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a b s t r a c t 

The combination of upconverting nanoparticles (UCNPs) and immunochromatography has become a widely used 

and promising new detection technique for point-of-care testing (POCT). However, their low luminescence effi- 

ciency, non-specific adsorption, and image noise have always limited their progress toward practical applications. 

Recently, artificial intelligence (AI) has demonstrated powerful representational learning and generalization capa- 

bilities in computer vision. We report for the first time a combination of AI and upconversion nanoparticle-based 

lateral flow assays (UCNP-LFAs) for the quantitative detection of commercial internet of things (IoT) devices. This 

universal UCNPs quantitative detection strategy combines high accuracy, sensitivity, and applicability in the field 

detection environment. By using transfer learning to train AI models in a small self-built database, we not only 

significantly improved the accuracy and robustness of quantitative detection, but also efficiently solved the ac- 

tual problems of data scarcity and low computing power of POCT equipment. Then, the trained AI model was 

deployed in IoT devices, whereby the detection process does not require detailed data preprocessing to achieve 

real-time inference of quantitative results. We validated the quantitative detection of two detectors using eight 

transfer learning models on a small dataset. The AI quickly provided ultra-high accuracy prediction results (some 

models could reach 100% accuracy) even when strong noise was added. Simultaneously, the high flexibility of 

this strategy promises to be a general quantitative detection method for optical biosensors. We believe that this 

strategy and device have a scientific significance in revolutionizing the existing POCT technology landscape and 

providing excellent commercial value in the in vitro diagnostics (IVD) industry. 
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. Introduction 

In recent years, there have been outbreaks of sudden global public

ealth problems such as COVID-19 [1–3] , Middle East respiratory syn-

rome (MERS) [4] , and Ebola virus disease (EVD) [5] . Additionally, with

he increasing global trade, urbanization, and environmental changes

hat continue to aggravate the risk of transmission, the development of

nstantaneous rapid detection of infectious diseases is of great signif-

cance for the prevention and control of global public health. At this

tage, mainstream POCT is based on a fluorescence immunochromatog-

aphy assay with high sensitivity and specificity. Quantitative detec-

ion is achieved by applying fluorescent markers (such as UCNPs [6–8] ,

uantum dots (QDs) [ 9 , 10 ], fluorescent microspheres (FMSs) [ 11 , 12 ],

nd organic dyes [13] ) to lateral flow assays (LFAs) using radiomet-

ic strategies. However, the QDs, FMSs, and organic dyes typically re-

uire ultraviolet (UV) and visible light excitation, a process that comes
∗ Corresponding authors. 
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ith the challenges of photobleaching and phototoxicity. UCNPs are

ew fluorescent probes that convert near-infrared excitation light into

igh-energy visible or ultraviolet light through the anti-Stokes process.

heir near-infrared excitation properties can effectively avoid interfer-

nce from background fluorescence and co-excitation. UCNPs also offer

nique advantages, such as better optical and chemical stability, lumi-

escence tunability, resistance to photobleaching, and low cytotoxic-

ty. This makes the use of upconversion fluorescence resonance energy

ransfer (UC-FRET) technology with UCNPs an energy donor, highlight-

ng promising applications in POCT, biosensing, and medical diagnostics

14] . 

In the early 21 st century, the first application of UCNPs in LFAs was

eported by Niedbala et al. [15] and Hampl et al. [16] , who success-

ully detected 103 org/mL Escherichia coli O157:H7 in a sample on a

edium and 10 pg hCG in a 100- 𝜇l sample. This marked the begin-

ing of the "Age of Discovery" for UCNPs. Quantitative assays can pro-
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ide more accurate and important information than stereotypic anal-

sis. For UCNP-LFAs, quantitative detection is achieved by measuring

he fluorescence intensity on the control line (CL) and test line (TL). Qu

t al. [17] developed fluorescent lateral flow immunochromatographic

ssays (FLFIAs) based on UCNPs to achieve rapid quantification of Bru-

ella using changes in the fluorescence signal ratio of TL/CL, and ob-

ained satisfactory detection limits in different spiked samples. The re-

ults demonstrate the use of UCNPs for quantitative assays with high

pecificity, reproducibility and stability. Hu et al. [18] utilized UCNP-

FAs for drug-field detection, a similar approach to our study. They also

elected methamphetamine (MET) and morphine (MOP) in simulated

aliva samples as targets for quantitative detection and achieved a sen-

itivity of 10 and 5 ng/mL, respectively, for MET and MOP detection

nder 15 min using the TL/CL ratio on LFAs. UCNP-LFAs showed faster

etection efficiency and more accurate quantitative results than liquid

hromatography-mass spectrometry (LC-MS) in simulated saliva sam-

les. However, the low luminescence efficiency and noise interference

till significantly hinder various UCNP-based detection techniques from

he application of theoretical laboratory studies in real-world practical

ituations. In the existing research, the luminescence efficiency of UC-

Ps has been continuously improved from the material itself [19–23] ;

owever, the design of quantitative detection platforms based on UCNPs

as been steadily integrated, made more intelligent, and miniaturized

24–32] . 

In summary, the above detection methods have a strong identifica-

ion specificity and high detection sensitivity. However, optical signals

re inevitably subject to adverse factors, such as instrument parameters,

hanges in the field environment, and interference from background

ight scattering in complex sample matrices, resulting in enhanced im-

ge noise and reduced detection sensitivity. This causes devastating in-

erference superimposed on the quantitative results of fluorescence de-

ection. This interference cannot be decoupled using an optical analysis

ethod. Although some techniques [30] can eliminate some of the im-

acts, quantitative detection accuracy, and instrument portability, there

s an irreconcilable contradiction, which still does not meet the practi-

al needs of rapid detection. How can the luminescence intensity and

fficiency of the UCNPs be enhanced? How can the accuracy, detection

imit, and detection time of optical probe signal detection in POCT be

nhanced for use as portable equipment in a complex detection environ-

ent? These two critical issues are of great relevance and commercial

alue. In our previous study, we successfully enhanced the luminescence

ntensity and efficiency of UCNPs by constructing up-conversion nano-

aterials based on mesoporous silica-encapsulated core-shell structures

o reduce their quenching effect [33–35] . Furthermore, our research

roup developed a variety of small quantitative devices based on up-

onversion luminescence and 5G technology for different detectors [36–

8] . Considering these factors, we believe that the best combination of

CNP-LFAs and powerful AI technology is available for POCT. However,

ittle has been reported to date. 

Transfer learning [39–41] is an essential approach in AI. The re-

earch challenge in the biomedical field, unlike in other areas, is the in-

bility to obtain sufficient valid medical data. Although much research

as been aimed at combining transfer learning with bio-detection sen-

ors, it relies on a large amount of high-quality data labeling and robust

omputational power devices. The introduction of transfer learning into

he biomedical field can solve the conflicts between large amounts of

ata and small amounts of annotation, between large amounts of data

nd low computational costs, and between personalized application sce-

arios and pervasive models. It improves its generalization performance

y considering empirical parameters learned in a one-dimensional space

nd using them in another domain [42] . In recent years, there has been

uch literature [43–48] on combining transfer learning with biological

etection. Kermany et al. [49] developed AI systems based on transfer

earning for diagnosing two basic classes of eye diseases and pneumonia,

hich is the first time in the world that massive amounts of well-labeled,

igh-quality data for transfer learning were used to achieve ultra-high
545 
ccuracy diagnoses that can completely surpass the accuracy of human

octors. 

We foresee that this research can be extended to any optical-probe-

ased biosensors. By combining UCNP-LFAs with transfer learning for

se in optical biosensors, we completely get rid of the complicated

reprocessing and image enhancement process, with a vast amount of

orker-labeled data being through traditional methods. It simplifies the

etection process and improves detection efficiency while reducing the

ardware computing power requirements. However, owing to transfer

earning, better AI models that are easier to deploy in local IoT devices

re available. In terms of safety and sustainability, the device is less

armful to humans and the environment, and it can continuously de-

loy the latest training models through continuous updates to achieve

evice sustainability. These properties address the issues of real-time lo-

al response, reliable service, and data privacy raised by on-site sensor

etection and POCT. 

Specifically, 1. The first report introduced the concept of transfer

earning for the quantitative detection of upconverted nanomaterials.

. We designed an AI-based solution strategy (including unique fea-

ure engineering and transfer learning) for the quantitative detection

f UCNP-LFAs in small datasets without special preprocessing and re-

uiring only a small amount of data. 3. Experiments were performed

o determine the accuracy of eight AI models trained by transfer learn-

ng in the quantitative detection of MET and MOP (the sensitivities of

he MET and MOP were 1 ng/mL and 0.1 ng/mL), the accuracy of the

odels without transfer learning were then compared to those of tra-

itional classification algorithms and an in-depth study on the effect

f image noise on quantitative method detection results conducted. 4.

n efficient, universal, portable commercial IoT device for upconver-

ion luminescence quantitative detection was developed by deploying a

rained transfer-learning model in a local IoT device ( Fig. 5 ). The device

as 100 mm × 120 mm × 74 mm and weighed only 351.2 g, with the

apability of inferring highly accurate real-time results in only 20 s. 

. Experimental section 

.1. Data preparation for transfer learning 

Image sequences containing CL and TL fluorescence excitations on

he LFA sensor ( Fig. 1 c) were obtained by the luminescence capture

ensor ( Fig. 1 a and b). Due to the camera fixation, we can easily ob-

ain the region of interest (ROI) for CL and TL fluorescence excitation.

ubsequently, we stitched the two-strip ROI together using a preset pro-

ram ( Fig. 1 d). The above process was repeated using image sequences

hat corresponded frame by frame. Finally, MET, MOP, and two small

atasets for proof-of-concept were constructed separately. The data set

or quantitative detection of MET contains four standard concentration

radients of 1 ng/mL, 2.5 ng/mL, 10 ng/mL and 20 ng/mL; with 37 im-

ges (240 px × 240 px) available for each concentration making a total

f 148 raw data, of which 7 images were selected for each concentra-

ion for a total of 28 as the MET test data set. Similarly, the data set for

he quantitative detection of MOP contains four standard concentration

radients of 0.1 ng/mL, 1 ng/mL, 10 ng/mL and 100 ng/mL (0.1 ng/mL

s the lower concentration), 29 images (240 px × 240 px) for each con-

entration, a total of 116 raw data, of which 9 images were selected for

ach concentration, for a total of 36 images as the MOP test data set

 Fig. 2 ). 

.2. Feature engineering and data augmentation 

Feature engineering plays a crucial role in determining AI accuracy.

ood feature selection determines the upper limit of the accuracy of

he AI model. Owing to the high cost of dataset label collection, we

ropose a feature-engineering method applicable to upconverted fluo-

escence detection through extensive preliminary research. Specifically,
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Fig. 1. The proposed implementation of the flow of artificial intelligence-based quantitative upconversion luminescence detection under small sam- 

ples. The method enables rapid upconversion luminescence quantitative detection with high accuracy, ultra-sensitivity, and strong noise tolerance. (a) The actual 

developed portable device for upconversion luminescence quantitative detection. (b) Diagram of the hardware structure of the device. (c) Schematic diagram 

of UCNP-LFAs. (d) Implementation scheme for constructing a training database using a small number of samples. (e) Implementation of the data augmentation 

process. (f) The workflow for implementing transfer learning into the pre-trained network. (g) Deployment of trained AI models to local devices. (h) Majority 

Voting strategy, which aims at absolute accuracy of the final prediction results. (i) Fast transfer of prediction results to PC or mobile interfaces through real-time 

inference. 
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[  
he raw data were transformed in the preprocessing stage using seven

ransformations: image stitching, polar coordinate conversion, 10 %

aussian noise, rotation, Gaussian smoothing, horizontal flip, and im-

ge RGB channel extraction of the G channel. Meanwhile, to enhance

he model generalization ability to avoid model overfitting, two data

ugmentation methods of random scaling (scaling factor: 0.9 to 1.1)

nd random cropping (cropping range: -30 to 30 px) will be used in

he training process to avoid overfitting (not included in the training

ata). Finally, the training dataset for all four concentrations of quanti-
546 
ative detection of MET was expanded to 2,520 sheets, and the training

ataset for quantitative detection of MOP was expanded to 1,920 sheets

 Fig. 2 ). 

.3. Models for UCNP-LFAs using transfer learning 

We selected ResNet50 [50] , ResNet101 [51] , VGG16 [52] , VGG19,

oogleNet [53] , MobileNet V2 [54] , AlexNet [55] , and DenseNet201

56] , making a total of eight classical AI models ( Table 1 and Fig. 3 ).
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Fig. 2. Data composition of the small dataset constructed for transfer learning. Our proposed feature engineering was performed for fluorescence images of 

each concentration gradient in both MET and MOP datasets. 

Fig. 3. Specific implementation process of transfer learning. The pre-trained models have consumed significant time and computational resources in building 

neural networks. Here, pre-trained models have already learned rich feature representations based on a large number of images [ 57 , 58 ] and transfer learning is able 

to transfer powerful skills that have been acquired to relevant problems. Compared to using randomly initialized training fine-tuned networks, transfer learning is 

faster and simpler than training models from scratch using randomly initialized weights. 

547 
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Table 1 

Properties of the 8 pre-trained models selected for the experiments . 

Model Depth Size Parameters (Millions) Image Input Size 

ResNet50 50 96 MB 25.6 224 × 224 

ResNet101 101 167 MB 44.6 224 × 224 

VGG16 16 515 MB 138 224 × 224 

VGG19 19 535 MB 144 224 × 224 

GoogleNet 22 27 MB 7 224 × 224 

MobileNet V2 53 13 MB 3.5 224 × 224 

AlexNet 8 227 MB 61 227 × 227 

DenseNet201 201 77 MB 20 224 × 224 

Note: These 8 pre-trained networks have different network depths, network 

sizes, network parameter scales, and input image sizes, and they cover almost 

all forms of current deep learning models. The results obtained from the vali- 

dation experiments on these 8 pre-trained models with small samples are gen- 

eralizable. 
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utilization. 
he pre-trained models that can be used for transfer learning and their

elated properties are listed in Table 1 . It can be seen that each of these

re-trained models has its characteristics in terms of network depth,

onvolution method, and parameter size. For example, DenseNet201

as a network depth of up to 201 layers and VGG19 has a maxi-

um parameter size of 144 million. Most of these pre-trained mod-

ls were trained based on the ImageNet database with more than one

illion images. They can classify input images into up to 1,000 object

lasses, covering almost all common objects, plants, and animals in life.

ransfer learning fine-tunes deeper layers in the network by training

hese pre-trained models based on new datasets. Fine-tuning the net-

ork is usually faster and easier than building and training a new net-

ork, and allows learning features specific to the new self-built dataset,

here the network depth is defined as the maximum number of se-

uential convolutional or fully connected layers in the path from the

nput layer to the output layer. The inputs to all the models were RGB

mages. 

.4. Transfer learning model configuration and training 

In Fig. 3 , the implementation process is roughly divided into load-

ng data, loading the pre-trained network, transfer learning (fixing the

nitial layer and replacing the final layer), training the network, and

valuating the network after transfer learning. The fixed initial layer of

ransfer learning means that the weight parameters of the shallow layer

re fixed by setting the learning rate of the shallow network layer to

. However, the parameters of the fixed network layers are not updated

uring the training process, and fixing the weights of multiple initial lay-

rs can significantly speed up network training because the gradients of

he fixed network layers no longer need to be calculated ( Table 3 ). How-

ver, fixing shallower network layers also prevents these layers from

verfitting the dataset used for training because of the small size of the

pconverted light-emitting dataset. The final replacement layer of trans-

er learning, the convolutional layer of the network, extracts the image

eatures used by the last learnable layer and the final classification layer

o classify the input image. In most models, the final layer with learn-

ble weights is the fully connected layer. This fully connected layer was

eplaced with a new fully-connected layer, where the number of outputs

as equal to the number of classes in the new dataset. 

Specifically, we trained the model using a single NVIDIA RTX 3080

raphics card, while setting the learning rate of the first 10 initial layers

o zero. The Adam optimization algorithm was used to optimize the net-

ork parameters to minimize the loss function (the default parameters

ere set for all eight models). Ten batch samples were used along with

0 training rounds. Because the model using transfer learning converged

n the original data, it was necessary to set a smaller learning rate (the

nitial learning rate was 3e-4) and use a learning rate decay strategy.
548 
he learning rate is reduced by a factor of 0.2 every five rounds, until

he final 40th round. 

.5. Majority Voting strategy 

The biomedical field has extremely stringent requirements for the ac-

uracy and reliability of the results. To further improve robustness and

ccuracy, the chance error caused by a single detection picture should

e reduced and the characteristics of optical sensors should be com-

ined. In the actual curbside detection, for each detection strip inserted

nto the luminescence capture device, the device automatically captures

mages in a time series, and through the image preprocessing process,

he CL-and TL-excited fluorescence images are stitched into five pic-

ures to be detected according to the time series ( Fig. 1 ). These five

mages were then fed into the trained network. Eventually, if a category

eceives more than half of the votes, it is predicted to belong to that cat-

gory; otherwise, the prediction is rejected. Using this simple and effec-

ive judgment strategy, extremely accurate detection results can be ob-

ained within 20 s in a practical and complex test environment ( Fig. 1 h).

f continuous data (e.g., predicted concentration values between 1 and

0 ng/mL) need to be predicted, only the regression layer needs to be

ncluded at the end of the network to fit the regression model. 

. Results and discussion 

.1. Characterization of upconversion fluorescent probes 

The preparation flow of the upconversion fluorescent probe is shown

n Fig. 4 a. After preparation of upconversion fluorescent probes (Supple-

entary Methods. A, Supplementary Methods. B), we performed trans-

ission electron microscopy (TEM) ( Fig. 4 b and c), X-ray diffraction

XRD), and upconversion luminescence on the crystal structure of the

CNPs. The XRD (Fig. S2) and upconversion luminescence (UCL) spec-

rograms were obtained (Fig. S3). The particle size distribution (Ta-

le S1) and zeta potential of UCNPs@SiO 2 , UCNPs@SiO 2 -NH 2 , and

CNPs@SiO 2 -COOH were characterized using dynamic light scattering

DLS) (Fig. S4 and Table S2). Finally, we succeeded in preparing UCNPs

ith homogeneous size, good dispersion, and green fluorescence, and

odified their surfaces to obtain biocompatible upconversion fluores-

ent probes on this basis. 

.2. Design of a transfer-learning-based system for the quantitative 

etection of UCNP-LFAs 

The upconversion fluorescence detector consists of a 980 nm laser,

ustom guide, filter, CMOS camera, stepper motor, microcontroller unit,

I acceleration module, and USB interface ( Fig. 5 c). After inserting the

ateral flow chromatography strips into the custom guide, the stepper

otor drags the lateral flow chromatography strips at a constant speed

nd direction (Fig. S1). Simultaneously, the 980 nm laser emits near-

nfrared light through the lens to form a rectangular focal line of 3

m × 1 mm to excite the UCNPs captured on the TL and CL, which

esults in green fluorescence. After filtering out the impurity light, the

MOS camera captured a green fluorescent image. Following simple im-

ge pre-processing, the final concentration of the substance to be mea-

ured can be calculated using an AI model deployed in the device for

ransfer learning. Finally, the test results can be displayed on a screen or

ploaded to a smartphone via a communication interface such as Blue-

ooth/USB to create electronic medical documents. In this study, we

eveloped a smartphone application for use with this detection device

 Fig. 5 a). In conclusion, the entire system is less harmful to the environ-

ent and human body, simple to operate, and can be applied to home

esting. Stabbing reduces the burden on large numbers of people visiting

entral hospitals and improves the efficiency of scarce medical resource
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Fig. 4. (a) Schematic illustration of the synthesis process of UCNPs@SiO 2 labeled with MET/MOP-MAbs. TEM images of (b) NaYF 4 :Yb, Er@NaYF 4 (UCNPs) and (c) 

UCNPs@SiO 2 . It can be seen that the prepared UCNPs have a hexagonal phase structure with homogeneous size, which is consistent with the results obtained by 

XRD. Moreover, the prepared UCNPs did not show agglomeration, which indicates that the synthesized UCNPs have good dispersion. 

Table 2 

Accuracy of 8 AI models in 4 comparative experiments on different test datasets . 

Model Database ResNet50 ResNet101 VGG16 VGG19 GoogleNet MobileNetV2 AlexNet DenseNet201 

Using Transfer Learning MET 96.43% 92.86% 92.86% 96.43% 60.71% 85.71% 82.14% 100.00% 

MOP 94.44% 88.89% 100.00% 100.00% 86.11% 55.56% 75.00% 100.00% 

Using Transfer Learning 

(10% Gaussian noise) 

MET 96.43% 96.43% 96.43% 85.71% 64.29% 64.29% 71.43% 85.71% 

MOP 94.44% 86.11% 91.67% 94.44% 88.89% 75.00% 69.44% 83.33% 

Using Transfer Learning 

(20% Gaussian noise) 

MET 92.86% 82.14% 92.86% 92.86% 53.57% 57.14% 53.57% 75.00% 

MOP 88.89% 83.33% 88.89% 94.44% 77.78% 69.44% 52.78% 88.89% 

Using Transfer Learning 

(30% Gaussian noise) 

MET 82.14% 78.57% 89.29% 71.43% 53.57% 67.86% 57.14% 64.29% 

MOP 86.11% 80.56% 41.67% 86.11% 58.33% 61.11% 41.67% 80.56% 

No Transfer Learning MET 75.00% 82.14% 57.14% 53.57% 67.86% 75.00% 71.43% 78.57% 

MOP 77.78% 66.67% 58.33% 50.00% 72.22% 38.89% 63.89% 33.33% 
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.3. Experimental results using transfer learning 

As shown in Fig. 6 , the accuracy curves, loss curves, and test re-

ults during the training of 8 (ResNet50, ResNet101, VGG16, VGG19,

oogleNet, MobileNet V2, AlexNet, and DenseNet201) models based

n transfer learning on both MET/MOP datasets show a confusion ma-

rix. It can be seen from the figure that the accuracy rate of the train-

ng set gradually increases during the training process until it reaches

 high accuracy; the loss curve also decreases steadily, and the accu-

acy and recall rate of the confusion matrix is maintained at a high

evel. 

In the cross-sectional comparison of the performance of the eight

odels ( Table 2 ), the transfer-learning-based DenseNet201 network

chieved an impressive 100 % accuracy on both the MET and MOP test

atasets, which is certainly an encouraging result. The accuracy of the
549 
GG16 and VGG19 models was high in both datasets, especially in the

OP dataset, where the accuracy was 100 %. The accuracy was slightly

ower than that of DenseNet201, VGG16, and VGG19, but they all re-

ained high. At the same time, it can be seen that GoogleNet, MobileNet

2, and AlexNet are three lightweight models, which are not as good as

he other five models in terms of the general characterization ability ow-

ng to the network depth and parameter scale, and the small difference

etween the classifications in the dataset based on the up-transferred

uminescence, resulting in a prediction accuracy below 90 %. 

The above experimental results show that the accuracy of the quan-

itative detection results based on upconversion luminescence can be

ell resolved using our proposed transfer learning solution combined

ith AI models, even in very small training samples. This method is

lso applicable to the quantitative detection of other optical biosensors.

n addition, the classification results and prediction percentages for all
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Fig. 5. Actual development of a transfer learning-based quantitative detection system for UCNP-LFAs. (a) Mobile phone application matched with the device, 

which can control the self-test and operation of the device through communication with the device, and can display the detection results in real-time, (b) UCNP-LFAs 

quantitative detection device based on transfer learning, which is portable and highly accurate due to the introduction of transfer learning, and does not need to rely 

on computing units with high computing power, with data localization being able to solve data privacy problems, and (c) the actual internal structure of the assay 

instrument. 
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Table 3 

Comparison of the accuracy of the 3 traditional classification methods 

in the two test sets of MET/MOP respectively . 

Model Database SVM KNN Random Forest ∗ 

MET 53.57% 28.57% 32.14% 

MOP 55.56% 33.33% 30.56% 

∗ The number of random forests containing decision trees is 20. 
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est set images on both the MET/MOP datasets can be intuitively derived

rom this conclusion. (Figs. S5 and S6) 

.4. Experimental results without using transfer learning 

The purpose of this experiment is to further verify that transfer learn-

ng is the main factor for the substantial increase in accuracy, and we

ook eight classical models as examples ( Fig. 7 and Table 2 ). None of the

ight models was pre-trained in any dataset, and all parameters were ini-

ialized with random assignments. The results showed that the accuracy

f the training set of the models without transfer learning can only be

aintained at a low level. The loss curve decreases slowly, particularly

n VGG16 and VGG19, where the loss curve is almost horizontal dur-

ng the entire training process. The accuracy and recall of the confusion

atrix were low. 

In conclusion, AI models without transfer learning cannot solve the

ontradiction between the lack of training samples and striving for

ighly accurate results in the biomedical field under sample scarcity.

n addition, the classification results and prediction percentages for all

est set images on both MET/MOP datasets intuitively led to this con-

lusion. (Figs. S7 and S8) 

.5. Comparison with traditional classification algorithms 

Three traditional classification algorithms were selected: SVM

 59 , 60 ], KNN [61] and random forests [62] . The specific implemen-

ation scheme is as follows: A histogram of oriented gradient (HOG)

eatures is extracted for each image in the training set, and the ob-

ained HOG features are trained for multi-classification learning using

he three classification algorithms. In the prediction session, HOG fea-

ures were extracted from the predicted images and imported into the

orresponding algorithms to obtain the classification results. As shown

n Table 3 , the three traditional methods were separately applied to the

wo MET/MOP datasets. In the MET dataset, SVM performed the best

ith 53.57% accuracy, and in the MOP dataset, SVM still performed

he best with 55.56% accuracy, but compared poorly with the network

pplying transfer learning. 

In general, the three classical classification algorithms, SVM, KNN,

nd random forest, have low prediction accuracy (Figs. S9 and S10),

hich cannot solve the contradiction between the lack of training sam-

les and the high accuracy of results in the biomedical field. Second, the

hree classification algorithms could not cope with the noise interference
550 
enerated by the actual complex field detection environment; and the

xperiments revealed their high sensitivity to noise, serious overfitting,

nd weak generalization ability. 

.6. Noise addition experiments 

We further validated the robustness of transfer learning in realis-

ic and complex roadside detection environments ( Fig. 8 and Table 2 ).

e further validated this by adding 10%, 20%, and 30% Gaussian

oises to the training and test sets in the three controlled experiments

real extreme environments with noise levels close to 10%). The re-

ults are presented in Table 2 . At noise levels close to approximately

0%, most of the models showed a slight decrease in accuracy, which is

n line with the expectations. Among them, the ResNet50, ResNet101,

nd VGG16 models performed well with 96.43% accuracy in the MET

ataset; ResNet50 and VGG19 performed best with 94.44% accuracy in

he MOP dataset. At noise levels of 20% and 30%, all models exhibited

 decrease in accuracy with increasing noise. 

In conclusion, the results show that the transfer-learning-based

odel has a strong generalization ability and stability. Validating the lit-

rature, it was concluded [63] that models need larger parameter sizes

o achieve higher accuracy when noise is present in the dataset. Specif-

cally, models with larger parameter sizes, such as VGG16 and VGG19,

ad a stronger tolerance to environmental noise. 

.7. Training time comparison experiment 

In the field of POCT, the use of a fast detection method with portable

nd stable equipment is important for detection. One of the difficulties

n the medical field is the lack of access to sufficient valid medical data.

s shown in Table 4 , because transfer learning freezes most of the net-

ork layer parameters, these parameters do not need to be trained again,
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Fig. 6. Experimental results of transfer learning for the 8 transfer-learning-based models on 2 small sample datasets of MET/MOP. (a) and (b) show the 

changes in the accuracy rate, change in the loss function and confusion matrix of the test results during training of the MET dataset and MOP dataset, respectively. 

551 
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Fig. 7. Experimental results of transfer learning for the 8 unused transfer learning models for 2 small sample datasets of MET/MOP. (a) and (b) show the 

changes in the accuracy rate and loss function, and the confusion matrix of test results during training of the MET dataset and MOP dataset. 
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Fig. 8. Various image data for the small dataset constructed after adding 10%, 20% and 30% Gaussian noises, respectively . 
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nd their training time is greatly reduced. This also makes it possible to

rain the model using ordinary equipment, which will greatly reduce

he threshold of combining AI with fast detection equipment. This "cliff-

ike" decrease in the training time is particularly evident in VGG16 and

GG19, with a maximum reduction of about 22 times. The experiments

how that the introduction of transfer learning is a good solution for

he conflict between large amounts of data and low computational cost,

llowing for local miniaturization of the detection instrument with high

ccuracy while also addressing medical data privacy issues due to the

ocal deployment of model inference. 

.8. Model evaluation standards 

Model selection is of utmost importance for practical deployment.

deally, models that have undergone transfer learning have extremely
553 
igh prediction accuracy, strong noise tolerance, and fast inference data.

owever, a real situation often requires a careful trade-off between ac-

uracy, stability, and portability, and this compromise depends on the

ctual application detection scenario and needs. The following conclu-

ions were obtained from the analysis of the convergence speed, accu-

acy, and loss value changes during training ( Fig. 6 ); the relationship

etween the three important characteristics of the model accuracy, pa-

ameter size, and training speed ( Fig. 9 ); the relationship between dif-

erent environmental noises and accuracy ( Table 2 ); and different model

raining times ( Table 4 ). 

(1) In upconversion luminescence quantitative detection, the model

epth is positively correlated with accuracy and negatively correlated

ith environmental noise tolerance. It is positively correlated with

he training speed (the deeper the model, the slower the training

peed). 
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Table 4 

Comparison of the training time for the AI models with and without 

transfer learning . 

Database Model 

Training time 

(Transfer Learning) 

Training time 

(without using 

Transfer Learning) 

MET ResNet50 30 min 119 min 

ResNet101 158 min 237 min 

VGG16 26 min 492 min 

VGG19 40 min 524 min 

GoogleNet 32 min 57 min 

MobileNetV2 107 min 145 min 

AlexNet 10 min 42 min 

DenseNet201 209 min 534 min 

MOP ResNet50 19 min 77 min 

ResNet101 47 min 157 min 

VGG16 14 min 305 min 

VGG19 16 min 326 min 

GoogleNet 13 min 25 min 

MobileNetV2 41 min 52 min 

AlexNet 3 min 15 min 

DenseNet201 135 min 283 min 
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Fig. 9. The comparison of the accuracy, training time and parameter size 

of the 8 AI models in MET detection. The bubble size in the figure is propor- 

tional to the parameter size. Note: The plot above only shows an indication of 

the relative speeds of the different models. The exact prediction and training 

iteration times depend on the hardware and mini-batch size that you use. 
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(2) In upconversion luminescence quantification, the parameter size

s positively correlated with the accuracy, ambient noise tolerance, and

onvergence speed (faster to reach a high accuracy). 

Because the eight AI models cover various architectures of the cur-

ent deep learning models, the above conclusions are universal. Finally,

GG19 was selected as the "best model" for the final deployment in IoT

evices owing to its balanced performance in terms of accuracy, envi-

onmental noise tolerance, and convergence speed. 

.9. Stability and performance 

The stability of the proposed system was verified. In the experimen-

al evaluation phase, we performed six replicate experiments (Rounds
ig. 10. The stability of the proposed system. Note: The results are obtained in

earning. 

554 
-6 in Fig. 10 ) with four groups of MET solutions of different concentra-

ions (1, 2.5, 10, and 20 ng/mL). According to the implementation flow

 Fig. 1 ), each time the same test strip was inserted into the system, the

ystem obtained the test results and predicted probabilities (represent-

ng the confidence of the results) for each of the five test images within

0 s. The final test results were obtained using a majority-voting strat-

gy. The results showed that correct results were obtained for the final

ssay of concentrations in all four groups in these six replicated experi-

ents ( Fig. 10 ). Although there were incorrect predictions in rounds 3

nd 4, the majority voting strategy ensured the absolute accuracy of the

redicted results. It can also be observed that the incorrect prediction

esults have a low prediction probability, which means that the model

s less confident in providing the prediction results. This phenomenon

lso illustrates the stability of the AI model after transfer learning. In

eneral, these instabilities were acceptable. 
 MET detection with devices deployed using the VGG19 model after transfer 
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Table 5 

Comparison between other methods and the proposed technique . 

Methods Detection target Limit of detection Detection range 

Detection time 

(min) 

UCNP-LFAs (This work) MET and MOP 1 ng/mL for MET;0.1 ng/mL for MOP 1-20 ng/mL for MET;0.1-100 ng/mL for MOP 0.33 

UCNP-LFAs [18] MET and MOP 10 ng/mL for MET;5 ng/mL for MOP 10-250 ng/mL for MET;5-100 ng/mL for MOP 2 ∼15 

UCNP-LFAs [38] MOP 0.1 ng/mL 0.1-10 ng/mL 0.5 

LFAs [64] MOP 1 ng/mL 1-100 ng/mL 5 ∼20 

High-Performance Liquid Chromatography (HPLC) [65] MET 1.7 ng/mL 10 ∼1000 ng/mL A few Seconds 

Gas Chromatography-Mass Spectrometry (GC-MS) [66] MET 0.09 ng/mL 0.09 ∼0.81 ng/mL 12.7 

LC-MS [67] MET 0.2 ng/mL 4 ∼20 ng/mL 20 

Capillary Electrophoresis (CE) [68] MET 0.5 ng/mL 0.5 ∼50000 ng/mL 15 

Quantum dot-based [69] MET 6 ng/mL - 1 ∼3 
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Finally, the system has advantages in terms of detection sensitivity

nd detection time in comparison with reported related detection tech-

iques ( Table 5 ). 

. Conclusion 

In this study, we report for the first time a novel transfer-learning-

ased full-flow system for the quantitative detection of UCNP-LFAs.

mong them, the introduction of transfer learning into optical biosen-

ors resolves the irreconcilable contradiction between the biomedical

eld and traditional machine learning, which requires a large amount

f labeled data and substantial computational cost, making model train-

ng possible for common devices, which will strongly clarify the signif-

cant obstacle of combining AI with POCT neighborhoods. It provides

xtremely simple pre-processing, higher accuracy, and greater noise tol-

rance without increasing the complexity of the existing systems. More-

ver, we propose a suitable feature engineering and decision strategy

ased on an actual quantitative fluorescence detection application sce-

ario. Finally, using a large amount of experimental data, we demon-

trate that a quantitative detection AI model with high accuracy can be

uilt using transfer learning with only a small dataset. Most importantly,

e developed a portable and highly accurate commercial platform based

n transfer learning and quantitative detection of UCNP-LFAs. We be-

ieve that introducing transfer learning into quantitative upconversion

uorescence detection will make transfer learning widely applicable to

pconversion fluorescence measurement studies and imaging analysis,

nd even expand into a general detection method for optical biosensors

n the future. 
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