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Abstract
Objective: To develop and validate a multimodal combinatorial model based on whole-
brain magnetic resonance imaging (MRI) radiomic features for predicting cognitive 
decline in patients with Parkinson's disease (PD).
Methods: This study included a total of 222 PD patients with normal baseline cog-
nition, of whom 68 had cognitive impairment during a 4-year follow-up period. All 
patients underwent MRI scans, and radiomic features were extracted from the whole-
brain MRI images of the training set, and dimensionality reduction was performed to 
construct a radiomics model. Subsequently, Screening predictive factors for cognitive 
decline from clinical features and then combining those with a radiomics model to 
construct a multimodal combinatorial model for predicting cognitive decline in PD 
patients. Evaluate the performance of the comprehensive model using the receiver-
operating characteristic curve, confusion matrix, F1 score, and survival curve. In ad-
dition, the quantitative characteristics of diffusion tensor imaging (DTI) from corpus 
callosum were selected from 52 PD patients to further validate the clinical efficacy 
of the model.
Results: The multimodal combinatorial model has good classification performance, 
with areas under the curve of 0.842, 0.829, and 0.860 in the training, test, and vali-
dation sets, respectively. Significant differences were observed in the number of 
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1  |  INTRODUC TION

Parkinson's disease (PD) is a common neurodegenerative disease 
that has become one of the fastest-growing neurological diseases in 
terms of incidence rate, disability rate, and mortality, second only to 
Alzheimer's disease (AD),1 there are over 7 million people worldwide 
suffering from PD.2 Cognitive impairment is one of the more com-
mon nonmotor symptoms in PD, including mild cognitive impairment 
in PD (PD-MCI) and PD dementia (PDD), where PD-MCI is an inde-
pendent risk factor for PDD.3 Epidemiological studies show that the 
incidence rate of PD-MCI is high, up to 42.5%, and can appear in the 
early stage of PD.4 Among patients with more than ten years of med-
ical history, the incidence rate of PDD accounts for 46%.5 When PD-
MCI progresses to PDD, it seriously affects patients' social function 
and quality of life. Therefore, the early diagnosis and intervention of 
PD-MCI have crucial clinical significance.6

With the continuous development of medical imaging technol-
ogy as indicated by MRI in neuroimaging, abnormal brain function, 
microanatomical structure, and pathological changes in PD patients 
have gradually been revealed. Changes in brain tissue microstruc-
ture precede morphological changes, but those microstructural 
changes cannot be observed by the naked eye on structural MRI 
(sMRI) images in early PD patients.7 Although functional MRI, such 
as neuromelanin-sensitive MRI and quantitative susceptibility map-
ping (QSM), plays a vital role in the diagnosis of PD,8,9 the diagnostic 
utility of these technologies highly depends on changes in scanners 
and acquisition protocols.10 Other methods, such as fluorodeoxyglu-
cose positron emission tomography (FDG PET) and dopamine trans-
porter single-photon emission computed tomography (DAT-SPECT), 
also play essential roles in diagnosing PD.11,12 However, these are 
expensive models with relatively low accessibility, and they cannot 
be widely used in clinical practice. Therefore, developing a simple, 
noninvasive method to identify asymptomatic PD patients with po-
tential cognitive decline is a massive challenge for clinical and imag-
ing physicians.13

In recent years, the emergence of radiomics has provided a novel 
method for studying various neurodegenerative diseases, including 
PD.14 Radiomics can be used to transform digital medical images into 
high-dimensional data that can be mined to support clinical decision-
making.15 Early radiomic features are often used in the study of 

tumor lesions. In recent years, an increasing number of studies have 
applied this method to diagnose neurodegenerative diseases, includ-
ing auxiliary clinical diagnosis, treatment guidance, and progression 
prediction for PD.16 Research by Betrouni et  al.17 has shown that 
before conventional MRI imaging methods detect brain tissue atro-
phy, radiomic features can already be used to detect differences in 
the brain between PD patients and healthy controls, suggesting that 
radiomics analysis can reflect the variation and distribution of local 
tissue characteristics in early stages of PD patients, capturing subtle 
structural changes. Our previous research was based on the use of 
T1WI structural images to identify radiomic features of the entire 
white matter of the brain, which have essential value for diagnosing 
PD.18 Based on the above research results, we assume that a radio-
mics model constructed using conventional T1WI can also be used 
to identify high-risk populations in PD patients who may develop 
PD-MCI, and their predictive performance can be improved by the 
addition of relevant clinical features.

This study aimed to extract features of the brain's entire gray and 
white matter from conventional T1WI images and construct a radio-
mics model for identifying PD-MCI patients. Second, a multimodal 
combinatorial model was constructed based on radiomic features 
and relevant clinical features to predict high-risk populations where 
PD normal control (PD-NC) may progress to PD-MCI.

2  |  MATERIAL S AND METHODS

2.1  |  Patient information

The case data used in this study came from the PPMI and NACC 
databases. The Parkinson's Progression Markers Initiative (PPMI) 
(http://​www.​PPMI-​info.​org) is the first global collaborative project 
composed of researchers, funders, and research participants dedi-
cated to identifying biomarkers to improve PD treatment. It is a 
multicenter collaborative PD open-source database with neuropsy-
chological scales, MRIs, and genetic data. The National Alzheimer's 
Coordinating Center (NACC) (https://​naccd​ata.​org) was established 
in 1999; it is a large-scale compilation of longitudinal data for healthy 
control (HC) participants and patients with mild cognitive impair-
ment (MCI), AD, and other neurodegenerative diseases, including 

cognitive decline PD patients and corpus callosum-related DTI parameters between 
the low-risk and high-risk groups distinguished by the model (p < 0.05). The survival 
curve analysis showed a statistically significant difference in the progression time of 
mild cognitive impairment between the low-risk and the high-risk groups.
Conclusions: The building of a multimodal combinatorial model based on radiomic 
features from MRI can predict cognitive decline in PD patients, thus providing adap-
tive strategies for clinical practice.

K E Y W O R D S
cognitive impairment, magnetic resonance imaging, models, Parkinson's disease, radiomics
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standardized clinical and neuropathological research data collected 
from AD centers across the United States.19,20 For ethical review 
information on the data, please refer to the website. This study in-
cluded 222 patients with a baseline diagnosis of PD-NC. The inclu-
sion criteria were as follows: all patients with an initial diagnosis of 
PD-NC were followed up for 4 years, underwent MRI examinations, 
and had complete clinical data. The exclusion criteria were as fol-
lows: (1) the original MRI DICOM file was incorrect and we were 
unable to extract radiomic features; and (2) biological indicator and 
scale evaluation data were missing. All patients underwent brain 
MRI and detailed neuropsychological tests at the initial assessment. 
We randomly divided 183 patients from the PPMI database into 
a training set (n = 129) and a test set (n = 54) in a 7:3 ratio. Among 
them, 50 patients progressed to PD-MCI during a 4-year follow-up 
period and were classified as the progression group, while the re-
maining 133 patients were classified as the nonprogression group. 
The 39 patients collected from the NACC database were used as an 
external validation set, of which 18 patients progressed to PD-MCI 
during a 4-year follow-up period and were classified as the progres-
sion group, while the remaining 21 patients were classified as the 
nonprogression group. The specific screening process can be found 
in Figure S1.

We also collected the corresponding clinical data for this 
study, including neural scale information such as the Montreal 
Cognitive Assessment (MoCA) score, Epworth Sleepiness Scale 
score, and Geriatric Depression Scale score and clinical data 
such as age, sex, and education level. A multimodal combinato-
rial model was established using the training set, and the model's 

reliability was verified using the test set. In addition, to further 
validate the model's generalization performance, we used a vali-
dation set for model validation. The specific process is shown in 
Figure 1.

2.2  |  Radiomic features preprocessing

All experimental data were obtained through scanning with a 
1.5T/3.0T MRI system, including T1WI images of all patients and DTI 
images of some patients. To further reduce the impact of image scan-
ning parameters on feature extraction, we preprocessed the struc-
tural T1 image, including converting voxel values to 1 × 1 × 1 mm3. 
We standardized the image grayscale level to 1–32 levels to eliminate 
the influence of anisotropy on feature extraction.21 Afterward, the 
preprocessed images were imported into the statistical parameter 
mapping SPM12 software (version V2.5.5) on the MATLAB platform 
(MathWorks, MA, USA). The images were automatically segmented 
into gray matter, white matter, and cerebrospinal fluid (CFS) using 
the ITK-SNAP software package (http://​www.​itksn​ap.​org/​pmwiki/​
pmwiki.​php), with further manual correction; this includes (1) remov-
ing the nonbrain tissue, brainstem, and cerebellum and (2) correcting 
segmentation errors in brain tissue. The manual correction of MRI 
was independently performed by two experienced neuroradiolo-
gists who were unaware of the clinical data. After manual correc-
tion, the segmented brain tissue regions are imported as masks into 
PyRadiomics software for feature extraction.22 In addition, we se-
lected DTI examinations from 52 PD patients for validation analysis 

F I G U R E  1 Architecture of the proposed PD progression prediction model.

http://www.itksnap.org/pmwiki/pmwiki.php
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in subsequent studies. The details of DTI feature extraction can be 
found in Data S1.

2.3  |  Radiomic features extraction

The PyRadiomics platform was used to extract radiomic features 
of the volume of interest (VOI). The extracted features include the 
following two categories: (1) original image features: ① 14 types 
of shape-based features; ② 18 types of first-order statistics; and 
③ texture features, including 22 types of gray-level cooccurrence 
matrix (GLCM) features, 16 types of gray-level run-length matrix 
(GLRLM) features, 16 types of gray-level size zone matrix (GLSZM) 
features, and 14 types of gray-level dependency matrix (GLDM) 
features; and (2) features related to the filter class: ① wavelet (WT) 
features; and ② Laplacian transforms, etc. A total of 3396 radiomic 
features were extracted, including 1132 gray matter (GM) fea-
tures, 1132 white matter (WM) features, and 1132 CFS features. 
Detailed feature information can be found in Table S1. These fea-
tures were extracted based on the region of interest and manually 
modified by radiologists to obtain the most consistent features 
among different radiologists, thereby ensuring robustness. The 
correlation coefficients (CCs) of each feature between feature 
set A (from radiologist A) and feature set B (from radiologist B) 
were calculated using Spearman rank correlation. Features with 
CC > 0.8 were considered robust features.23

2.4  |  Feature dimensionality reduction and 
composition of the radiomics model

To reduce the high-dimensional burden on model training, the 
above features obtained from the training set were used to elimi-
nate redundant and irrelevant features using minimum redun-
dance maximum relevance (mRMR), and then the least absolute 
shrinkage and selection operator (LASSO) was used for dimen-
sionality reduction processing, with the optimal parameters, ɑ, 
to construct a penalty function to eliminate variables with zero 
coefficient values. We used tenfold cross-validation to obtain the 
optimal penalty parameter for LASSO and retained features with 
nonzero regression coefficients. Redundant or nonreproducible 
features were combined or excluded to screen out the most valu-
able and relevant features. Finally, based on the remaining radi-
omic features filtered out from the training set, logistic regression 
was used to construct a radiomics model, and the score values 
for each patient were calculated using the marker formula. The 
score values reflect the possible probability of PD-NC progress-
ing to PD-MCI, which is called the Rad-score. The area under the 
curve (AUC) of the receiver-operating characteristic (ROC) curve 
was used to evaluate the accuracy of the radiomics model in the 
training, test, and validation sets. For detailed information on di-
mensionality reduction, please refer to the Data S2.

2.5  |  Construction and verification of a multimodal 
combinatorial model

The independent predictors were selected from clinical features and 
radiomics model in the training set by using the reverse stepwise 
selection method based on the Akaike information criterion (AIC), 
and a multimodal combinatorial model was established on this basis. 
To verify the improvement in model performance after including 
a radiomics model, we used the ROC curve and AUC to evaluate 
the performance of the multimodal combinatorial model, radiom-
ics model, and related independent predictive factors. We used the 
Hosmer–Lemeshow test to analyze the goodness-of-fit of the mul-
timodal combinatorial model and used calibration curves to visually 
evaluate the consistency between the predicted MCI probability and 
the actual MCI probability. In addition, we used Delong testing to 
determine the differences between the multimodal combinatorial 
and other model. Finally, the confusion matrix and F1 score were 
used to describe the performance of the multimodal combinatorial 
model.

2.6  |  Clinical validation

The model was constructed on the PPMI data, according to the 
optimal cutoff values in the training set, the training and test sets 
patients were divided into low-risk and high-risk groups, and the 
performance of the model on the NACC data was evaluated. The 
number of individuals progressing to PD-MCI in the low-risk and 
high-risk groups was compared, and the difference in the MCI 
progression rate was examined. Considering the lack of biological 
interpretability of radiomic features, this study also included DTI pa-
rameters to verify the performance of biomarkers constructed from 
radiomic features.

2.7  |  Statistical analyses

All statistical analyses were conducted using R statistical software 
(v. 3.5.1), MedCalc software (V.11.2; 2011 MedCalc software bvba, 
Mariakerke, Belgium), and SPSS (software version 22, IBM, Armonk, 
NY, USA). The “mRMRe” package in R statistical software was used 
to filter the correlation and nonredundancy of the radiomic features. 
The LASSO logic in the “Glmnet” software package was used to se-
lect predicted features.

We tested the compliance of the quantitative data with normal 
distribution via the Kolmogorov–Smirnov test and Shapiro–Wilk 
test. Continuous variables for normal distribution were presented 
as the mean ± standard deviation and compared using the t-test. 
For non-normal distribution data, variables were expressed as 
medians (interquartile ranges, IQRs) and analyzed using Mann–
Whitney U test. Categorical variables were recorded as frequen-
cies (%), and the chi-squared test or Fisher's exact test was used 
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to evaluate the association of categorical variables. The metrics 
in the ROC curve (such as AUC, sensitivity, and specificity) and 
F1 score were used to evaluate model performance. All statistical 
data were bidirectional, and a p value less than 0.05 was consid-
ered statistically significant.

3  |  RESULTS

3.1  |  Comparison of clinical factors

The baseline clinical characteristics of 222 PD patients in the train-
ing, test, and validation sets are summarized in Table 1. In the train-
ing, test, and validation sets, 35 patients (27.1%), 15 patients (27.8%), 
and 18 patients (46.2%) developed PD-MCI within 4 years after PD 
diagnosis, respectively. The majority of patients who developed PD-
MCI within the prescribed time window were male. Compared with 
patients without PD-MCI, patients with PD-MCI showed a higher 
incidence of Symptom1. In the training set, there were significant 
differences in Age and MoCA between the progression and nonpro-
gression groups, with p values of 0.039 and 0.003, respectively. In 
addition, the test set showed a statistically significant difference in 
GDS between the progression and nonprogression groups, with p 
values of 0.021.

3.2  |  Construction and verification of 
radiomic markers

After mRMR and LASSO dimensionality reduction, 8 radiomic fea-
tures remained, including 5 GM and 3 WM features. The feature 
weights are shown in Figure  2. The radiomics model constructed 
based on these 8 features has good predictive performance on the 
training, test, and validation sets. The AUC values in the training, 
test, and validation sets were 0.819, 0.793, and 0.828, respectively, 
with sensitivity values of 0.743, 0.733, and 0.889 and specificity val-
ues of 0.766, 0.846, and 0.667, respectively (Figure 3).

3.3  |  Construction of a multimodal 
combinatorial model

Multivariate logistic regression showed that two clinical features 
(MoCA score, Symptom1) and Rad-score were independent predic-
tors of cognitive decline in PD patients. A multimodal combinato-
rial model was constructed based on the independent predictors, 
and a visual nomogram was established (Table 2 and Figure 4A). The 
nomogram scores were given based on the weights of independent 
predictors, and the scale length of the nomogram variable is posi-
tively correlated with its impact on the prediction of PD-MCI. Out of 
the three factors, the Rad-score label contributed the most to pre-
dicting the outcome (the longest scale), followed by MoCA score. 
The high-probability segment of the Rad-score label corresponds 

to the high-score area (score axis), and the low-probability segment 
corresponds to the low-score area. Patients with low MoCA scores 
had a higher probability of progressing to PD-MCI than those with 
high scores. Patients with Symptom1 have an increased chance of 
progressing to PD-MCI. The scores of all factors were added up 
to obtain the total score, which was perpendicular to (probability 
axis of progression to PD-MCI) obtain the probability of individual 
final progression to PD-MCI. The multimodal combinatorial model 
performed better than clinical features (MoCA score, Symptom1) 
in the training, test, and validation sets. The AUCs in the training, 
test, and validation sets were 0.842 (95% CI, 0.767–0.900), 0.829 
(95% CI, 0.702–0.918), and 0.860 (95% CI,0.711–0.950), with sensi-
tivities of 0.857, 0.733, and 0.889, respectively, and specificities of 
0.745, 0.821, and 0.714, respectively (Figure 4B–D). The Hosmer–
Lemeshow test showed that the multimodal combinatorial model 
did not overfit (p > 0.05), and the calibration curve showed that the 
predictive performance of the multimodal combinatorial model was 
consistent with the actual MCI progression state (Figure 4E–G). The 
Delong test showed that there was a significant difference (p < 0.05) 
in the diagnostic performance of the multimodal combinatorial 
model and the independent predictive factors MoCA and Symptom1 
in the training, test, and validation sets, and there was no significant 
difference compared to the radiomics model (Table 3). Finally, The 
confusion matrix was used to describe the performance of the mul-
timodal combinatorial model (Figure 5), the F1 score in the training, 
test, and validation sets were 0.627, 0.667, and 0.842, respectively.

3.4  |  Verification of the multimodal 
combinatorial model

Among 52 patients with DTI quantitative characteristics, the frac-
tional anisotropy (FA), mean diffusivity (MD), and axial diffusion (AD) 
values of the corpus callosum fiber bundle showed significant differ-
ences in the low- and high-risk groups, while the relative anisotropy 
(RD) values were not statistically significant. The same results were 
observed in the nonprogression and progression groups (Figure  6 
and Table 4). Survival analysis was performed using the log-rank test 
and showed statistically significant differences in MCI progression 
time between the low-risk and high-risk groups in the PPMI and 
NACC databases (Figure 7).

4  |  DISCUSSION

This study used radiomic features from conventional magnetic 
resonance structural images to construct a radiomics model. We 
conducted a systematic and quantitative review of the prediction 
of clinical status evolution in PD-NC individuals over 4 years. The 
results indicate that the predictive performance of the multimodal 
combinatorial model is significantly better than that of clinical fea-
tures alone (MoCA score, Symptom1), indicating that a radiomics 
model based on the whole brain can be used to identify patients 
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who progress from PD-NC to PD-MCI. In addition, the multimodal 
combinatorial model constructed by combining these feature types 
significantly improves the prediction performance. This may also 
provide a beneficial tool for the clinical screening of potentially high-
risk populations for PD-MCI.

MRI, as a noninvasive and intuitive reflection of brain tissue 
structure, has become one of the essential measurement meth-
ods for PD research.24 T1-based structural MRI methods, such as 
VBM analysis of several brain regions, including the hippocampus, 
have been widely used in studying PD evolution.25 However, these 
brain regions reflect only the local pathological mechanisms of the 
disease rather than the pathological changes that evolve from PD-
NC to PD-MCI. In this study, we developed a new whole-brain 
radiomics model to determine the high-risk population of PD-NC 
patients who may progress to PD-MCI. Our research results indi-
cate that the radiomics model has good diagnostic efficacy, which 
may reflect most pathological changes during disease progression. 
This study showed that 5 gray and 3 white matter features were 
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F I G U R E  2 Feature weight histogram. The horizontal 
coordinates indicate the weight values of each feature.

F I G U R E  3 A, B, and C show the diagnostic performance of the radiomic features in the training, test, and validation sets, respectively.

Variable

Univariate logistic regression Multivariate logistic regression

OR (95% CI) p-Value OR (95% CI) p-Value

Age (year) 1.045 (0.991, 1.100) 0.099 NA NA
Sex 0.948 (0.431, 2.087) 0.895 NA NA
Educyrs 0.967 (0.848, 1.103) 0.618 NA NA
Symptom1 2.947 (0.900, 9.648) 0.074 2.908 (0.892, 13.136) 0.108
Symptom2 1.478 (0.580, 3.767) 0.413 NA NA
Symptom3 0.791 (0.285, 2.199) 0.653 NA NA
Symptom4 1.249 (0.366, 4.258) 0.723 NA NA
Symptom5 0.618 (0.212, 1.805) 0.379 NA NA
Hy 1.275 (0.601, 2.704) 0.527 NA NA
ESS 0.480 (0.151,1.529) 0.215 NA NA
GDS 0.971 (0.253, 3.730) 0.966 NA NA
RBD 1.688 (0.807, 3.531) 0.164 NA NA
MoCA 0.697 (0.516, 0.944) 0.020* 0.627 (0.439, 0.876) 0.008**
Radiomics model 2.252 (1.518, 3.342) <0.001*** 2.166 (1.565, 2.998) <0.001***

Note: NA, not available because the variable is not included in multiple variables. The p value 
indicates whether the variable is an independent predictor of PD-MCI.
*p < 0.05. **p < 0.01. ***p < 0.001.

TA B L E  2 Screening of independent 
predictive factors.
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involved in constructing the model. These 8 quantitative features 
may display pathological differences, which the original T1WI im-
ages cannot recognize. However, our analysis of the classification 
performance of our radiomic features model indirectly confirms 
the pathological changes in the brain between the high-  and 

low-risk groups. In addition, among the 8 features, there were 6 
wavelet features, representing the texture's smoothness and het-
erogeneity. Previous studies by Mayerhoefer et al.26 revealed that 
higher wavelet eigenvalues are associated with rougher and more 
heterogeneous tissue structures. Therefore, the wavelet features 

F I G U R E  4 A shows the Radiomics nomogram for the prediction of PD-MCI. The radiomics nomogram is developed in the training set with 
two clinical features (MoCA, Symptom1) and Rad-score. B, C, and D show the diagnostic performance of the multimodal combinatorial model, 
radiomics model, MoCA score, and Symptom1 in the training, test, and validation sets, respectively. E, F, and G show the correction curves 
for the training, test, and validation sets, respectively.
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in label construction in this study suggest that brain structural 
damage may lead to changes in the smoothness and heterogene-
ity of voxels in disease-related regions, uncovering more profound 
pathological changes.

Our research results also show that using Symptom1, the MoCA 
score, and radiomics model alone can predict the risk of develop-
ing MCI, but these features also have certain limitations. Although 
Symptom1 is associated with the risk of MCI, not all individu-
als with static tremor will develop PD-MCI,27 which may also be 
a possible reason for its poor specificity as a predictive factor. In 
evaluating cognitive function, MoCA is the most commonly used 
neuropsychological scale in clinical practice to quickly and easily 
assess cognitive function. However, it exhibits poor psychological 
measurement characteristics and low sensitivity and specificity,28 
and as a subjective quantitative measure, it cannot directly reflect 
changes in neuropathology. In addition, although the diagnostic 
performance of radiomics model is close to that of a multimodal 
combinatorial model and can reflect some changes in neuropathol-
ogy, due to the long course of PD. They cannot immediately reflect 
whether PD-NC patients will progress to MCI. The comprehen-
sive model constructed by combining the above three showed the 
highest diagnostic performance and achieved high sensitivity and 
specificity. This result is also similar to the research results of Sun 
et al.,29 who confirmed the significant application value of clinical 

features combined with MRI radiomic features for diagnosing PD-
MCI through a meta-analysis of 32 cohort studies. Therefore, a 
multimodal combinatorial model using these features can more 
comprehensively and accurately reflect whether PD-NC patients 
will progress to MCI, which may also provide new ideas and meth-
ods for the early identification of high-risk PD patients who may 
progress to MCI.

Considering the lack of biological interpretability of radiomic 
features, DTI is a non-invasive method for measuring microstruc-
tural changes in brain white matter,30 it can detect early white 
matter alterations in patients with PD.31 The results showed that 
the FA value in the corpus callosum area decreased in the high-
risk group compared to the low-risk group, while the AD and MD 
values significantly increased in the low-risk group. The same re-
sults were also observed in the nonprogression and progression 
groups. Bledsoe et al.32 showed that white matter abnormalities 
in the measurement of DTI in the corpus callosum region may 
lead to cognitive impairment in PD by interfering with information 
transmission projected between the cerebral hemispheres and the 
corpus callosum cortex. Gorges et al.33 showed slight changes in 
the structure of the corpus callosum in 206 patients with PD-NC, 
while severe white matter damage was observed in the corpus cal-
losum of PD-MCI, manifested by a significant decrease in FA val-
ues and a significant increase in AD and MD values in the corpus 

TA B L E  3 Comparison of the diagnostic efficacy of the multimodal combinatorial model, radiomics model, MoCA scores, and Symptom1 in 
the training, test, and validation sets.

Characteristics

Training set Test set Validation set

AUC Sensitivity Specificity p-Value AUC Sensitivity Specificity p-Value AUC Sensitivity Specificity p-Value

Multimodal 
combinatorial 
model

0.842 0.857 0.745 NA 0.829 0.733 0.821 NA 0.860 0.889 0.714 NA

Radiomics 
model

0.819 0.743 0.766 0.290a 0.793 0.733 0.846 0.391a 0.828 0.889 0.667 0.657a

MoCA 0.666 0.571 0.713 p < 0.001b*** 0.638 0.600 0.615 0.048b* 0.642 0.722 0.524 0.002b**

Symptom1 0.579 0.914 0.245 p < 0.001c*** 0.582 0.933 0.231 p < 0.001c*** 0.532 0.111 0.952 p < 0.001c***

Note: The markers a, b, and c represent the diagnostic performance comparison of the multimodal combinatorial model with the radiomics model, 
MoCA, and Symptom1, respectively.
Abbreviation: NA, not available.
*p < 0.05. **p < 0.01. ***p < 0.001.

F I G U R E  5 A, B, and C show the confusion matrix of the multimodal combinatorial model in the training, test, and validation sets, 
respectively.



10 of 12  |     JIAN et al.

callosum of PD-MCI patients. This is consistent with the analysis 
results of our corpus callosum DTI, thus confirming the excellent 
diagnostic and classification performance of the multimodal com-
binatorial model.

This study also has certain limitations. First, it is a retrospective 
study with a small sample size, and larger samples and prospective 
studies are needed in the future. Second, due to the nonsimulta-
neous multicenter retrospective nature of the study, the MRI pro-
tocols of patients in the two centers were different (with different 
layer thicknesses), which may have led to more heterogeneity and 

bias in the study. However, we preprocessed the data to minimize 
the impact of MRI protocol differences. Finally, there is some un-
certainty in this study's feature selection and modeling methods. 
The extraction of radiomic features has high dimensionality and 
complexity. Therefore, more research on selecting and combining 
these features and choosing appropriate modeling methods is still 
needed.

This study provides strong support for the prediction and diag-
nosis of MCI disease progression using radiomic features and helps 
to understand the mechanism of disease progression. At the same 

F I G U R E  6 Representative patients with quantitative characteristics of DTI, tracking legend of corpus callosum fiber bundles. A and B 
show the specific location of the corpus callosum fiber bundle in the brain and the fully extracted fiber bundle morphology, respectively.

TA B L E  4 DTI quantitative characteristics-differences of the corpus callosum between groups.

Group (n = 52)

Four-year follow-up classification Multimodal combinatorial model classification

Nonprogression 
group (n = 40)

Progression group 
(n = 12) p-Value

Low-risk group 
(n = 37) High-risk group (n = 15) p-Value

FA, mean (SD) 0.289 ± 0.013 0.280 ± 0.012 0.021* 0.289 ± 0.013 0.286 ± 0.010 0.015*

MD, mean (SD) 1.037 ± 0.069 1.107 ± 0.063 0.001** 1.039 ± 0.073 1.074 ± 0.060 0.024*

AD, mean (SD) 1.313 ± 0.070 1.385 ± 0.063 0.001** 1.315 ± 0.074 1.353 ± 0.061 0.033*

RD, mean (SD) 0.916 ± 0.075 0.932 ± 0.079 0.397 0.917 ± 0.085 0.924 ± 0.050 0.579

Note: Data are presented as mean ± standard deviation.
*p < 0.05. **p < 0.01.
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time, a multimodal combinatorial model based on radiomic features 
fills the gap in clinical screening of high-risk MCI patients.
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