Skip to main content
. 2024 Jun 24;24:294. doi: 10.1186/s12890-024-03109-3

Table 5.

Performance of proposed lobe-based radiomics method compared with other machine learning methods for COPD severity staging on Dataset1

Task Classifier Accuracy Precision Recall F1-score AUC Training time (s)
Four categories KNN 0.50 0.53 0.50 0.49 0.47 --
Decision Tree 0.52 0.57 0.52 0.50 0.48 0.0349
AdaBoost 0.51 0.51 0.51 0.50 0.44 0.2813
Gradient Boosting 0.57 0.57 0.57 0.56 0.45 4.6552
XGBoost 0.64 0.66 0.64 0.60 0.45 0.5206
Random Forest 0.60 0.68 0.60 0.59 0.44 0.3022
CatBoost 0.64 0.68 0.64 0.63 0.48 150.8
Proposed method 0.63 0.71 0.63 0.62 0.49 0.0621
Two categories KNN 0.80 0.80 0.80 0.79 0.87 --
Decision Tree 0.73 0.73 0.73 0.73 0.72 0.0312
AdaBoost 0.79 0.79 0.79 0.79 0.85 0.3504
Gradient Boosting 0.84 0.84 0.84 0.84 0.89 1.5213
XGBoost 0.82 0.82 0.81 0.82 0.89 0.1366
Random Forest 0.83 0.83 0.82 0.83 0.89 0.3191
CatBoost 0.84 0.84 0.84 0.84 0.88 64.7
Proposed method 0.87 0.87 0.87 0.87 0.93 0.0440