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Abstract

Rationale: Bronchiectasis is a pathological dilatation of the
bronchi in the respiratory airways associated with environmental
or genetic causes (e.g., cystic fibrosis, primary ciliary dyskinesia,
and primary immunodeficiency disorders), but most cases remain
idiopathic.

Objectives: To identify novel genetic defects in unsolved cases
of bronchiectasis presenting with severe rhinosinusitis, nasal
polyposis, and pulmonary Pseudomonas aeruginosa infection.

Methods: DNA was analyzed by next-generation or targeted Sanger
sequencing. RNA was analyzed by quantitative PCR and single-cell
RNA sequencing. Patient-derived cells, cell cultures, and secretions
(mucus, saliva, seminal fluid) were analyzed by Western blotting and
immunofluorescence microscopy, and mucociliary activity was
measured. Blood serum was analyzed by electrochemiluminescence
immunoassay. Protein structure and proteomic analyses were used to
assess the impact of a disease-causing founder variant.

Measurements and Main Results: We identified biallelic
pathogenic variants in WAP four-disulfide core domain 2
(WFDC2) in 11 individuals from 10 unrelated families
originating from the United States, Europe, Asia, and Africa.
Expression of WFDC2 was detected predominantly in secretory
cells of control airway epithelium and also in submucosal glands.
We demonstrate that WFDC2 is below the limit of detection in
blood serum and hardly detectable in samples of saliva, seminal
fluid, and airway surface liquid from WFDC2-deficient
individuals. Computer simulations and deglycosylation assays
indicate that the disease-causing founder variant p.Cys49Arg
structurally hampers glycosylation and, thus, secretion of
mature WFDC2.

Conclusions: WFDC2 dysfunction defines a novel molecular
etiology of bronchiectasis characterized by the deficiency of a
secreted component of the airways. A commercially available
blood test combined with genetic testing allows its diagnosis.
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Bronchiectasis is a pulmonary disorder
defined by persistent, pathologic dilatation of
the bronchi associated with chronic cough,
sputum production, and recurrent
respiratory infections (1). Bronchiectasis
exhibits phenotypic variability ranging from
local abnormalities to pan-lobar defects and
frommild dilatation of bronchi to cystic
abnormalities (2). The underlying causes
of bronchiectasis are remarkably
heterogeneous andmay be observed after
infection or with recurrent aspirations.
Several diseases are commonly associated
with bronchiectasis (2, 3), including cystic
fibrosis (CF) (3), primary ciliary dyskinesia
(PCD) (3, 4), allergic bronchopulmonary
aspergillosis (4), and chronic nontuberculous
mycobacteria infections (5–7), as well as
inborn errors of immunity (IEI) (2–4).
Bronchiectasis is sometimes also associated
with asthma and chronic obstructive
pulmonary disease. However, the majority of
bronchiectasis cases remain idiopathic (3, 4),
highlighting the need for more research in
this area.

The pathological mechanisms
underlying bronchiectasis are varied.
Evidence suggests that the final common
pathway results from amultifactorial
combination of chronic or recurrent
infection, impaired clearance of pathogens,
excessive inflammatory response, and

damage, followed by an abnormal
remodeling of the lung tissue (2, 5). In up to
80% of patients with bronchiectasis,
particular pathogens, including Pseudomonas
aeruginosa,Haemophilus influenza, and
nontuberculous mycobacteria, can be
cultured from sputum samples (2).
Bronchiectasis associated with P. aeruginosa
infection is accompanied by an increased
decline of lung function, exacerbation
frequency, hospitalization risk, and
mortality (2, 8).

In this study, we performed next-
generation sequencing to identify possible
genetic defects in unsolved cases of
bronchiectasis. We identified biallelic WAP
four-disulfide core domain 2 (WFDC2)
variants in 11 individuals from 10 unrelated
families. These individuals presented with
symptoms and findings that resembled CF
(MIM 219700) and PCD (MIM 244400),
including bronchiectasis throughout all lung
fields (upper, middle, and lower lobes) and P.
aeruginosa infection. In addition, severe
chronic rhinosinusitis (CRS) with nasal
polyposis was a hallmark. WFDC2, also
referred to as HE4 (Human Epididymis
Protein 4), belongs to theWFDC (WAP
four-disulfide core) domain protein family.
This study highlights deficiency ofWFDC2
as a novel cause of chronic destructive airway
disease, with a molecular etiology distinct

from other genetic airway diseases such as
CF, PCD, and IEI.

Methods

Patients and Study Design
Patients were recruited at the University
Hospital Muenster and the University of
North Carolina, as well as collaborating
institutions. We prioritized in-depth genetic
analysis and clinical workup of individuals
with chronic airway disease characterized by
bronchiectasis who were not suspected for
CF or PCD because of lack of pathogenic
variants detected by CFTR and PCD panel
genetic testing, respectively. Initially,WFDC2
variants were identified in exomes of eight
individuals from seven unrelated families
(.600 unsolved exomes). A targeted
WFDC2 Sanger screening was performed in
1,229 individuals with chronic respiratory
symptoms with or without bronchiectasis
and identified 2 unrelated individuals
(OP-398 II1 and OP-1837 II1), who were
further analyzed by next-generation
sequencing to assess CFTR and PCD-causing
variants. This search was broadened to newly
available exomes and identifiedWFDC2
variants in OP-4474 II1, who presented with
nasal polyposis but not bronchiectasis at
7 years of age. Written informed consent was
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obtained from all individuals and family
members in this study according to protocols
approved by the Institutional Ethics Review
Board of the University Muenster and the
Institutional Review Board at the University
of North Carolina; studies were performed
in compliance with ethical regulations and
collaborating institutions. Additional

information detailing genetic, molecular,
cellular, proteomic, and protein structure
analysis is provided in the online
supplement.

Results

Genetic Analysis
Several groups identified ultrarare and
pathogenicWFDC2 variants in individuals
with bronchiectasis and connected through
GeneMatcher (9) (Table 1). Using whole-
exome sequencing (WES), an apparently
homozygous start codon variant (c.2T.A;
p.Met1?) was identified inWFDC2 (Figures
1A–1C) in individual UNC-376 II1.
Segregation analysis revealed the mother as
carrier but the father to be wild type,
indicating the possibility of a large deletion
on the paternal allele at this locus (see Figure
E1G in the online supplement). The exact
breakpoints for this deletion are unknown;
however, heterozygosity for two SNPs
encompassing a distance of 137,425 base
pairs including theWFDC2 locus (rs2072786
and rs2143221) were identified; we
confirmed parental identity using 21 markers
located on six different chromosomes
(Table E1).

In addition, WES detected a missense
variant, c.145T.C, p.Cys49Arg, inWFDC2
in individual OP-2032 II1 (Figure 1D). This
variant alters a highly conserved cysteine
residue essential for the functionalWFDC
domain (10) (Figure 1C). By Sanger
sequencing, we confirmed the inheritance of
the variant from the father (heterozygous
carrier) but detected only the wild-type allele
in the mother. A careful reanalysis of the
WES data revealed that in OP-2032 II1, the
coverage ofWFDC2 exons 1 and 2 was
approximately 50%, suggesting a
heterozygous deletion comprising these
exons. By primer walking and bridging PCR,
we subsequently identified the breakpoints
that defined a deletion of 1,570bp spanning
WFDC2 exons 1 and 2 in the heterozygous
state in both the affected individual, OP-2032
II1, and the mother, OP-2032 I2 (Figure 1D).
This bridging PCR amplified only a wild-
type size product in UNC-376 III1,
demonstrating the deletion to be distinct
from that detected in OP-2032 II1.

Notably, WES identifiedWFDC2
variant c.145T.C, p.Cys49Arg in individuals
OP-2147 II1, UNC-231 II1, and OP-4281II1
in the absence of the wild-type allele

(Figures E1A, E1C, and E1D); this variant
was identified in the heterozygous state in a
sib-pair, UNC-186 II1 and UNC-186 II2
(Figure E1F). This sib-pair was also
heterozygous forWFDC2 variant c.307C.T,
p.Cys103Arg; this variant was also identified
in the homozygous state in individual CSU-
150 II2 (Figure E1H). Because we identified
WFDC2 variant c.145T.C, p.Cys49Arg in
five unrelated families, we Sanger sequenced
WFDC2 exon 2 in 1,229 additional
individuals with chronic airway disease,
revealing this variant in a heterozygous state
in OP-398 II1 and a homozygous state in
OP-1837 II1 (Figure E1B). Sanger
sequencing of all fourWFDC2 coding exons
in OP-398 II1 revealed another variant,
c.271G.A, p.Gly91Ser, in addition to
c.145T.C, p.Cys49Arg (Figure E1E). The
missense variant c.271G.A, p.Gly91Ser also
affects a highly conserved amino acid residue
(Figure 1C). Furthermore, WES identified
individual OP-4474 II1 to carryWFDC2
variant c.326G.A, p. Cys109Tyr in the
absence of the wild-type allele (Figure E1I).

Because of the high frequency of
ultrarare variant c.145T.C, p.Cys49Arg in
our cohort (12 of 22 alleles from 8 of 11
individuals), we examined whether it is a
founder or a hot-spot variant. Of the 18
humanWFDC family members, 14 are
encoded by genes clustered within a narrow
region on chromosome 20q13 (11, 12)
(Figure 1A). Reanalysis of thisWFDC gene
cluster inWES/whole-genome sequencing
data of OP-2147 II1 as well as OP-2032 II1
and his parents indicated the cosegregation
of this variant with several SNPs, some of
which are very rare (Figure E2). We also
analyzed these SNPs in individuals OP-1837
II1 and OP-4281 II1 and his father, OP-4281
I1. In the 59-direction of c.145T.C, the first
non-cosegregating SNP is present at a
distance of 26,425 bp (rs2745064); in the
39-direction, SNP rs781204355 is present at a
distance of 102,771 bp in the heterozygous
state (Figure E2). Overall, 11 SNPs (including
very rare ones) covering a region of 129.2 kb
cosegregate uniformly with the variant
c.145T.C, p.Cys49Arg, strongly supporting
its classification as a founder variant.

Clinical Phenotype
All individuals with biallelicWFDC2 variants
presented with marked chronic respiratory
symptoms affecting the upper and lower
airways, and 9 of 11 individuals showed
bronchiectasis by CT imaging (Figures
2A–2D and Table 1). Of note, the lungs of

At a Glance Commentary

Scientific Knowledge on the
Subject: Chronic respiratory
disorders characterized by
bronchiectasis have underlying
genetic or environmental causes,
but most remain idiopathic. The
secreted protein WFDC2, also
known as HE4, is a member of the
WFDC (WAP four-disulfide core)
domain family and implicated in
host immune defense. WFDC2 is a
well-studied serum biomarker
for ovarian cancer and other
malignancies and is elevated in
serum from subjects with cystic
fibrosis and idiopathic
pulmonary fibrosis.

What This Study Adds to the
Field: Here we identify disease-
causing variants in WFDC2 that
underlie a unique and severe
respiratory disorder characterized by
bronchiectasis in all lung fields,
chronic rhinosinusitis, and lung
infection by Pseudomonas
aeruginosa resembling the clinical
phenotype of cystic fibrosis, primary
ciliary dyskinesia, and inborn errors
of immunity. This work highlights a
novel Mendelian cause of chronic
destructive airway disease that
results from deficiency of secreted
WFDC2. The diagnosis can be
suspected based on measurement of
serum or saliva WFDC2/HE4
concentrations and confirmed by
genetic testing. Because of the
relatively small size of WFDC2 and
its function in extracellular spaces,
replacement therapy may be a
potential option. This study adds to
our understanding of the causes of
bronchiectasis.
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individuals withWFDC2mutations showed
a remarkable involvement of the upper,
middle, and lower lobes, resembling findings
in CF, in which the upper lobes are typically
the sites of greatest damage, which then
expands to involve all lobes. This is distinct
from genetic respiratory diseases such as
PCD, where, classically, the middle and
lower lung lobes are predominantly affected
(13). Furthermore, nine individuals with
WFDC2mutations suffered from chronic
P. aeruginosa infection, which is known
to be a risk factor associated with
bronchiectasis (14).

Spirometry data were available in 9 of
11 individuals, and all demonstrated altered
lung function parameters consistent with a
chronic obstructive airway disease,
resembling findings in CF and PCD. FEV1%
predicted was reduced in all affected
individuals examined (Table 1). Lung disease
in subject UNC-186 II2 progressed to the
point that lung transplantation was
necessary.

In addition, all 11 individuals showed
severe upper airway disease manifesting as
CRS with pronounced nasal polyposis and
progressive broadening of the nasal pyramid
(Figure 2E and Table 1). Interestingly, very
low nasal nitric oxide production rate was a
shared finding in individuals withWFDC2
mutations (9/9), which is associated with
CRS (15) but also characteristic for PCD

(16, 17) and a potential finding in CF (18).
CF was specifically ruled out by the absence
of disease-causing CFTR variants in all 11
individuals and by normal sweat chloride
testing (9 of 11 individuals tested) (Table E2);
furthermore, no disease-causing variants in
reported PCD-causing genes were detected
in the 11WFDC2-deficient individuals.

WFDC2 was originally identified in
epithelia of the epididymis duct and
proposed to support sperm function (19).
Thus, we examined whetherWFDC2
deficiency could affect sperm function and
male fertility. Interestingly, sperm count,
motility, andmorphology were all within
the normal range in OP-2147 II1 (Table E3
and Videos E1–E4). In line with these
findings, he fathered two children. Likewise,
individual UNC-186 II1 fathered a son
(confirmed by genetic testing). However, his
affected sister (UNC-186 II2) was unable to
conceive, despite attempted intrauterine
insemination. In addition, female individuals
UNC-231 II1 and CSU-150 II2 reported the
inability to conceive (Table E2). These
findings suggest thatWFDC2 deficiency
impacts female rather thanmale fertility and
warrant further investigation.

WFDC2 Expression Analysis
Other members of theWFDC protein
family, such as SLPI (WFDC4) (20) and
Elafin (WFDC14) (21), exhibit protease

inhibitor activity and play an important role
in the innate immune system.We examined
the expression of allWFDC genes, including
WFDC2, by RNA sequencing analyses (RNA
seq) of 1) native nasal epithelial cells (NECs)
obtained by nasal brush biopsy (n=5);
2) air–liquid interface (ALI)-cultured NECs
(n=2); 3) whole blood (n=3); and 4)
epstein-barr-virus (EBV) transformed
lymphocytes (n=2) (Figure 3A). In addition,
we investigated the expression ofWFDC
genes during differentiation in ALI-cultured
NECs and bronchial epithelial cells (BECs)
(Figures 3B and 3C). The results demonstrate
low expression of allWFDC genes with the
exception ofWFDC2 and SLPI.WFDC2
expression increased throughout
differentiation of NECs and BECs, and
SLPI showed a comparable expression
pattern during differentiation of NECs.

Furthermore, single-cell RNA seq of
human samples from 107 healthy donors
identified a unique expression pattern of
WFDC2 in secretory cells from tracheal,
bronchial, and nasal samples, as well as in
serous and ductal cells from submucosal
glands (Figure 3D), which aligns with a
separate dataset of control airway samples
(Figure E3A). The canonical transcript
(ENST00000372676) was the dominant one,
as shown by RNA seq from nasal and
bronchial samples (Figure E3B). These
analyses provide evidence thatWFDC2 is

Table 1. Summary of Genetic and Clinical Findings of Individuals with Biallelic WFDC2 Variants

Individual Sex
Age
(yr) WFDC2 Variant Cough Bronchiectasis

Nasal
Polyposis P.a.

FEV1%
Predicted

nNO
(nl/min)

UNC-376 II1 F 22 c.2T.A; p.Met1? het. deletion, het. Yes Yes Yes Yes 73 16.8
OP-2147 II1 M 30 c.145T.C; p.Cys49Arg; hom. Yes Yes Yes Yes 79 5.5
OP-2032 II1 M 14 c.145T.C; p.Cys49Arg; het.

deletion exon 1-2; het.
Yes Yes Yes Yes 67 5.3

OP-1837 II1 M 52 c.145T.C; p.Cys49Arg; hom. N/A Yes Yes Yes N/A 16.6
OP-4281 II1 M 19 c.145T.C; p.Cys49Arg; hom. Yes Yes Yes Yes 38 2.3
UNC-231 II1 F 52 c.145T.C; p.Cys49Arg; hom. Yes Yes Yes Yes 41.6 33.7
OP-398 II1 F 26 c.145T.C; p.Cys49Arg; het.

c.271G.A; p.Gly91Ser; het.
N/A N/A Yes N/A N/A N/A

UNC-186 II1 M 46* c.145T.C; p.Cys49Arg; het.
c.307T.C; p.Cys103Arg; het.

Yes Yes Yes Yes 64 10.8

UNC-186 II2 F 51* c.145T.C; p.Cys49Arg; het.
c.307T.C; p.Cys103Arg; het.

Yes Yes Yes Yes 25† 17.8

CSU-150 II2 F 48* c.307T.C; p.Cys103Arg; hom. Yes Yes Yes Yes 22 12
OP-4474 II1 M 7 c.326G.A; p.Cys109Tyr; hom. Yes No Yes N/A 67 N/A

Definition of abbreviations: het = heterozygous; hom=homozygous; N/A=data not available; nNO=nasal nitric oxide production rate;
P.a. =Pseudomonas aeruginosa infection of the airways.
Individuals UNC-376 II1, OP-2147 II1, OP-2032 II1, OP-398 II1, UNC-186 II1, UNC-186 II2, and OP-4474 II1 reported otitis media. Individuals
OP-2147 II1, UNC-231 II1, and UNC-186 II1 reported neonatal respiratory distress syndrome. All 11 individuals reported chronic sinusitis. All 11
individuals had normal situs composition (situs solitus) (see also Patient History in the online supplement).
*Deceased.
†FEV1 value before lung transplant.
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<WFDC5
<WFDC12

WFDC2>
<WFDC6

<WFDC8
<WFDC11WFDC10A>

<WFDC10B

WFDC13>

<WFDC3<SLPI/WFDC4

<WFDC9

Chromosome 20

WFDC
gene cluster

c.2T>A; p.Met1? 

c.145T>C; p.Cys49Arg

signal peptide

c.307C>T; p.Cys103Arg

c.271G>A; p.G�y91Ser

N C

N-terminal WFDC domain C-terminal WFDC domain

WFDC2

PI3/WFDC14>
<EPPIN/WFDC7

Exon 1 2 3 4

human  MPACRLGPLAAALLLSLLLFGFTLVSGTGAEKTGVCPELQAD-QNCT--QECVSDSECADNLKCCSAGCATFCSLPNDKEGSCPQVNINFPQLGLCRDQCQVDSQCPGQMKCCRNGCGKVSCVTPNF

chicken MKA--TGVLLVGILALCTQLQPAATAAVIVVKAGVCPEPAAEEANCT--MGCQSDGDCESTLKCCPAACGKACQEPNEKPGTCPSVKPGIPMLGLCVNQCKMDSNCSGSLKCCRNGCGKVSCVTPLH
guinea pig MPVRRLCSLSVALLFGLLLPSLLQAADAGAEKPGLCPRPQAD-LNCTHNNECQSDGDCERNLKCCQSGCGSVCAVPNEKPGTCPSV--DLPQLGICEDQCQEDSQCSGVMKCCRNGCGKVSCVTPNF
horse  MPACRLGPLA-GLLLGLLLFDHPAVTGTGAEKKGVCPKLEAD-STCK--KECLSDGECADNLKCCQAGCSSVCHLPNEKQGSCPLVDSNFPQLGLCQDQCQVDSQCPDKKKCCLNGCGKVSCVTPHF
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Figure 1. Identification of biallelic WFDC2 variants in 11 individuals from 10 global families. (A) WFDC2 localizes within the narrow WFDC
gene cluster on human chromosome 20q13 with 14 of 18 members of the WFDC gene family. (B) The canonical transcript of WFDC2
(ENST00000372676) comprises four exons (Figure E3B); disease-causing WFDC2 variants identified in this study are indicated above respective
exons. (C) WFDC2 encodes a secreted protein containing two WFDC domains, which are highly conserved throughout vertebrates as shown by
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C-terminal WFDC domains, respectively. The WFDC domains comprise eight cysteine residues, whose disulfide bridges form a characteristic
core motif. We identify seven distinct WFDC2 variants, including a start codon variant, two distinct large deletions, and four missense variants
(indicated by red rectangles), affecting highly conserved residues within the WFDC domains. (D) OP-2032 II1 harbors WFDC2 variant
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the father and mother, respectively. Additional pedigrees and Sanger sequencing are shown in the data supplement (Figure E1).
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Figure 3. WFDC2 and SLPI are the only WFDC domain family genes robustly expressed in respiratory epithelial cells. (A) Comparison of
WFDC domain gene family expression by RNA sequencing from human nasal epithelial cells (NECs) obtained by NB, air–liquid interface
cultured NECs (ALI), Epstein–Barr virus (EBV)-transformed lymphocytes (EBV), and whole blood (blood) demonstrates high expression of
WFDC2 and SLPI but no other WFDC family genes in respiratory cells. (B) Expression of WFDC2 and SLPI follow a comparable pattern during
ciliogenesis in ALI-cultured NECs (time points 0, 1, 3, 15, and 30 days after airlift). Other WFDC genes, including WFDC1, EPPIN, WFDC8,
WFDC9, WFDC12, and WFDC13, are not detected. (C) WFDC2 expression measured by quantitative PCR in bronchial epithelial cells cultured at
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expressed predominantly in secretory cells of
the respiratory epithelium and submucosal
glands.

To investigateWFDC2 protein
expression, we performedWestern blotting
(WB) of saliva, fibroblasts, EBV-transformed
lymphocytes, and ALI-cultured NECs of
healthy control subjects (Figures 4A–4C).
WFDC2 was not detectable in any of the cell
lysates or in cell medium from fibroblasts
and EBV-transformed lymphocytes.
However, a diffuse immunoreactive band of
approximately 25 kD that represents the
mature, glycosylated protein (22) was
detected in saliva and apical secretions of
healthy control ALI-cultured NECs. We next
analyzed saliva, airway mucus (secreted in
ALI-cultures of NECs), and seminal fluid
from both healthy volunteers and individuals
withWFDC2mutations byWB. In line with
disease-causingWFDC2 variants, the protein
was not detectable in saliva of OP-2032 II1,
OP-2147 II1, and OP-4281 II1, whereas
in saliva of a healthy control individual and
the heterozygous mother OP-2032 I2, the
expected diffuse band at approximately
25 kD was detectable (Figure 4A).
Comparing secretions of ALI-cultured NECs,
we observed thatWFDC2 is detectable in the
healthy control individual but not individual
OP-2032 II1 (Figure 4B). In addition, we
demonstrated thatWFDC2 was not
detectable in seminal fluid inWFDC2-
mutant individual OP-2147 II1 (Figure 4D),
although this does not affect his ability to sire
children.

In addition, we examinedWFDC2
expression in ALI-cultured BECs of
individual UNC-186 II2 during airway cell
differentiation.WFDC2 is detectable in
healthy control cultures at Day 5, which
precedes ciliation (typically Day 11–13) and
is continually secreted up to full mucociliary
differentiation at Day 26 (Figure 4E). In
contrast, WFDC2 was severely reduced in
ALI secretions fromUNC-186 II2 (Figure
4F). Interestingly, in cellular lysates from
UNC-186 II2, we detected a strongWFDC2
signal that increased with differentiation of
the culture, whereas the amount of
intracellular WFDC2 in control cultures
increased only slightly (Figures 4G and 4H).

The abnormal accumulation ofWFDC2 in
respiratory cells fromUNC-186 II2 was also
detectable by immunofluorescence
microscopy analysis (Figures 4I and 4J).

Using a commercial
electrochemiluminescence immunoassay,
we measured serum concentrations of
WFDC2 in individuals with biallelicWFDC2
variants and compared this to serum
concentrations ofWFDC2 in individuals
with PCD and CF (Figure 4K). Among
WFDC2-deficient individuals tested (n=4),
WFDC2 serum concentrations were below
the detection limit. In contrast, individuals
with PCD (n=44) and CF (n=13) presented
with elevatedWFDC2 serum concentrations,
as previously reported (23).

WFDC2 Structure Analysis
We performed homology modeling (24) to
investigate the impact ofWFDC2 founder
variant p.Cys49Arg onWFDC2 secretion.
We found that both theN- and C-terminal
regions of mature humanWFDC2 had high
sequence similarity to the sequence of the
Nawaprin NMR structure (Protein Data
Bank ID: 1 UDK). Our homology model
resulting from this sequence similarity
suggested that WFDC2 had two domains,
each of which had a hairpin core surrounded
by a loop that is tethered to the core via four
disulfide bonds (Figure E4A), representing
the signature motif of the whey acidic
protein family (10). This is consistent with
another independent humanWFDC2model
(which was later released at the AlphaFold
Protein Structure Database; Figure E4B), in
that all 16 cysteines inWFDC2 form eight
disulfides including the Cys49–Cys61.

Furthermore, we performed two sets of
physics-based molecular dynamics
simulations ofWFDC2 and its Cys49Arg
variant with statistical relevance using
forcefield FF12MC (25). For each set, 220
distinct and independent simulations were
performed, with an aggregated simulation
time of 208.560 microseconds (online
supplement). In these simulations, each
protein had all 16 cysteine residues in the
reduced state representing the nascent
WFDC2 without disulfides in the
endoplasmic reticulum. This allowed us

to probe the mutation effects on the
conformation of Asn44Cys45Thr46, a
known glycosylation site of WFDC2 (19)
that is crucial toWFDC2 secretion (26).
The most populated C-terminal domain
conformations of the wild type and mutant
were similar in that all eight cysteines were
primed (positioned properly) to form four
disulfides. However, the mutantN-terminal
domain had four cysteines primed to form
two disulfides (Figure 5A), whereas the wild-
typeN-terminal domain had only two
cysteines primed to form one disulfide
(Figure 5B). The latter underscores the
necessity ofN-linked glycosylation in the
N-terminal domain to facilitate and ensure
proper protein folding before secretion of
WFDC2. Notably, Asn44 was partially
occluded by the hydrophobic region of
the hairpin core in the mutant (Figure 5C)
but was fully exposed in the wild type
(Figure 5D). This occlusion was primarily
caused by the strong interresidue attractions
of Asn44Cys45Thr46 to nearby residues in
theN-terminal domain (Figures E4C and
E4D) and suggested that the Cys49Arg
variant disruptsN-linked glycosylation of the
nascent protein in the endoplasmic
reticulum and consequently impairs its
secretion. This is consistent with the
lack of detectable PNGase F-sensitive
(hypoglycosylated)WFDC2 in saliva samples
from individuals withWFDC2mutations
(Figure E5).

WFDC2 Functional Analysis
We next investigated ciliary integrity and
mucociliary clearance capacity ofWFDC2-
deficient respiratory epithelium. High-speed
video microscopy analysis of native NECs
fromOP-2032 II1, OP-2147 II1, and
OP-4281 II1 indicated a normal, coordinated
ciliary beat pattern; the ciliary beat frequency
was reduced, but within the normal range
(Videos E5–E12). Immunofluorescence
microscopy analysis for ciliary components
DNAH5, GAS8, and RSPH9 (n=6) and
transmission electronmicroscopy analyses
(n=8) in individuals withWFDC2
mutations indicated normal ciliary
ultrastructure (Table E2 and Figure E6).

Figure 3. (Continued ). expressed in a differentiation-dependent manner. (D) Single-cell RNA sequencing of different nasal, airway, and
parenchymal samples from 107 healthy human donors (23, 42) demonstrates that WFDC2 is expressed primarily in secretory cells. Data shown
here are the expression of WFDC2 per cell population in the merged dataset (biopsies, brushings, and dissections from all nasal, tracheal,
bronchial, and parenchymal locations, from 107 healthy donors). NB=nasal brushing.
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Figure 4. Secreted WFDC2 is detectable in healthy control but not WFDC2-deficient individuals. (A) Western blotting (WB) of saliva samples
demonstrates the presence of WFDC2 (25 kD) in the healthy control and the healthy mother (OP-2032 I2) of individual OP-2032 II1. By contrast,
this band is severely reduced or absent in saliva from individuals with pathogenic WFDC2 variants (OP-4281 II1, OP-2147 II1, and OP-2032 II1).
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To analyze mucociliary transport
(MCT) in the absence of confounding
inflammatory processes and other secondary
effects, we cultured NECs fromOP-2032 II1
and BECs fromUNC-186 II2 at the ALI.
High-speed video microscopy analysis
demonstrated a normal ciliary beat
frequency for OP-2032 II1 (5.76 2.0Hz;
control, 4.96 1.5Hz at 25�C) and UNC 186
II2 (12.26 0.2Hz; control, 11.26 0.4Hz at
37�C) (Figure E7A and Videos E13 and E14).
We also measured ciliary length and
identified no difference betweenWFDC2-
deficient cells of OP-2032 II1 and healthy
control cells (Figure E7B). Cultures from
both individuals withWFDC2mutations
were capable of generatingMCT in a
directed fashion, with cells fromUNC 186
II2 generating complete circular transport
when cultured in anMCT device (27)
(Video E15). Interestingly, the speed of MCT
was low relative to the control cultures
(Figures E7C and E7D), but the epithelial
morphology and composition of cilia and
centrosomes were comparable between
healthy control subjects and OP-2032 II1
(Figure E8). Furthermore, particle-tracking
microrheology analysis of mucus from ALI
cultures of UNC-186 II2 and OP-2032 II1
indicated no difference in viscosity compared
with control individuals (Figure E9). Taken
together, our results suggest thatWFDC2-
deficient respiratory epithelia likely have a
level of mucociliary clearance that is within
the normal range.

Proteomic Analysis
To further understand the impact ofWFDC2
deficiency, we analyzed saliva from healthy
control individuals (n=3), individuals with
WFDC2mutations (n=3), and control
individuals with respiratory disease (PCD,

n=2; CF, n=2) by liquid chromatography
with tandemmass spectrometry (LC-MS/
MS). Among more than 350 unique proteins
identified in saliva, several proteins—
including the serine protease inhibitor
SPINK5—showed significantly altered
expressions betweenWFDC2-mutant and
healthy control groups as well as between
WFDC2-mutant and respiratory disease
control groups (Figures 6A and E10). We
confirmed byWB thatWFDC2 is robustly
detectable in saliva from several individuals
with PCD and CF, in contrast to individuals
withWFDC2mutations (Figures 6B, 6C,
E5C, and E5D).We analyzed SLPI byWB
and, consistent with LC-MS/MS analysis,
observed variable (not significantly altered)
expression among healthy control,WFDC2-
mutant, and respiratory disease control
groups (Figures 6D and 6E). We also
analyzed SPINK5 byWB and observed
reduced expression of a proteolytically
cleaved species (28) in individuals with
WFDC2mutations compared with healthy
control and respiratory disease control
groups (Figures 6F and 6G).

Discussion

Here, we describe a novel Mendelian
disorder of chronic destructive airway
disease characterized by bronchiectasis,
chronic infection of the airways, pronounced
CRS, and nasal polyposis due to autosomal
recessive inheritance of pathogenicWFDC2
variants. We show that WFDC2 is present in
airway secretions, saliva, and seminal fluid in
healthy control subjects but is hardly
detectable, if at all, in these fluids and serum
samples from affected individuals. This
represents the first description ofWFDC2

deficiency as a cause of chronic destructive
airway disease, in contrast to PCD and CF,
which show elevated expression ofWFDC2.
This agrees with previous reports in
individuals with CF (23, 29) and recent
studies reporting increasedWFDC2
expression in interstitial lung disease
(30–33). Bronchiectasis inWFDC2
deficiency more closely mimics CF and
IEI (all lobes) than PCD (predominantly
middle and lower lobes). We recommend
includingWFDC2 deficiency in the
differential diagnosis with CRS, CF, and
PCDwhen nasal nitric oxide measurements
are very low.

Our comprehensive genetic analyses
show that the chromosomal region 59
upstream ofWFDC2 as well as introns 1 and
2 contain highly repetitive DNA sequences
due to many short interspersed nuclear
elements. We detected two distinct
heterozygous deletions in these regions
spanning exons 1 and 2, probably due to
recombinations of these elements. In
addition, we identified the founder variant
c.145T.C, p.Cys49Arg present in 12
of 22 alleles from 8 of 11 individuals.
Protein structure analysis suggested that
glycosylation at Asn44 is required for proper
folding of theN-terminal domain of
WFDC2. PNGase F analysis demonstrated
that the hypoglycosylatedWFDC2 protein
was not detectable in saliva from three
individuals harboring the Cys49Arg variant.
This supports our conclusion that the
Cys49Arg founder variant likely affects
properN-linked glycosylation and,
consequently, its secretion.

WFDC2 has been reported to have
antibacterial activity including against
P. aeruginosa (22, 34, 35) as well as
antiprotease activity (22, 34, 36). Proteomic

Figure 4. (Continued ). In healthy saliva, a diffuse protein band of approximately 25 kD that represents glycosylated WFDC2 is detectable. (B)
WB reveals that WFDC2 is absent from apical secretions of air–liquid interface (ALI)-cultured nasal epithelial cells (NECs) of WFDC2-mutant
individual OP-2032 II1. (C) By WB, WFDC2 is detectable in saliva and the apical secretions of ALI-cultured NECs of healthy individuals but not
in NECs, fibroblasts, or EBV-transformed lymphocytes as well as supernatants of fibroblasts and EBV-transformed lymphocytes (l = lysate;
s= supernatant). (D) WB demonstrates that WFDC2 is detectable in seminal fluid from healthy control but not WFDC2-mutant individual OP-2147
II1. (E) WB demonstrates that WFDC2 is detectable in apical secretions of healthy control bronchial epithelial cells (BECs) cultured at the ALI by
Day 5, preceding ciliation, whereas (F) WFDC2 is weakly detectable in apical secretions from individual UNC-186 II2. A total of 10 and 20mg of
recombinant WFDC2 (HEK293 expression) is loaded as positive control. (G) In contrast, lysates from control BECs show low levels of WFDC2,
whereas (H) UNC-186 II2 shows accumulation of WFDC2 reactive material. A total of 10 and 20mg of recombinant WFDC2 (HEK293 expression)
is loaded as positive control. (I) Whole mount immunofluorescence images of ALI-cultured BECs from a healthy control and (J) UNC-186 II2
stained with anti-WFDC2 (red), anti-acetylated tubulin to label cilia (green), and Hoechst 33342 to label nuclei. WFDC2 accumulates
intracellularly in cells from UNC-186 II2. (K) Measurement of WFDC2 in blood serum shows that WFDC2 concentration is below the limit of
detection in samples of individuals with biallelic WFDC2 mutations UNC-186 II2, OP-2032 II1, OP-2147 II1, and OP-4281 II1 (OP-2032 II1 and
OP-4281 II1 are tested twice, OP-2147 II1 is tested thrice with the same result). Median serum concentration of individuals with PCD (n=44)
and CF (n=13) are elevated compared with published reference values (23) for healthy children (dotted line, 36.3pmol/L, age 10–15 yr) and
adults (dashed line, 33.8pmol/L, age 23–38 yr). CF=cystic fibrosis; PCD=primary ciliary dyskinesia.
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Figure 5. Disease-causing founder variant p.Cys49Arg impairs WFDC2 secretion through occlusion of the N-linked glycosylation site at Asn44.
(A) The most populated conformation of the disulfide-free mature human WFDC2 with the Cys49Arg mutation showing the b carbon distances of
seven disulfides (C36-C62, C45-C66, C55-C70, C80-C110, C93-C114, C97-C109, and C103-C119). (B) The most populated conformation of the
wild-type disulfide-free mature human WFDC2 showing the b carbon distances of eight disulfides (C36-C62, C45-C66, C49-C61, C55-C70, C80-
C110, C93-C114, C97-C109, and C103-C119). (C) Close-up view of the occluded glycosylation site of the Cys49Arg mutant. (D) Close-up view
of the fully exposed glycosylation site of the wild type. Distances shown by dashed lines are in angstroms (Å). The most populated conformation
of the mutant or wild type was derived from 220 distinct and independent simulations for each set, with an aggregated simulation time of
208.560 ms.
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Figure 6. Proteomic content analysis of saliva among healthy control, WFDC2-mutant, and respiratory disease control groups. (A) Saliva from
healthy control individuals (n=3), individuals with WFDC2 mutations (OP-2032 II1, OP-2147 II1, and OP-4281 II1), as well as control individuals
with respiratory disease (primary ciliary dyskinesia [PCD], n=2; cystic fibrosis [CF], n=2) are subjected to liquid chromatography with tandem
mass spectrometry (LC-MS/MS) to determine differentially expressed proteins. The gene symbol, UniProt identifier, and gene name, as well as
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analysis of saliva identified significantly
altered expression of several proteins in
individuals withWFDC2mutations, including
the antimicrobial and antiinflammatory serine
protease inhibitor SPINK5, whose reduced
levels have been associated with CRS (37–39).
This provides supporting evidence that
WFDC2 serves a protective role in response
tomicrobial infection and inflammation of
the airways. Notably, we detect variable
expression of SLPI in saliva among healthy
control individuals, individuals withWFDC2
mutations, and control individuals with
disease (PCD and CF) by LC-MS/MS and
WB. Nakajima and colleagues observed
elevated Slpi expression in lung tissue from
Wfdc2-null mice (40), whereas reduced
SLPI expression has been reported in CF
samples (29).

Mouse models deficient forWFDC2
exhibit respiratory failure and die in the
neonatal period: defects include apoptosis
of type-1 alveolar cells and thickening of
the alveolar interstitium (41) and shortened
cilia and impaired alveolar type-II function
(40). We noted that ciliary length from
affected individual OP-2032 II1 is not
altered, and in ALI cultures from two

individuals, the ciliary structure, beat
frequency and coordination, as well as
mucus viscosity were all within normal
range. Although cytoplasmic accumulation
ofWFDC2 was noted in UNC-186 II2,
obvious changes in cellular morphology or
fate (also in OP-2032 II1) were not apparent.
The phenotypic variation between human
WFDC2 deficiency described here and
mouseWFDC2 deficiency may reflect in part
the sequence difference between human and
mouseWFDC2, of which the latter contains
a unique 52–amino acid linker region
betweenWAP domains (Figure E11)

Although likely rare,WFDC2 deficiency
can now be screened for by genetic testing
and established serum assays, and protein
replacement therapy may be a potential
treatment for this disease. Further studies on
WFDC2may provide insight into other
causes of bronchiectasis and perhaps other
pulmonary diseases.�
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