which	
may	reflect	most	pathological	changes	during	disease	progression.	
This	study	showed	that	5	gray	and	3	white	matter	features	were	
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F I G U R E  2 Feature	weight	histogram.	The	horizontal	
coordinates	indicate	the	weight	values	of	each	feature.

F I G U R E  3 A,	B,	and	C	show	the	diagnostic	performance	of	the	radiomic	features	in	the	training,	test,	and	validation	sets,	respectively.

Variable

Univariate logistic regression Multivariate logistic regression

OR (95% CI) p- Value OR (95% CI) p- Value

Age	(year) 1.045	(0.991,	1.100) 0.099 NA NA
Sex 0.948	(0.431,	2.087) 0.895 NA NA
Educyrs 0.967	(0.848,	1.103) 0.618 NA NA
Symptom1 2.947	(0.900,	9.648) 0.074 2.908	(0.892,	13.136) 0.108
Symptom2 1.478	(0.580,	3.767) 0.413 NA NA
Symptom3 0.791	(0.285,	2.199) 0.653 NA NA
Symptom4 1.249	(0.366,	4.258) 0.723 NA NA
Symptom5 0.618	(0.212,	1.805) 0.379 NA NA
Hy 1.275	(0.601,	2.704) 0.527 NA NA
ESS 0.480	(0.151,1.529) 0.215 NA NA
GDS 0.971	(0.253,	3.730) 0.966 NA NA
RBD 1.688	(0.807,	3.531) 0.164 NA NA
MoCA 0.697	(0.516,	0.944) 0.020* 0.627	(0.439,	0.876) 0.008**
Radiomics model 2.252	(1.518,	3.342) <0.001*** 2.166	(1.565,	2.998) <0.001***

Note:	NA,	not	available	because	the	variable	is	not	included	in	multiple	variables.	The	p value 
indicates	whether	the	variable	is	an	independent	predictor	of	PD-	MCI.
*p < 0.05.	**p < 0.01.	***p < 0.001.

TA B L E  2 Screening	of	independent	
predictive	factors.
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involved	in	constructing	the	model.	These	8	quantitative	features	
may	display	pathological	differences,	which	the	original	T1WI	im-
ages	cannot	recognize.	However,	our	analysis	of	the	classification	
performance	 of	 our	 radiomic	 features	model	 indirectly	 confirms	
the	 pathological	 changes	 in	 the	 brain	 between	 the	 high-		 and	

low-	risk	groups.	 In	addition,	among	the	8	features,	 there	were	6	
wavelet	features,	representing	the	texture's	smoothness	and	het-
erogeneity.	Previous	studies	by	Mayerhoefer	et	al.26 revealed that 
higher wavelet eigenvalues are associated with rougher and more 
heterogeneous	tissue	structures.	Therefore,	the	wavelet	features	

F I G U R E  4 A	shows	the	Radiomics	nomogram	for	the	prediction	of	PD-	MCI.	The	radiomics	nomogram	is	developed	in	the	training	set	with	
two	clinical	features	(MoCA,	Symptom1)	and	Rad-	score.	B,	C,	and	D	show	the	diagnostic	performance	of	the	multimodal	combinatorial	model,	
radiomics	model,	MoCA	score,	and	Symptom1	in	the	training,	test,	and	validation	sets,	respectively.	E,	F,	and	G	show	the	correction	curves	
for	the	training,	test,	and	validation	sets,	respectively.



    |  9 of 12JIAN et al.

in label construction in this study suggest that brain structural 
damage may lead to changes in the smoothness and heterogene-
ity	of	voxels	in	disease-	related	regions,	uncovering	more	profound	
pathological changes.

Our	research	results	also	show	that	using	Symptom1,	the	MoCA	
score,	and	radiomics	model	alone	can	predict	the	risk	of	develop-
ing	MCI,	but	these	features	also	have	certain	limitations.	Although	
Symptom1	 is	 associated	 with	 the	 risk	 of	 MCI,	 not	 all	 individu-
als	with	 static	 tremor	will	 develop	PD-	MCI,27 which may also be 
a	possible	reason	for	 its	poor	specificity	as	a	predictive	factor.	 In	
evaluating	cognitive	 function,	MoCA	 is	 the	most	 commonly	used	
neuropsychological	 scale	 in	 clinical	 practice	 to	quickly	 and	easily	
assess	cognitive	function.	However,	it	exhibits	poor	psychological	
measurement	characteristics	and	low	sensitivity	and	specificity,28 
and	as	a	subjective	quantitative	measure,	it	cannot	directly	reflect	
changes	 in	 neuropathology.	 In	 addition,	 although	 the	 diagnostic	
performance	of	 radiomics	model	 is	 close	 to	 that	of	 a	multimodal	
combinatorial	model	and	can	reflect	some	changes	in	neuropathol-
ogy,	due	to	the	long	course	of	PD.	They	cannot	immediately	reflect	
whether	 PD-	NC	 patients	 will	 progress	 to	 MCI.	 The	 comprehen-
sive model constructed by combining the above three showed the 
highest	diagnostic	performance	and	achieved	high	sensitivity	and	
specificity.	This	result	is	also	similar	to	the	research	results	of	Sun	
et	al.,29	who	confirmed	the	significant	application	value	of	clinical	

features	combined	with	MRI	radiomic	features	for	diagnosing	PD-	
MCI	 through	 a	 meta-	analysis	 of	 32	 cohort	 studies.	 Therefore,	 a	
multimodal	 combinatorial	 model	 using	 these	 features	 can	 more	
comprehensively	 and	 accurately	 reflect	whether	 PD-	NC	patients	
will	progress	to	MCI,	which	may	also	provide	new	ideas	and	meth-
ods	 for	 the	early	 identification	of	high-	risk	PD	patients	who	may	
progress	to	MCI.

Considering	 the	 lack	of	biological	 interpretability	of	 radiomic	
features,	DTI	is	a	non-	invasive	method	for	measuring	microstruc-
tural	 changes	 in	 brain	 white	 matter,30 it can detect early white 
matter	alterations	in	patients	with	PD.31	The	results	showed	that	
the	FA	value	 in	 the	corpus	callosum	area	decreased	 in	 the	high-	
risk	group	compared	to	the	low-	risk	group,	while	the	AD	and	MD	
values	significantly	increased	in	the	low-	risk	group.	The	same	re-
sults were also observed in the nonprogression and progression 
groups.	Bledsoe	et	al.32 showed that white matter abnormalities 
in	 the	 measurement	 of	 DTI	 in	 the	 corpus	 callosum	 region	 may	
lead	to	cognitive	impairment	in	PD	by	interfering	with	information	
transmission projected between the cerebral hemispheres and the 
corpus	callosum	cortex.	Gorges	et	al.33 showed slight changes in 
the	structure	of	the	corpus	callosum	in	206	patients	with	PD-	NC,	
while severe white matter damage was observed in the corpus cal-
losum	of	PD-	MCI,	manifested	by	a	significant	decrease	in	FA	val-
ues	and	a	significant	increase	in	AD	and	MD	values	in	the	corpus	

TA B L E  3 Comparison	of	the	diagnostic	efficacy	of	the	multimodal	combinatorial	model,	radiomics	model,	MoCA	scores,	and	Symptom1	in	
the	training,	test,	and	validation	sets.

Characteristics

Training set Test set Validation set

AUC Sensitivity Specificity p- Value AUC Sensitivity Specificity p- Value AUC Sensitivity Specificity p- Value

Multimodal	
combinatorial 
model

0.842 0.857 0.745 NA 0.829 0.733 0.821 NA 0.860 0.889 0.714 NA

Radiomics 
model

0.819 0.743 0.766 0.290a 0.793 0.733 0.846 0.391a 0.828 0.889 0.667 0.657a

MoCA 0.666 0.571 0.713 p < 0.001b*** 0.638 0.600 0.615 0.048b* 0.642 0.722 0.524 0.002b**

Symptom1 0.579 0.914 0.245 p < 0.001c*** 0.582 0.933 0.231 p < 0.001c*** 0.532 0.111 0.952 p < 0.001c***

Note:	The	markers	a,	b,	and	c	represent	the	diagnostic	performance	comparison	of	the	multimodal	combinatorial	model	with	the	radiomics	model,	
MoCA,	and	Symptom1,	respectively.
Abbreviation:	NA,	not	available.
*p < 0.05.	**p < 0.01.	***p < 0.001.

F I G U R E  5 A,	B,	and	C	show	the	confusion	matrix	of	the	multimodal	combinatorial	model	in	the	training,	test,	and	validation	sets,	
respectively.
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callosum	of	PD-	MCI	patients.	This	is	consistent	with	the	analysis	
results	of	our	corpus	callosum	DTI,	thus	confirming	the	excellent	
diagnostic	and	classification	performance	of	the	multimodal	com-
binatorial model.

This	study	also	has	certain	limitations.	First,	it	is	a	retrospective	
study	with	a	small	sample	size,	and	larger	samples	and	prospective	
studies	are	needed	 in	 the	 future.	Second,	due	 to	 the	nonsimulta-
neous	multicenter	retrospective	nature	of	the	study,	the	MRI	pro-
tocols	of	patients	in	the	two	centers	were	different	(with	different	
layer	thicknesses),	which	may	have	led	to	more	heterogeneity	and	

bias	in	the	study.	However,	we	preprocessed	the	data	to	minimize	
the	 impact	of	MRI	protocol	differences.	Finally,	there	 is	some	un-
certainty	 in	 this	 study's	 feature	 selection	and	modeling	methods.	
The	 extraction	 of	 radiomic	 features	 has	 high	 dimensionality	 and	
complexity.	Therefore,	more	research	on	selecting	and	combining	
these	features	and	choosing	appropriate	modeling	methods	is	still	
needed.

This	study	provides	strong	support	for	the	prediction	and	diag-
nosis	of	MCI	disease	progression	using	radiomic	features	and	helps	
to	understand	the	mechanism	of	disease	progression.	At	the	same	

F I G U R E  6 Representative	patients	with	quantitative	characteristics	of	DTI,	tracking	legend	of	corpus	callosum	fiber	bundles.	A	and	B	
show	the	specific	location	of	the	corpus	callosum	fiber	bundle	in	the	brain	and	the	fully	extracted	fiber	bundle	morphology,	respectively.

TA B L E  4 DTI	quantitative	characteristics-	differences	of	the	corpus	callosum	between	groups.

Group (n = 52)

Four- year follow- up classification Multimodal combinatorial model classification

Nonprogression 
group (n = 40)

Progression group 
(n = 12) p- Value

Low- risk group 
(n = 37) High- risk group (n = 15) p- Value

FA,	mean	(SD) 0.289 ± 0.013 0.280 ± 0.012 0.021* 0.289 ± 0.013 0.286 ± 0.010 0.015*

MD,	mean	(SD) 1.037 ± 0.069 1.107 ± 0.063 0.001** 1.039 ± 0.073 1.074 ± 0.060 0.024*

AD,	mean	(SD) 1.313 ± 0.070 1.385 ± 0.063 0.001** 1.315 ± 0.074 1.353 ± 0.061 0.033*

RD,	mean	(SD) 0.916 ± 0.075 0.932 ± 0.079 0.397 0.917 ± 0.085 0.924 ± 0.050 0.579

Note:	Data	are	presented	as	mean ± standard	deviation.
*p < 0.05.	**p < 0.01.
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time,	a	multimodal	combinatorial	model	based	on	radiomic	features	
fills	the	gap	in	clinical	screening	of	high-	risk	MCI	patients.
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