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RAIN: machine learning-based identification
for HIV-1 bNAbs

Mathilde Foglierini 1,2,3,11, Pauline Nortier1,2,11, Rachel Schelling1,2,
Rahel R. Winiger 1,2, Philippe Jacquet 4, Sijy O’Dell5, Davide Demurtas6,
Maxmillian Mpina7, Omar Lweno 7, Yannick D. Muller 1,2,
Constantinos Petrovas8, Claudia Daubenberger 9,10, Matthieu Perreau1,
Nicole A. Doria-Rose 5, Raphael Gottardo 3 & Laurent Perez 1,2

Broadly neutralizing antibodies (bNAbs) are promising candidates for the
treatment andpreventionofHIV-1 infections. Despite their critical importance,
automatic detection of HIV-1 bNAbs from immune repertoires is still lacking.
Here, we develop a straightforward computational method for the Rapid
Automatic Identificationof bNAbs (RAIN) basedonmachine learningmethods.
In contrast to other approaches, which use one-hot encoding amino acid
sequences or structural alignment for prediction, RAIN uses a combination of
selected sequence-based features for the accurate prediction of HIV-1 bNAbs.
We demonstrate the performance of our approach on non-biased, experi-
mentally obtained and sequencedBCR repertoires fromHIV-1 immunedonors.
RAIN processing leads to the successful identification of distinct HIV-1 bNAbs
targeting the CD4-binding site of the envelope glycoprotein. In addition, we
validate the identified bNAbs using an in vitro neutralization assay and we
solve the structure of one of them in complex with the soluble native-like
heterotrimeric envelope glycoprotein by single-particle cryo-electron micro-
scopy (cryo-EM). Overall, we propose a method to facilitate and accelerate
HIV-1 bNAbs discovery from non-selected immune repertoires.

More than 40 years after its identification, the human immunodefi-
ciency virus-1 (HIV-1) remains a major global health concern1. The
World Health Organization (WHO) estimates 38 million HIV-1 infected
individuals worldwide in 2023, 1.5 million new HIV-1 infections, and
650,000 deaths from acquired immunodeficiency syndrome (AIDS)-
related illness. Despite intense research efforts, there is still no cure
nor vaccine for HIV-1 infections available2. Humoral immune response

to HIV-1 targets the envelope (Env) protein of the virion, a trimeric
membrane glycoprotein complex comprising gp120 and gp413. How-
ever, the virus rapidly escapes immune control due to the exceptional
Env glycoprotein diversity generated by the error-prone replication
machinery of HIV-14. Moreover, additional mechanisms of immune
evasion exist, such as heavy glycosylation of gp120, which promotes a
conformational masking of the receptor-binding site5. Screening of

Received: 29 February 2024

Accepted: 17 June 2024

Check for updates

1Department of Medicine, Service of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland. 2Centre for
Human Immunology, Lausanne, Switzerland. 3Biomedical Data Science Centre, Lausanne University Hospital and University of Lausanne,
Lausanne, Switzerland. 4ScientificComputing andResearchSupport Unit, University of Lausanne, Lausanne, Switzerland. 5Vaccine ResearchCenter, National
Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. 6Interdisciplinary center of electron microscopy, CIME, Ecole
Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. 7Ifakara Health Institute, Bagamoyo, United Republic of Tanzania. 8Department of Laboratory
Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland. 9Department of Medical Parasitology and Infection
Biology, Clinical Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland. 10University of Basel, Basel, Switzerland. 11These authors
contributed equally: Mathilde Foglierini, Pauline Nortier. e-mail: laurent.perez@chuv.ch

Nature Communications |         (2024) 15:5339 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-7538-4262
http://orcid.org/0000-0001-7538-4262
http://orcid.org/0000-0001-7538-4262
http://orcid.org/0000-0001-7538-4262
http://orcid.org/0000-0001-7538-4262
http://orcid.org/0000-0001-9796-5543
http://orcid.org/0000-0001-9796-5543
http://orcid.org/0000-0001-9796-5543
http://orcid.org/0000-0001-9796-5543
http://orcid.org/0000-0001-9796-5543
http://orcid.org/0000-0002-6005-6095
http://orcid.org/0000-0002-6005-6095
http://orcid.org/0000-0002-6005-6095
http://orcid.org/0000-0002-6005-6095
http://orcid.org/0000-0002-6005-6095
http://orcid.org/0000-0003-4657-0124
http://orcid.org/0000-0003-4657-0124
http://orcid.org/0000-0003-4657-0124
http://orcid.org/0000-0003-4657-0124
http://orcid.org/0000-0003-4657-0124
http://orcid.org/0000-0003-0513-7156
http://orcid.org/0000-0003-0513-7156
http://orcid.org/0000-0003-0513-7156
http://orcid.org/0000-0003-0513-7156
http://orcid.org/0000-0003-0513-7156
http://orcid.org/0000-0001-7136-0642
http://orcid.org/0000-0001-7136-0642
http://orcid.org/0000-0001-7136-0642
http://orcid.org/0000-0001-7136-0642
http://orcid.org/0000-0001-7136-0642
http://orcid.org/0000-0002-5731-3054
http://orcid.org/0000-0002-5731-3054
http://orcid.org/0000-0002-5731-3054
http://orcid.org/0000-0002-5731-3054
http://orcid.org/0000-0002-5731-3054
http://orcid.org/0000-0002-3867-0232
http://orcid.org/0000-0002-3867-0232
http://orcid.org/0000-0002-3867-0232
http://orcid.org/0000-0002-3867-0232
http://orcid.org/0000-0002-3867-0232
http://orcid.org/0000-0002-8860-7928
http://orcid.org/0000-0002-8860-7928
http://orcid.org/0000-0002-8860-7928
http://orcid.org/0000-0002-8860-7928
http://orcid.org/0000-0002-8860-7928
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49676-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49676-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49676-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49676-1&domain=pdf
mailto:laurent.perez@chuv.ch


plasma from HIV-1 seropositive (HIV-1 + ) subjects led to the identifi-
cation of rare individuals possessing sera with broad and potent neu-
tralizing activities against numerous HIV-1 viruses. Additional studies
allowed the cloning and sequencing of B-cell receptors (BCRs) and
permitted the identification of broadly neutralizing antibodies
(bNAbs), which can neutralize most viral strains at low concentrations
in vitro6. Investigation of the development and structural properties of
these bNAbs revealed only a low level of sequence identity between
them, but demonstrated that specific characteristics are associated
with their function. For example, bNAbs exhibit an extreme level of
somatic hypermutations (SHMs) and large nucleotide insertions lead-
ing to long heavy chain complementary determining regions (CDRs)7,8.

Since their identification, bNAbs have gained intense therapeutic
interest. Although approved drugs against HIV-1 infection exist, pas-
sive antibody prophylaxis and immunotherapy could hold a valuable
place in both prevention and treatment9. Passive transfer of bNAbs
demonstrated a decrease of viral loads10,11, prevention of infection12,13,
delay of viral rebound14,15, and suppression of viremia in humanized
mice, non-human primates, and humans without notable adverse
events or side effects16,17. BNAbs target distinct sites of vulnerability at
the surface of the envelope: the CD4-binding site (CD4bs), variable
loop V1/V2 apex, and V3 loop, a larger site spanning the interface
between gp41 and gp120 (interface) including the fusion peptide, and
the membrane-proximal external region (MPER). Recently, a sixth site
was discovered, defined by the bNAb VRC-PG05, which binds to the
center of the so-called “silent face” of gp12018.

To date, the identification of bNAbs has required B-cell isolation
and clonal expansion from selected individuals possessing sera with
broadly neutralizing activity. This step is followed by antibody cloning
and experimental validation of their neutralization potential. While
both steps represent an important research effort, the process has
benefited from identified immune donors19 and the development of
high-throughput analyses of antibody repertoires by next-generation
sequencing (NGS). Still, the number of identified HIV bNAbs remains
relatively low, with only 255 of them being reported3,20. Some bNAbs
have been investigated in registered clinical trials, for prevention, as a
component of long-acting antiretroviral therapy (ART), or intervention
aimed at long-term drug-free remission of HIV17,21,22. However, the
clinical success of bNAb passive immunization strategies will likely
require a combination of antibodies to increase the overall breadth and
potency against diverseHIV-1 isolates and to prevent the emergence of
resistance23. The recent deployment of large datasets of human B-cell
repertoires on database repositories represents an opportunity for
novel bNAb identification assuming that computational tools for their
automatic identification and classification are developed24. Artificial
intelligence (AI)-based prediction tools to find the antibodies and
antigens have been developed25. However, most of these tools rely on
structural or amino acid sequence similarities of related antibodies to
identify potential target proteins26. Nonetheless, despite important
research and characterization efforts, a precise set of criteria required
for classifying bNAbs versus non-bNAbs is still lacking.

Here, we developed a computational pipeline named RAIN for the
RapidAutomatic IdentificationofbNAbs fromImmuneRepertoires.RAIN
is based on four different machine-learning algorithms, which can be
trained in just a fewminutes using a Python script. RAINonly requires the
following: a cellranger scBCR output going through the Immcantation
pipeline, and a R script converting the repertoire data into a features
table for bNAb prediction. We validated RAIN on previously identified
bNAbs, leading to a prediction accuracy of 100% and an Area Under the
Curve (AUC) value ranging from 0.92 to 1, depending on the antigenic
site. In addition, we isolated class-switched memory B cells from HIV-1
immune donors and performed single-cell BCR sequencing to demon-
strate the method’s performance. Importantly, immune repertoire ana-
lysis of donors with a serum able to broadly neutralize different HIV-1
isolates led to the identification of three bNAbs, while nonewas detected

in the repertoire of immune donors with sera that did not possess
broadly neutralizing activities. The identified bNAbs were further asses-
sed for their affinities to the stabilized envelope prefusion trimer BG505
DS-SOSIP, for their neutralizing activities and one of them was addi-
tionally characterized by cryo-EM.

Results
Subset of discrete characteristics discriminates HIV-1 bNAbs
from mAbs
The automatic identification of HIV bNAbs cannot be solely based on
amino acid sequence similarity of the heavy or light chains, due to a
large sequence variability resulting from the long affinity maturation
process. In contrast, HIV-1 bNAbs isolated from chronically infected
adults exhibit a signature of characteristic features, including high
SHMs, insertions or deletions (indels), long complementarity-
determining regions H3 (CDRH3), high potency, and broad viral neu-
tralization breadth3. Moreover, the VRC01-class bNAbs, targeting the
CD4bs, have also been shown to preferentially use specific germline
alleles27,28 and possess an unusually short CDRL3 of only five amino
acids. These short CDRL3 are essential to contact gp120, while avoid-
ing the glycan at position N267 in the D loop of gp12029. While bNAbs
targeting the V1V2 apex use specific IGHV genes and together with
bNAbs binding the V3 glycan, they are characterized by a long (20–34
residues) CDRH3 sequence30,31.We hypothesized that integrating spe-
cific parameters characterizing HIV-1 bNAbs in a machine-learning
framework could allow a rapid identification of bNAbs from an
immune repertoire (Fig. 1). To identify predictors of HIV-1 bNAbs, we
investigated specific features associated with these antibodies and
inferred them from their highly diversified amino acid sequences. We
collected and curated bNAb sequences from the CATNAP (Compile,
Analyze, and Tally NAb Panels) database32. Data curation consisted of
only considering human affinity matured sequences and removing
incomplete or unpaired sequences (Supplementary Data file 1). We
obtained a total of 255 bNAb paired sequences, described to bind the
V1V2 apex (n = 98), V3 glycan (n = 56), CD4-binding site (n = 54), gp120/
gp41 interface (n = 26), and MPER (n = 21). To visualize the sequence
similarity among these selected bNAbs, we initially aligned the
sequences using ANARCI with the IMGT format33. Subsequently, we
computed an identity score matrix to represent the inverse of the
Levenshtein distance for each sequence pair. We selected either the
full-length variableheavy (VH) or only theCDRH3 amino acid sequence
(Fig. 2a). As expected, VH and CDRH3 share onlyminimal conservation
among HIV-1 bNAbs. This result indicates that a homology and align-
ment approach to identify bNAbs would probably be unsuccessful.
Next, to create a dataset of paired BCR sequences that is unlikely to
recognize an HIV antigen (hereafter named mAbs), we retrieved and
curated paired antibody sequences from ten healthy seronegative
donors to obtain a total of 14,962 sequences (Supplementary Table 1).
To control the comparability of the HIV-1 bNAbs with unassigned
mAbs, we performed an additional similarity matrix with VH and
CDRH3 comparing bNAbs and curated mAbs (Fig. 2b). As anticipated,
only low similarity levels were observed, a result in agreement with the
precedent matrix and indicating that the sequences were amenable to
machine-learning approaches.

We then decided to investigate if some of the bNAbs distinct
properties could be used as predictive variables for each targeted
antigenic site. We considered as potential predictors the length of the
CDR3 for the heavy (H3) and light (L3) chains, the frequency of SHM in
the V gene (ν) or unconventional acquiredmutations in the framework
regions only (uν), and the hydrophobicity of CDRH334,35 (φ) (Fig. 3a–e).
Interestingly, anti-CD4bs bNAbs analysis demonstrated a statistically
higher SHM frequency, a higher frequency of unconventional muta-
tions (outside of the CDRs)35, and a significantly shorter length of
CDRL3 (Fig. 3a, b, e and Supplementary Fig. 1a) compared to the
control mAbs reported in Supplementary Table 1. For the anti-MPER
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bNAbs, we observed a longer CDRH3, with higher hydrophobicity, and
a higher mutation frequency in both V gene and framework (FRW)
regions (Fig. 3a–d and Supplementary Fig. 1b). The bNAbs targeting
the V1V2 apex showed a higher mutation frequency of the V gene, but
the difference was mainly due to a higher hydrophobicity of the
CDRH3 and a longer CDRH3 (Fig. 3a–d and Supplementary Fig. 1c).
BNAbs targeting the V3 glycan have a higher mutation frequency,
slightly higher hydrophobicity of the CDRH3 and a longer CDRH3
(Fig. 3a–d and Supplementary Fig. 1d). BNAbs targeting the interface
region demonstrated an increased frequency of mutations in the V
gene and FWR regions (Fig. 3a, b and Supplementary Fig. 1e). Part of
these results were expected but confirmed that this set of character-
istics is statistically different between bNAbs and mAbs. To further
investigate if these characteristics could be used to discriminate
between bNAbs and mAbs, we decided to use them as variables in a
two-dimensional Principal Component Analysis (PCA) (Fig. 3f–j).
Remarkably, the five characteristics were sufficient to separate bNAbs
frommAbs into two distinct clusters within each category of antigenic
sites. We observed an explained variation of 0.43 for PC1 and 0.29 for
PC2 across all five antigenic sites, while the weights of the features
exhibited striking similarities. For PC1, the frequency of mutation in
both, the CDRs and framework regions were important, whereas the
hydrophobicity and length of CDRH3 were important for PC2. Unex-
pectedly, the length of CDRL3 was a less important feature. Based on
these observations, we decided to use this set of measurable char-
acteristics as predictors to distinguish bNAbs from mAbs.

Algorithm selection and validation for the computational
pipeline
To further investigate the feasibility of automatic identification of
potential HIV-1 bNAbs, we decided to use different machine-learning
approaches to increase robustness and decrease the likelihood of false

predictions. First, antibody sequences were converted into a list of
values corresponding to the set of predictors identified previously.
BNAb sequences coming from the CATNAP database were annotated
using Igblast and the Immcantation workflow36–38. The resulting
Adaptive Immune Receptor Repertoire (AIRR) characteristics were
converted to a feature format table. Similarly, mAb sequences
obtained from public databases were processed as described
previously39 and converted into a features table. For each antigenic
site, bNAbs andmAbs were pooled as one dataset and subdivided into
three: 60% as a training set and 20% each as a validation and test set,
respectively. An anomaly detection (AD) algorithm has been used in
the specific case of a binary classification task, where one group
appears as an outlier40. Given the scarcity of reported HIV-1 bNAbs
compared to the quantity ofmAbs, we first opted for the AD algorithm
to automatically identify bNAbs. We used the multivariate Gaussian
model based on a threshold value (Epsilon) to estimate the probability
of an antibody being flagged as ‘anomaly’ or not. Then, the optimal
Epsilon parameter minimizing the number of false positives was
obtained using the validation set (Supplementary Fig. 2a–e and Sup-
plementary Table 2), while the evaluation of the AD performance,
including computing of the area under the curve (AUC) was done with
the test set (Fig. 4a, b). We observed that the AD algorithm dis-
criminates well bNAbs targeting the V1V2 apex (AUC: 0.93), the CD4bs
(AUC: 0.88), the MPER (AUC: 0.82), and the interface (AUC: 0.8).
However, bNAbs targeting the V3 glycan were poorly identified, with
an AUC of 0.64. Moreover, a high number of false positives was
obtained, indicating a low precision with the AD (Fig. 4a). To increase
recall and precision of our detection method, we used both Decision
Tree (DT) and random forest (RF) algorithms.

First, we used a random forest to analyze the identification profile
of bNAbs with two classifying features and found that it allowed a clear
decision boundary plot on the training dataset for bNAbs targeting the
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Fig. 1 | RAIN pipeline for automatic identification of bNAbs.Data collected from
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tralization and binding assays. The image was created using BioRender.com.
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interface or the V1V2 apex (Supplementary Fig. 3a, b). The receiver-
operating characteristic (ROC) curve and corresponding AUC of 0.94
was obtained for V1V2 apex (Supplementary Fig. 3a) and 0.9 for inter-
face (Supplementary Fig. 3b), indicating good classification perfor-
mance for both antigenic sites. Furthermore, a measured AUC of 0.77
was obtained for bNAbs binding the CD4bs (Supplementary Fig. 3c).

However, the detection of bNAbs against other antigenic sites such as
MPER (Supplementary Fig. 3c), andV3 loop (Supplementary Fig. 3e)was
not satisfactory with an AUC close to 0.5 and 0.67, respectively.

Following this result, we allowed the DT and RF algorithms to use
all available features, including VH and VL genes, and further opti-
mized our models. We used the validation dataset to perform

bNAbs 
VH CDRH3

Antigenic site: CD4bs V1V2 apex V3 glycan MPER Interface

a

b
bNAbs vs mAbs

VH CDRH3

Category: bNAbs mAbs

Fig. 2 | Sequence similarity matrices of HIV-1 bNAbs and control mAbs.
a Similaritymatrices for 255 bNAbs grouped by antigenic site for the entire VH (left)
or the CDRH3 only (right). b Similarity matrices of bNAbs versus mAbs with entire
VH (left) and CDRH3 only (right). In the heatmaps, sequences are ranked based
on their V and J genes. In both cases, matrices were created using ANARCI.

The similarity scores, ranging from0 to 1, indicate the degree of similarity between
sequences, with higher scores representing lower Levenshtein distances. b mAb
sequences were downsampled to 500 to enable display. Source data are provided
as a Source Data file.
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hyperparameter tuning and systematically explore different combi-
nations of hyperparameters. We based the classifiers’ hyperparameter
tuning on the false positives number, and for the hierarchicalmodel of
the DT, the cost complexity pruning parameter (alpha) was set to zero
(Supplementary Fig. 4). Next, entropy was chosen as the quality mea-
surement for the split in both DT and RF (further details are presented
in “Methods”). The optimal parameters for our models enabled us to

achieve an overall very good performance, with a mean AUC of 0.87
(SD =0.11) for the DT model and 0.95 (SD = 0.08) for the RF model
(Supplementary Table 2). Notably, the mean precision score was very
high, reaching 1 (SD = 0) for the RFmodel, while it was 0.5 (SD =0.124)
for the DT model. Finally, we used the test datasets and evaluated
performance metrics, including AUC, precision, recall, and accuracy
for the DT and RF models (Fig. 4a, c, d). The DT algorithm exhibited
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superior recall and precision performance compared to the AD algo-
rithm,while the RF algorithmdemonstrated even higher performance,
achieving a minimum AUC of 0.92 for all tested antigenic sites. It
achieved a precision of 1 for almost all antigenic sites (0.83 for the
interface). Moreover, an AUC of 1.0 and 0.95 for the MPER and inter-
face site respectively, but also 0.95 for the V3 glycan, demonstrating
that RF had the best performance as expected. Next, we reviewed the
selected parameters used as RF classifiers. Interestingly, among the
seven most important features, some were shared between the anti-
genic sites, while others were distinct. For instance, the mutation fre-
quency and hydrophobicity of the CDRH3 were often key predictors
(Fig. 4e).While themutation frequency was an expected characteristic
due to the long affinity maturation process required to obtain bNAbs,
hydrophobicity of the CDRH3 might be interpreted as a consequence
of the important glycan shield surrounding gp120/gp41 trimer. The
frequency of unconventional mutations and length of the CDR3 light
chain appears as an important feature for anti-CD4bs and is in agree-
ment with reported bNAbs of this antigenic class41. The essential fea-
tures associated with anti-interface bNAbs were also characterized by
their mutation frequency both conventional and unconventional. The
V1V2 apex binders were classified based on their CDRH3 lengths.
Interestingly, bNAbs targeting the V3 glycan and MPER have a more
balanced classification with features such as CDRH3 hydrophobicity,
mutation, and CDRH3 length sharing similar weights (Fig. 4e). The
immunoglobulin variable VH5-51 gene segment was associated with
bNAbs targeting theV3glycanas previously reported for 35%of human
anti-V3 bNAbs42. As a final validation step, we compared the prediction
results of each algorithm. These results indicate that predictors are
specific to the antigenic site, even if the mutation frequency and
hydrophobicity were always important.

Altogether, we observed that the different methods (AD, DT, and
RF) identified the same true positives, while therewasminimal overlap
in false positives (Supplementary Fig. 5). To increase robustness and
decrease the likelihood of false positive predictions, we combined
different classifiers using the Super Learner Ensembles algorithm (SL)
as an additional validation step43. SL is an algorithm combining mul-
tiple models to make an “ensemble” prediction. The SL algorithm
exhibited very high accuracy and precision performance with a score
of 1 for all antigenic sites (Supplementary Fig. 6a) and achieved high
performance for the MPER, V1V2 apex, and interface antigenic sites
with a minimum AUC of 0.92 (Supplementary Fig. 6b). In contrast, the
AUC was lower for the CD4bs, and V3 glycan antigenic sites (0.77 and
0.68), with a recall score of0.53 and0.35, respectively (Supplementary
Fig. 6a). Based on the performance of our machine-learning approach
for the Rapid Automatic Identification of bNAbs from Immune
Repertoires (RAIN), we decided to use it on experimental samples in an
effort to discover new bNAbs.

Experimental validation of the pipeline using de novo immune
repertoires
To identify potential bNAbs, we investigated the neutralizing activity of
purified immunoglobulin G (IgG) from the sera of different HIV-1
infected donors. Polyclonal IgGs from the serum of donors were

purified with protein G resin and tested on the global HIV-1 panel of
reference strains, containing strains that are representative of the global
epidemic44,45. Interestingly, we observed that sera of donors 3, 11 and to
some extent donor 9 had a broad neutralizing activity (Fig. 5a). In
contrast, sera fromdonors 1, 2, 5, 6, 7, and 8were able to neutralize only
one or two viral strains (Fig. 5a). Based on this result, we selected the
serum of donor 3 as test sample for the bNAb identification, while sera
of donors 1 and 2 were selected as negative controls. We isolated IgG-
class-switchedBcells fromperipheral bloodmononuclear cells (PBMCs)
of the different donors and performed single-cell sequencing of the
B-cell receptors (BCRs) (B3,G3, S4, andG4). Importantly, no enrichment
step was applied for B-cell sorting to ensure an unbiased repertoire for
the downstream analysis. After filtering for error-corrected and pro-
ductive sequences, we successfully reconstituted a set of 15,713 IgG
sequences for donor 3. As a negative control, we sequenced BCRs from
IgG+memoryBcells of donors 1 and2 (thatdidnot have serawithbroad
neutralization activity), which resulted in the acquisition of 8347 IgG
sequences (D1 and D2). Interrogation of the RAIN pipeline on the
sequences obtained from donor 3, led to the identification of several
potential bNAbs, butonly 3were recognizedby the three algorithmsout
of 15,713 paired sequences. To assess the specificity of RAIN on HIV
samples, we decided to analyze B-cell repertoires from individuals
exposed to a different viral infection or post-vaccination as an alter-
native control. We used sequences obtained from an Influenza vacci-
nated donor at days 7 and 9 post-vaccination46. These sequences
correspond to three sequencing runs of 4691, 8222, and 8052 paired
BCRs sequences, respectively.While these repertoires contain Influenza
bNAbs46, our models did not detect any HIV bNAbs, indicating their
specificity toward anti-HIV sequences (Supplementary Fig. 7a). To fur-
ther confirm the three predictedHIV-1 bNAbs found in donor 3, we used
the SL model, which identified thirteen potential bNAbs in this donor:
six predicted to bind to the CD4-binding site, one to V1V2 apex, and six
interface binders (Supplementary Fig. 7b). Interestingly, SL confirmed
our predicted bNAbs, but also identified an anti-V1V2 apex binder in
donor 2. These three potential bNAbs were constantly identified as CD4
binders (bNAb2101, bNAb4251, andbNAb1586) andbelong to theVRC01
class of bNAbs (Supplementary Fig. 8).

Binding and neutralization properties of the identified bNAbs
To consolidate these findings, we cloned the three potential bNAbs
and some additional antibodies as negative control (hereafter referred
tomAbs). BNAbs andmAbswere recombinantly produced to test their
specificity and neutralizing activities. We first assessed their binding to
the envelope trimer SOSIP (using the clade A gp140 envelope stabi-
lized prefusion trimer BG505 DS-SOSIP)47,48, which is known to bind
bNAbs that are representative of the majority of the known gp120
neutralizing antibody class49,50. Using biolayer interferometry (BLI), we
detected high-affinity interactions between all the identified bNAbs
and SOSIP, characterized by an apparent equilibrium dissociation
constant (KD) of 115 ± 15 nM, 3 ±0.6 nM, and 0.4 ± 0.03 nM and for
bNAbs 1586, 2101, and 4251 respectively. In contrast, no interaction
could be detected between the control mAbs and SOSIP (Fig. 5b and
Supplementary Fig. 9a). To further characterize these interactions, we

Fig. 3 | Characteristics discriminating HIV-1 bNAbs from mAbs. Specific prop-
erties of antibodies that allowdifferentiation between bNAbs andmAbs depending
on the antigenic site. Shown is boxplots with center line denoting themedian value
(50th percentile), while the black box contains the 25th to 75th percentiles of the
dataset. The black whiskers mark the 5th and 95th percentiles. a Mutation fre-
quency (ν), b unconventional mutation frequency (uν), c CDRH3 length (H3),
d CDRH3 hydrophobicity (φ), and e CDRL3 length (L3) were statistically compared
with Kruskal–Wallis’s test followed by Dunn’s post hoc test. Only significant com-
parisons with mAbs are shown, with: *P <0.05, **P <0.01, and ***P <0.005.
f–j Principal component analysis (PCA) of the immunoglobulins using five features
(ν, uν, H3, φ, and L3). The feature weight for PC1 (Principal Component 1) and PC2

(Principal Component 2) is shown by black arrows. Each bNAb category is repre-
sented by a single plot per antigenic site, fCD4bs, gMPER,hV1V2 apex, i V3 glycan,
and j gp120/gp41 interface. For data in (a–e), sequences number is n = 14,962 for
healthy, n = 54 forCD4bs, n = 21 forMPER,n = 98 for V1V2 apex, n = 56 for V3glycan
and n = 26 for Interface. Adjusted P values with the Holmmethod are as follows: (a)
healthy vs CD4bs P = 2.04e-31, MPER P = 1.72e-10, V1V2 P = 5.94e-44, V3 P = 1.06e-20
and interface P = 3.00e-17. b Healthy-CD4bs P = 1.51e-30, MPER P = 4.87e-10,
V1V2 P = 7.90e-34, V3 P = 3.08e-21 and interface P = 1.03e-16. c Healthy-MPER
P = 1.04e-09, V1V2 P = 5.33e-45 and V3 P = 3.12e-10. d Healthy-MPER P = 3.97e-08,
V1V2 P = 8.92e-36 and V3 P = 6.08e-04. e Healthy-CD4bs P = 8.89e-10 and MPER
P =0.02. Source data are provided as a Source Data file.
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calculated the affinity of the fragment antigen binding (Fab) to SOSIP
trimers and obtained a KD 5 ± 2.4 nM, and 17.5 ± 4 nM for Fab4251 and
Fab2101, respectively (Supplementary Fig. 9b). Of note, Fab1586
demonstrated poor affinity with a KDmeasure of 1 µM (Supplementary
Fig. 9b). To investigate the neutralization potency of these bNAbs, we

sought to determine their IC50 using the global HIV-1 panel strains on
TZM-bl cells44,45. We observed a broad neutralization activity across
tiers and viral clade for bNAb4251, with a geometric mean IC50 of
1.8 µg/ml (Fig. 5c). Moreover, bNAb2101 could also neutralize different
HIV strains and more specifically clade AE viruses, however, its
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neutralization profile could not be considered broad (Fig. 5c). In con-
trast, bNAb1586 was a relatively poor neutralizer, only able to inhibit
the CNE55 strain at 38 µg/ml (Fig. 5d). Importantly, none of the anti-
bodies had an effect on the SIVmac251.30.SG3 virus indicating a spe-
cific neutralization activity. Overall, bNAb4251 could neutralize about
80% of the tested viruses but was not active against the TV1.29 and
BJOX002000, similar to VRC01, which targets the CD4-binding site51.

Since both potential bNAbs were predicted to target the CD4-binding
site, we further tested their neutralization potential on virus strains
lacking the glycosylation surrounding the CD4bs such as the
BG505.W6M.C2 strain with residues T332N (C2) or N197, N276, N363,
and N462 (gly4) and other mutations previously described52 (Fig. 5d).
Finally, clade C strains were also used, since the glycan at position 362
is naturally absent. The neutralization profile showed an increased
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potency specifically for the glycan mutations surrounding CD4bs,
suggesting again that these antibodies target the CD4bs (Fig. 5d).

Binding mode of Fab4251 and Fab2101 to BG505 DS-SOSIP
complex
Based on the affinity and neutralization potency of Fab2101 and
Fab4251, we decided to investigate their binding mode using electron
microscopy. We incubated BG505 DS-SOSIP with either 3 molar
excesses of Fab2101 or Fab4251 and imaged the complex after 30min
of incubation at room temperature. We used single-particle negative
stain electron microscopy (nsEM) to assess the sample purity and to
map antibody epitopes on the viral glycoproteins53 (Fig. 6a, b). Parti-
cles were picked from rawmicrographs, stacks were created, followed
by a reference-free 2D classification. SOSIP complexes appear as
homogeneous trimers, as described previously54. We identified that
both Fabs bound to the soluble trimers in a manner similar to CD4bs-
directed bNAbs, approaching the gp120 protomers from the side. To
understand the molecular mechanism of the broad neutralization
capacity by bNAb4251, we decided to perform cryo-EM of the Fab4251
in complex with the soluble native-like trimer BG505 DS-SOSIP55. After
several rounds of 2D and 3D classification (Supplementary Fig. 10), we
could segregate SOSIP trimers with zero, or one Fab bound.We solved
the structure of the complex at a resolution of 3.8 Å (Fig. 6c and
Supplementary Table 3). As predicted by RAIN, Fab4251 interacts with
the CD4bs of the trimer and makes multiple contacts with both heavy
and light chains (Fig. 6c, d). In total, fifty-one residues of the Fab
interact with fifty-six residues on gp120, to bury a surface area (bsa) of
950Å2. The interaction is principally dictated by the heavy chain with
700Å2 bsa, while the light chain buries 250Å2 of the gp120 surface
(Fig. 6d). The CDRH2 makes most of the contact, totaling a bsa of
528Å2, a binding mode similar to the previously described interaction
of the CD4 receptor with gp120 (Fig. 6g). The previously solved
interaction of CD4 with gp120 revealed that two amino acids, F43 and
N59 of CD4, makemultiple contacts centered on residues N368, E370,
andW427 of gp12056–58 (Fig. 6g). Interestingly, H54 of CDRH2 seems to
mediate similar interactions with amino acids of the “F43 cavity”
located at the interface between the inner and outer gp120 domains
(Fig. 6g). Previously reported bNAbs targeting the CD4bs have been
classified into two groups based on their mode of recognition, the
VRC01 class (3BNC117, N6, N49P7, 3BNC60, VRC-PG20, NIH45-46,
VRC-CH31, and 12A12) and the non-VRC01 classes (CH103, 8ANC131,
VRC13, and VRC16)59. Structural investigations revealed that Fab4251
possesses an angle of approach similar to VRC01 (Fig. 6h), a result in
agreement with its CDRH2-mediated contact on gp120, indicating that
it belongs to the same antibody class (Fig. 6h). The light chain also
participates in the interaction with the 5-residue LCDR3 QxxEx motif
and a deletion in CDRL1 to accommodate the gp120 N276-glycan28, a
feature associated with VRC01-class antibodies.

Discussion
The advent of single-cell technologies resulted in the growing avail-
ability of paired full-length variable heavy and light-chain BCR sequen-
ces. Therefore, immune repertoire sequencing coupled to artificial
intelligenceholds great promise to improvediagnosis and treatment for
numerous immune-relatedor infectious diseases60. The identification of
specific sequences involved in an immune response has already been

successfully used in research settings to elucidate the role of immune
dysregulation in conditions such as systemic lupus erythematosus,
rheumatoid arthritis, type 1 diabetes, multiple sclerosis, Grave’s disease,
Crohn’s disease, andmany others61. However, limitations exist and only
a few studies examined the benefit of incorporating full-length variable
regions from heavy and light-chain sequences to predict antibody
specificity. Those studies are based on sequence-based embedding
models62,63. Other efforts have focused on finding amino acid sequence
similarity to an already known antibody. The similarity approaches led
to important scientific and medical discoveries64–66, but hold some
limitations when the sequences are very divergent.

In this study, we present RAIN, a pipeline based on two innovative
technologies, single-cell BCR sequencing and machine learning to
identify bNAbs againstHIV-1, basedon their binding site. Our approach
differs from other methods as the parameters required for the iden-
tification are derived from selected characteristics, that are inferred
from the amino acid sequences using Immcantation annotations. We
demonstrate that five specific characteristics were sufficient to sepa-
rate bNAbs from mAbs (non-bNAbs) into two distinct clusters within
each category of antigenic sites. In addition, we identify the frequency
of unconventional mutations as a key factor to define HIV-1 bNAbs.
Former studies reported the presence of mutations in the frameworks
of bNAbs and correlated them with the binding affinity to the
CD4bs35,67. Our results suggest that these mutations are important
characteristics for all bNAbs. This can be interpreted as a consequence
of the time needed for the maturation process of bNAbs or as a
modification of the immune system in response to chronic infection.

Performing a PCA analysis across all five antigenic sites, we
observed that despite their sequence divergences, the weights of the
features exhibited striking similarities. This result could be interpreted
as an additional level of immune escape that was not studied yet68,69.
The RAIN approach can achieve a precision of 1 for almost all antigenic
sites and can be applied easily on any immune repertoire or already
isolated antibody sequences to identify HIV-1 bNAbs. To our knowl-
edge, this study pionner in silico identification of specific antibodies,
that could not have been identified by sequence alignment. Impor-
tantly, another distinct aspect of our work is the experimental valida-
tion with de novo data. Data were corroborated by functional cloning,
expression and purification of the antibodies, and functional neu-
tralization assays. Moreover, we characterized the bNAb4251 binding
to DS-SOSIP at almost atomic resolution using cryo-EM. In summary,
our approach offers an innovative, straightforward method to search
and identify antibodies in immune repertoires, accelerate antibody
discovery, and might shed light on potentially unexplored mechan-
isms of HIV-1 immune escape.

Methods
Ethics statement
The research complies with all relevant ethical regulations and
informed consent was obtained by all study participants (n = 25, 16
females and 9 males). Study protocols were approved by the Ethik-
komission beider Basel (EKBB; Basel, Switzerland; reference number
342/10), the Ifakara Health Institute Institutional Review Board
(Referencenumber IHI/IRB/No. 24-2010), and theNational Institute for
Medical Research (NIMR; Dar es Salaam, United Republic of Tanzania;
reference number NIMR/HQ/R.8a/Vol.IX/1162).

Fig. 5 | HIV Env binding and neutralization assays of serum and IgG samples.
aNeutralization assays were performed against 12 viruses from clades A, AC, AE, B,
BC, C, andG of tiers 2. The colors of the heatmap correspond to the IC50 of the sera
in micrograms per ml. The SIVmac251.30.SG3 virus is used as a negative control.
b Antibody–SOSIP interactions were determined by biolayer interferometry (BLI).
ThemAbsor bNAbswere loadedon aprotein A biosensor, dipped into a solution of
the SOSIP trimer at different concentrations (ranging from 5 to 400nM), and the
nm shift was recorded. BLI sensorgrams are representative examples of

experiments repeated two times (n > 2). c, d Neutralization assays were performed
against twelve viruses from clades A, AC, AE, B, BC, C, and G of tiers 2. c The colors
of the heatmap correspond to the IC50 in micrograms per ml, for each antibody.
The SIVmac251.30.SG3 virus is used as a negative control. d Neutralization assays
were performed against glycan-mutated viruses to support epitopemapping to the
CD4-binding site. Neutralization assay experiments were repeated two times
(n > 2). Source data are provided as a Source Data file.
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Serum IgG isolation
Serum samples from HIV-1-infected individuals were incubated with
Protein G Sepharose (GE Life Sciences) 4 °C for 1 h. IgGs were eluted
from chromatography columns using 0.1M glycine (pH= 2.9) into
0.1M Tris (pH = 8.0)70. Samples were run through Zeba Spin Desalting
Columns 7 K MWCO (Thermo Scientific, 89882) Concentrations of

purified IgGs were determined by UV/Vis spectroscopy (A280) on a
Nanodrop 2000 and samples were stored at −80 °C.

B-cell sorting
TheCD19+ cell fractionwasenriched fromPBMCsbypositive selection
with CD19 magnetic microbeads (Miltenyi Biotech) and subsequently
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stained on ice for 30min with the following fluorochrome-labeled
mouse monoclonal antibodies: CD20-PE-Cy7 (dilution 1:50, clone L27,
catalog no. 335793, BD Biosciences) and F(ab’)2-Goat anti-Human IgG
Fc secondary antibody, APC (dilution 1:100, RRID: AB_2337695, Jackson
ImmunoResearch). Cells were sorted to over 98%purity on a FACSAria
III (BD) using the following gating strategy: circulating memory B cells
were sorted as CD20+ IgG+ cells. FACS-sorted cells were collected in
6μl FCS in Eppendorf tubes that were pre-coated overnight with
2% BSA.

Single-cell BCR-seq library preparation and sequencing
10X Genomics. The 5ʹ single-cell VDJ libraries were generated using
Chromium Next GEM Single Cell V(D)J Reagent kit v.1, 1.1 or v.2 (10X
Genomics) according to themanufacturer’s protocol. Paired heavy and
light-chain BCR libraries were prepared from the sorted B-cell popu-
lations. Briefly, up to 20,000memory B cells per well of 10X chip were
loaded in the 10X Genomics Chromium Controller to generate single-
cell gel beads in emulsion. After reverse transcription, gel beads in the
emulsion were disrupted. Barcoded complementary DNA was isolated
and used for the preparation of BCR libraries. All the steps were fol-
lowed as per the manufacturer’s instructions in the user guide
recommended for 10X Genomics kit v.1, 1.1, or 2. The purified libraries
from each time point were pooled separately and sequenced on the
NextSeq550 (Illumina) as per the instructions provided in 10X Geno-
mics user guide for the read length and depth.

BD rhapsody. Memory B cells were targeted for single-cell targeted
RNA-seq and BCR-Seq analysis using the BD Rhapsody Single-Cell
Analysis System71 (BD Biosciences). Briefly, the single-cell suspension
was loaded into a BD Rhapsody cartridge with >200,000 microwells,
and single-cell capture was achieved by random distribution and
gravity precipitation. Next, the bead library was loaded into the
microwell cartridge to saturation so that thebeadwaspairedwith a cell
in a microwell. The cells were lysed in a microwell cartridge to hybri-
dize mRNA molecules onto barcoded capture oligos on the beads.
These beads were then retrieved from the microwell cartridge into a
single tube for subsequent cDNA synthesis, exonuclease I digestion,
and multiplex-PCR–based library construction. Sequencing was per-
formed on NovaSeq paired-end mode.

Singleron. Single-cell suspensions with 1 × 105 cells/mL in PBS were
prepared. Then, the suspensions were loaded onto microfluidic devi-
ces, and scRNA-seq libraries were constructed according to the Sin-
gleron GEXSCOPE protocol in the GEXSCOPE Single-Cell RNA Library
Kit (Singleron Biotechnologies)72. Individual libraries were diluted to
4 nM and pooled for sequencing. Pools were sequenced on an Illumina
HiSeq X with 150 bp paired-end reads.

Recombinant antibody production
Expi293 cells (Thermo Fisher Cat No. A14527) were diluted to a final
volume of 0.5 L at a concentration of 2.5 × 106 cells mL−1 in Expi293
media73. Heavy-chain and light-chain plasmids were complexed with
Polyethyleneimine (ThermoFisher) and added to the cells. On dayfive,
cells were cleared from cell culture media by centrifugation at
10,000× g for 30min, and the supernatant was subsequently passed
through a 0.45-μm filter. The supernatant containing the recombinant
antibody was purified with the HiTrap Protein A HP column (Cytiva,
17040301) on theÄkta pure system (Cytiva). The resinwaswashedwith
75mL of phosphate-buffered saline (PBS). A total of 25mL of 0.1M
glycine pH 2.9 were used to elute the antibody from the protein A
resin. The acidic pHof the eluted antibody solutionwas increased to ~7
by the addition of 1M Tris pH 8.0. The antibody solution was buffer
exchanged to PBS by the HiPrep 26/10 Desalting column (GE Health-
care) or Size Exclusion Chromatography Superdex 16/600 HiLoad
(Cytiva), filtered, snap-frozen in liquid nitrogen, and stored at −80 °C.

Fragment antigen binding (Fab) generation
For the Fab production, the heavy chain was engineered with a two
amino acids glycine serine linker followed by a six-histidine tag and
stop codon. Light and mutated heavy chains were transfected as
described in the previous section. Cell supernatant was harvested five
days post- transfection and purified by IMAC chromatography
(HisTrap excel, Cytiva) using the elution buffer 25mM Tris pH 7.4,
150mM NaCl, 500mM imidazole. The eluat was buffer exchanged to
25mM Tris pH 7.4, 150mM NaCl, 0.085mM n-dodecyl β-D-maltoside
(DDM) on a HiPrep 26/10 Desalting column (GE Healthcare), followed
by Size Exclusion Chromatography on a Superdex 16/600 HiLoad
column (Cytiva)74. The samplewas concentrated using anAmicon filter
10 kDa cutoff, snap-frozen, and stored at −80 °C until further use.

Recombinant HIV-1 envelope SOSIP gp140 production
BG505 DS-SOSIP trimer75 production and purification were performed
as previously described48. Briefly, prefusion-stabilized Env trimer
derived from the clade A BG505 strain was stably transfected in CHO-
DG44 cells and expressed in ActiCHO P medium with ActiCHO Feed A
and B as feed (Cytiva). Cell supernatant was collected by filtration
through a Clarisolve 20MS depth filter followed by a Millistak + F0HC
filter (Millipore Sigma) at 60 LMH. Tangential Flow Filtration was used
to concentrate and buffer exchange clarified supernatant in 20mM
MES, 25mM NaCl, pH 6.5. The trimer was then purified by ion
exchange chromatography as described48. Fractions containing the
BG505DS-SOSIP protein werepooled, sterile-filtered, snap-frozen, and
stored at −80 °C.

IgG neutralization assay
Neutralization assays with IgGs against the 12-strain “global” virus
panel, were performed in 96-well plates as previously described44,76,77.
Briefly, 293T-derived HIV-1 Env-pseudotyped virus stocks were gener-
ated by cotransfection of an Env expression plasmid and a pSG3ΔEnv
backbone. Animal sera were heat-inactivated at 56 °C for 1 h and
assessed at 8-point fourfold dilutions starting at 1:20 dilutions.
Monoclonal antibodies were tested at 8-point fivefold dilutions start-
ing at 50μg/ml or 500μg/ml. Virus stocks and antibodies (or sera)
were mixed in a total volume of 50μL and incubated at 37 °C for 1 h.
TZM-bl cells (20μl, 0.5million/ml) were then added to themixture and
incubated at 37 °C. Cells were fed with 130μL cDMEM on day 2, lysed,
and assessed for luciferase activity (RLU) on day 3. A nonlinear
regression curve was fitted using the 5-parameter hill slope equation.
The 50% and 80% inhibitory dilutions (ID50 and ID80) were determined
for sera and the 50% and 80% inhibitory concentrations (IC50 and IC80)
were determined for mAbs. All samples were tested in duplicates.

Biolayer interferometry
The biolayer interferometry experiments using SOSIPwere performed
as follows. All experiments were performed in reaction buffer (TBS pH
7.4 + 0.01% (w/v) BSA + 0.002% (v/v) Tween 20) at 30 °C using an
Octet K2 instrument (ForteBio). Protein A (Fortebio) biosensor probes
were first equilibrated in reaction buffer for 600 s. IgGswere diluted to
5 µg/ml in reaction buffer and immobilized onto the protein A probes
for 300 s, followed by a wash for 300 s in reaction buffer. The binding
of SOSIP trimers to the IgGs was then measured at various con-
centrations for 500 s, followed by dissociation for 300 s in reaction
buffer. Analysis was performed using the Octet software with bivalent
analyte fitting for antibody binding and 1.1 analyte fitting for the
interaction with Fabs. Association and dissociation curves are visua-
lized by GraphPad Prism version 9.0.

Negative stain electron microscopy
The samples were adsorbed to a glow-discharged carbon-coated
copper grid 400mesh (EMS,Hatfield, PA, USA), washedwithdeionized
water, and stained with a 1% uranyl acetate solution for 20 s.
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Observations were made using an F20 electron microscope (Thermo
Fisher, Hillsboro, USA) operated at 200 kV73. Digital images were col-
lected using a direct detector camera Falcon III (Thermo Fisher, Hills-
boro, USA) 4098 × 4098 pixels. Automatic data collection was
performedusing the EPU software (ThermoFisher,Hillsboro, USA) at a
nominal magnification of x62,000, corresponding to a pixel size of
1.65 Å using a defocus range from −1μm to −2.5μm. Image pre-
processing, two-dimensional classification, and three-dimensional
processing was done using the CryoSPARC software (Version 4.4)78.

Cryo-EM sample preparation
BG505 DS-SOSIP trimers complexes were prepared using a stock
solution of 5mg/ml trimer incubated with a threefold molar excess of
bNAb4251 for 10min. To prevent aggregation and interaction of the
trimer complexes with the air-water interface during vitrification, the
sampleswere incubated in 25mMTris pH 7.4, 150mMNaCl, 0.085mM
DDM. Samples were applied to plasma-cleaned QUANTIFOIL holey
carbon grids (EMS, R2/2 Cu 300 mesh). The grid was plunge frozen
using a Vitrobot MarkIV (Thermo Fisher, Hillsboro, USA)with humidity
and temperature control.

Cryo-EM data collection
Grids were screened for particle presence and ice quality on a TFS
Glacios microscope (200 kV), and the best grids were transferred to a
TFS Titan Krios G4. Cryo-EM data were collected using a TFS Titan
Krios G4 transmission electronmicroscope, equipped with a Cold-FEG
on a Falcon IV detector in electron counting mode. Falcon IV gain
references were collected just before data collection. Data were col-
lected using TFS EPU v2.12.1 utilizing the aberration-free image shift
protocol, recording four micrographs per ice hole. Movies were
recorded at a magnification of ×165,000, corresponding to the 0.73 Å
pixel size at the specimen level, with defocus values ranging from −0.9
to −2.4 µm. Exposures were obtained with 39.89 e−Å−2 total dose,
resulting in an exposure time of ~2.75 s per movie. In total, 15,163
micrographs in EER format were collected.

Cryo-EM data processing and structure fitting
Data processing was performed with cryoSPARC (Version 4.4) includ-
ing Motion correction and CTF determination78. Particle picking and
extraction (extraction box size 350 pixels2) were carried out using
cryoSPARC Version 4.478. Next, several rounds of reference-free 2D
classification were performed to remove artifacts and selected parti-
cles were used for ab initio reconstruction and hetero-refinement.
After hetero-refinement, 72’497 particles contributed to an initial 3D
reconstruction of 3.8 Å resolution (Fourier-shell coefficient (FSC)
0.143) with C1 symmetry. Amodel of a SOSIP trimer (PDB ID 4TVP)79 or
AlphaFold2 (ColabFold implementation) models of the 4251 Fab were
fitted into the cryo-EMmaps with UCSF ChimeraX (Version 1.5). These
docked models were extended and rebuilt manually with refinement
using Coot (Version 0.9.8.8) and Phenix (Version 1.21)80,81. Figures were
prepared in UCSF ChimeraX, and Pymol (Version 4.6)82. The number-
ing of Fab4251 is based on the Kabat numbering of immunoglobulin
models83. Buried surface area measurements were calculated within
ChimeraX and PISA84.

CATNAP sequences
For all antigenic sites, paired bNAb sequences were collected from the
CATNAP database32 as of January 1, 2022 as nucleotide and amino acid
sequences. First, the 249 heavy-chain and 240 light-chain nucleotide
sequences were annotated with Igblastn36. Sequences were then pro-
cessed and analyzed using the Immcantation Framework (http://
immcantation.org) with MakeDB.py from Change-O v1.2.0 (with the
options --extended –partial). Next, bNAbs were filtered by a dedicated
Java script to keep only sequences with an annotated CDR3 and paired

sequences (VH +VK/L). Each paired antibody was associated with its
targeting Env antigenic site, information provided by the database
CATNAP text file (abs.txt as of January 1, 2022). The 27 CATNAP anti-
bodies with only the protein sequences available were annotated with
IgBlastp followed by MakeDB.py from Change-O v1.2.0 (with the
options igblast-aa --extended). In parallel, using the fasta protein
sequences, ANARCI85 was used to identify the junction region. As for
nucleotide sequences, paired and annotatedCDR3bNAbswerefiltered
in. In total, 255 bNAbs sequences were collected. Repartition of the
antigenic site is as follows: 54 bNAbs target the CD4bs, 21 MPER, 98
V1V2, 56 V3, and 26 interface.

Paired B-cell receptor repertoires
For the training and evaluation of the machine-learning models,
paired BCR repertoires of ten healthy donors were collected. The
repertoires were obtained from various sources (Supplementary
Data Files 1) and sequenced using 10X genomics technology. Anno-
tation and processing of the sequences were done as previously
described39 and resulted in the generation of a customized AIRR
format table containing 14,962 paired BCRs. For HIV-1 immune
donors three different sequencing technologies were employed: 10X
genomics (D1, D2, G3, and G4), Singleron (S4), and BDRhapsody (B3).
Single-cell sequencing of selected HIV-1 immune donors using Sin-
gleron technology was processed using celescope v1.14.1 (https://
github.com/singleron-RD/CeleScope) with “flv_CR” mode utilizing
cellranger v7.0.1. BD rhapsody single-cell sequencing was first pro-
cessed using BD Rhapsody TargetedmRNAAnalysis Pipeline (version
1.11) and then, using a custom script, the generated “VDJ_Domi-
nant_Contigs.csv” file was converted into cellranger-like output
files, namely filtered_contig_annotations.csv and filtered_contig.fasta.
Lastly, the 10X Genomics single-cell sequencing was processed with
cellranger v7.0.1. The cellranger output files of the different HIV-1
repertoires enabled us to annotate and process them as described
earlier, resulting in a table of paired BCRs with AIRR characteristics.
The six different experiments resulted in 2152 BCRs for D1, 6195 BCRs
for D2, 4008 BCRs for B3, 3794 BCRs for G3, 3112 BCRs for S4, and
4799 BCRs for G4.

Sequence similarity matrices
All mAbs and bNAbs VDJ protein sequences were initially aligned using
ANARCI with IMGT format. Subsequently, employing a custom R
script, two similarity matrices were generated: one encompassing the
entire VDJ sequence (VH) and the other focusing solely on the CDRH3
region. For each pair of sequences, a Levenshtein distance was com-
puted, yielding a similarity score ranging from 0 to 1 (higher score
representing lower Levenshtein distance). Heatmapswere constructed
with the pheatmap R package, to visualize the following comparisons:
all five antigenic site categories of bNAbs and the comparison bNAbs
versusmAbs (mAbs sequences were downsampled to 500 sequences).
Sequences were ranked based on their V and J genes.

Data preprocessing
Using a custom script, AIRR characteristics were converted into our
features of interest. The “mutation frequency” was calculated using
the difference of residues between the protein sequence of the BCR
and its germline sequence in the FWR1 + CDR1 + FWR2 + CDR2 +
FWR3 regions (VH gene). The “framework mutation frequency” was
calculated similarly but using only FWR1 + FWR2 + FWR3. The
“hydrophobicity” of the CDRH3 sequences was computed using a
customized score, with aromatic residues having the highest value
(1 for W, 0.75 for Y, and 0.5 for F). Residues A, L, I, M, P, and V were
set to 0.1, while the rest of the resides were set to zero. The values of
all residues were summed up for each CDRH3. In addition, the
length of the CDRH3, CDRL3, VH, and VL/K genes were considered
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as features. Two extra features were added to be used by the
anomaly detection algorithm: “VH1 + CDRL3 length of five residues”
with a zero or one value designed for the bNAbs targeting the CD4bs
and “VH1-69 + VK3-20 + GW motif in the CDRH3” with a zero or one
value for the bNAbs targeting MPER.

Training and evaluation of machine-learning models
Three ML-based approaches were trained on the features table
generated using BCRs obtained from healthy donors and bNAbs
datasets, using Python v3.8.16 and scikit-learn v1.0.2. These algo-
rithms were: Anomaly Detection (AD), Decision Tree (DT), and Ran-
dom Forest (RF). For each antigenic site, the dataset was partitioned
into training, validation, and test sets with a 60:20:20 ratio, setting
random.seed to 1 for all models. For the AD model, bNAbs data were
removed from the training set, since this algorithm only trains with
non-anomaly data. For this model, the features with discrete values
were first normalized using the preprocessing.normalize method
(axis=0) from the scikit-learn library. Features exhibiting significantly
different values from the normal distribution were selected for each
antigenic site, which included the frequency of mutations in the V
genes and in the frameworks. For CD4bs, we added the combined
feature VH1 + CDR3L with a length of five residues. For MPER, we
included the combined feature VH1-69, VK3-20, and the GWmotif in
CDRH3. In addition, CDRH3 hydrophobicity was added for MPER,
V1V2, and V3. Lastly, CDRH3 length was incorporated for V1V2 and
V3. Using the validation test, a multivariate normal random variable
was calculated with the mutivariate_normal function from the scipy
package v1.8.0 and used for setting the optimal Epsilon parameter (ɛ)
minimizing the false positive numbers. The Epsilon value was set to
619.55 for CD4bs, 231501.41 for MPER, 866803.64 for V1V2,
845445.99 for V3, and 24.36 for interface. Those threshold values
were used on the test set to predict a BCR as an anomaly (bNAb) or
not. For DT and RF models, V genes (for heavy and light chains) were
one-hot encoded as a preprocessing step, resulting in a total of 122
features in the features table. Hyperparameter tuning was conducted
using the validation dataset, minimizing the number of false posi-
tives. DT models were trained with a balanced class weight, the
Entropy criterion for measuring the quality of splits, and the cost
complexity pruning parameter alpha of zero. RFmodels were trained
with 100 estimators, a balanced class weight, the Entropy criterion
formeasuring the quality of splits, maximum samples were set to 1.0,
maximum depth of tree of “none”, maximum features of 11 (√122),
and bootstrapping to build trees. Matplot library v3.6.2 was used to
generate ROC plots from performance results and to generate the
Venn diagrams showing the intersection of the number of true
positives or false positives between the three models. The Super
Learner Ensembles algorithm was implemented using the ML-
Ensemble (mlens) v0.2.3 library. For each antigenic site, the dataset
was partitioned into train and test sets with a 75:25 ratio. The Super
Learner was created with the precision score as scorer parameter, a
k-fold cross-validation of ten folds, and the option shuffle set to true.
The following classifiers were used as based models in the Super
Learner algorithm: DecisionTreeClassifier, SVC (Support Vector
Classification), KNeighborsClassifier, AdaBoostClassifier, Bagging-
Classifier, RandomForestClassifier, and ExtraTreesClassifier. A
LogisticRegression was used as the meta-model, with the solver
parameter set to “lbfgs”.

Statistical analysis
Flow cytometric data were acquired using BD FACSDiva (v.9.0) soft-
ware. Flow cytometric data were analyzed using FlowJo (v.10.7.1).
Statistics were conducted using R Statistical Software (v4.2.1) and
ggstatsplot package86. The Complex Heatmap package was used for
visualization87. No statistical methods were used to predetermine the
sample size. The experiments were not randomized, and investigators

were not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data files for single-cell VDJ sequencing generated
in this study have been deposited in the GEO database: GSE229123.
Cryo-EM map generated in this study have been deposited on EMDB:
EMD-19665, with PDB accession number 8S2E. All other data sup-
porting the findings of this study are available from the corresponding
author on request. Source data are provided with this paper.

Code availability
The complete workflow and associated scripts are available on https://
github.com/MathildeFogPerez/manuscript-bnab-foglierini. A set of
instructions onhow touse theworkflowandcompletely reproduce the
results shown herein is available there.
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