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a b s t r a c t 

Small non-coding RNAs (sncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs), PIWI- 

interacting RNAs (piRNAs), and transfer RNA (tRNA)-derived small RNAs (tsRNAs), play essential roles in reg- 

ulating various cellular and developmental processes. Over the past three decades, researchers have identified 

novel sncRNA species from various organisms. These molecules demonstrate dynamic expression and diverse 

functions, and they are subject to intricate regulation through RNA modifications in both healthy and diseased 

states. Notably, certain sncRNAs in gametes, particularly sperm, respond to environmental stimuli and facilitate 

epigenetic inheritance. Collectively, the in-depth understanding of sncRNA functions and mechanisms has ac- 

celerated the development of small RNA-based therapeutics. In this review, we present the recent advances in 

the field, including new sncRNA species and the regulatory influences of RNA modifications. We also discuss the 

current limitations and challenges associated with using small RNAs as either biomarkers or therapeutic drugs. 
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. Introduction 

Small non-coding RNAs (sncRNAs) refer to non-coding RNAs (ncR-

As) less than 200-nucleotide (nt) and were first discovered in C. elegans

early three decades ago [ 1 , 2 ]. Since then, the kingdom of sncRNAs

as rapidly expanded with increasing numbers of novel species iden-

ified in various organisms. SncRNAs are broadly classified into two

ategories: the housekeeping ones, including small nuclear RNAs (snR-

As) and small nucleolar RNAs (snoRNAs) [3] , and the regulatory ones,

ncluding microRNAs (miRNAs), small interfering RNAs (siRNAs) and

IWI-interacting RNAs (piRNAs). Such regulatory sncRNAs are known

o play critical roles in gene expression at post-transcriptional, trans-

ational, and epigenetic levels. Recent advances in next-generation se-

uencing technologies have identified new sncRNA species derived from

ther RNA molecules, such as transfer RNAs (tRNAs) [ 4 , 5 ] and riboso-

al RNAs (rRNAs) [6] . While the functions of such sncRNAs require

urther elucidation, their involvement in specific biological processes

as been suggested. Additionally, studies have demonstrated that RNA

odifications play an important role in the biogenesis and functionality

f sncRNAs, thus shaping their regulatory roles. These findings increase

he potential of sncRNAs in the diagnosis, prognosis, and therapeutics

or human diseases. In this review, we summarize the recent advances

nd breakthroughs within the field, including novel sncRNA species and

he regulatory roles of RNA modifications to the biogenesis and func-
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ionality of sncRNAs. Moreover, we discuss the potential applications of

ncRNAs in clinical practice ( Fig. 1 ). 

. Sequential and functional diversity of sncRNAs 

The most intensely researched classes of endogenous sncRNAs are

iRNAs, endogenous small interfering RNAs (endo-siRNAs), and piR-

As. The mechanisms that distinguish these three classes from one an-

ther are primarily based on the differences in their biogenesis and

rotein partners. To create miRNAs, RNase III enzymes Drosha and

icer cleave hairpin-shaped precursors whereas endo-siRNAs are gen-

rated from double-stranded RNA (dsRNA) through Dicer [ 7 , 8 ]. On the

ther hand, the precursors of piRNAs are single-stranded. Their produc-

ion is independent of Drosha and Dicer [ 9 , 10 ]. miRNAs ( ∼22-nt) and

ndo-siRNAs ( ∼21-nt) form complexes with AGO-family proteins such

s AGO2, which mediate post-transcriptional regulation by inducing

NA cleavage [11] and translation repression [ 8 , 12 ]. piRNAs (24–32-

t), as their name indicates, are mainly associated with PIWI proteins,

 germline-specific AGO subfamily. piRNAs primarily repress transpos-

ble elements (TE) at both post-transcriptional and epigenetic levels

13] . Furthermore, piRNAs also repress protein-coding genes in ani-

al germlines via siRNA and miRNA-like mechanisms [14–16] . Newly

merging roles and functional mechanisms of these well-researched

ncRNAs are still continually discovered. For instance, recent studies
) . 
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Fig. 1. Schematic diagram summarizing the regulatory roles of sncRNAs, modifications and delivery approaches for RNA therapeutics. sncRNAs are key 

regulators for various biological processes, which function to regulate gene expression at transcriptional, post-transcriptional, and translational levels. Multiple 

sncRNA species have been identified with advanced detection and annotation methods, among which many are carried with various types of chemical modifications, 

adding another layer of complexity to the sncRNA kingdom. sncRNAs have strong potentials in therapeutics, and a few sncRNA-based therapeutics have been approved 

by FDA since 2018. 
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ighlight that piRNAs and PIWI proteins promote the activation of trans-

ation in mice and flies, and the underlying molecular mechanisms are

emarkably conserved between the two species. In mouse spermatids

nd fly embryos, PIWI proteins interact with translation initiation factor

 (eIF3) subunits and other RNA-binding proteins, forming a translation-

ctivating complex [ 17 , 18 ]. In mouse spermatids, the selectivity of this

omplex depends on a specific base pairing between piRNAs and the 3 ′

TR of their target mRNAs [17] . Additionally, a new class of piRNAs

as recently identified in human, monkey, and hamster oocytes, which

re associated with rodent-lacking PIWIL3 and termed oocyte short piR-

As (os-piRNAs) [19–21] . 

In addition to the increasing understanding of well-known sncRNA

pecies, the sncRNA realm is expanding owing to advanced detection

nd annotation methods. NGS (Next-Generation Sequencing) is prob-

bly the most widely used method for the detection and annotation

f sncRNAs. Many sncRNA species that were initially overlooked dur-

ng earlier NGS data analysis are mappable to longer and often struc-

ured RNA species [22] . Apart from tsRNAs and rsRNAs, fragments orig-

nating from yRNAs (a class of soluble ribonucleoproteins (Ro RNPS)-

ssociated non-coding RNAs. The “y ” prefix is used to emphasize their

rimarily cytoplasmic localization and to distinguish them from nuclear-

ocalized snRNAs such as U6) [23–25] , vault RNAs (vtRNAs) [26] , snR-

As [27] , snoRNAs [ 28 , 29 ], long non-coding RNAs (lncRNAs) [30] ,

nd mRNAs [ 31 , 32 ] have also been recently reported. Although most

mall RNA sequencing approaches aimed to profile well-studied sncR-

As (such as miRNAs), improvements in library preparation, in par-
677 
icular removal of RNA modifications interfering with adaptor ligation

nd/or reverse transcription (RT), have paved the way for new advance-

ents in the sncRNA landscape [33] . One example is the recently devel-

ped panoramic RNA display by overcoming RNA modification aborted

equencing (PANDORA-seq) [34] which utilizes a combination of en-

ymes to remove RNA methylation and 3 ′ -phosphate (3 ′ -P) of sncRNAs.

ioinformatics analysis is an integral part of small RNA sequencing. It is

o surprise that newly built specialized computer tools and pipelines

ave improved the speed and achieved better identification and an-

otation of different types of sncRNAs, in particular the non-canonical

nes [ 35 , 36 ]. Nevertheless, accurately quantifying and comparing those

ovel sncRNAs between various conditions, as well as identifying them

n low-input scenarios like early embryos or extracellular biofluids, re-

ain significant challenges. 

Comprehending the functions of sncRNAs necessitates understand-

ng their biogenesis, tissue abundance, and biological importance. A

ortion of sncRNAs is derived from tRNAs and rRNAs, demonstrating

hat tsRNAs and rsRNAs could be functional sncRNAs [37–40] . Recent

tudies have likewise shown tsRNAs and rsRNAs are abundant in multi-

le tissues [34] , implying their biological significance. The cleavage of

ature tRNAs or tRNA precursors can occur on several sites, contribut-

ng to the generation of diverse tsRNAs. Both the tRNA structure and the

NA modifications on them, such as DNMT2 and NSUN2-mediated 5-

ethylcytosine (m5C) modification [41–46] , contribute to tRNA cleav-

ge site preference. Similar to tsRNAs, the biogenesis of rsRNAs is also

nder strict regulation. Various preferred cleavage sites in rRNAs are
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ften observed, depending on the rRNA types. Hence, different rRNAs

an generate rsRNAs with favored lengths, leading to highly context-

pecific profiles of rsRNAs [47–49] . In particular, the tsRNA and rsRNA

opulation in mammalian sperm has become a leading topic in the field

 50 , 51 ]. In 2016, two separate groups found that the 30–40 nt small

NA population in mature sperm, primarily composed of tsRNAs and

sRNAs, was sensitive to environmental stimuli. More importantly, these

ncRNAs could be carried into oocytes during fertilization and presum-

bly play a part in the intergenerational inheritance of acquired traits

 34 , 52 , 53 ]. The majority of tsRNAs in mammalian sperm is derived

rom 5 ′ half of mature tRNAs, termed 5 ′ -tRNA halves (5 ′ tRNAF or 5 ′

RFl) [54] . On the other hand, the majority of rsRNAs are derived from

8S rRNA [51] . Subsequent studies using different lifestyle models, as

ell as environmental stress and toxicants, have further validated the

nvolvement of sperm-borne tsRNAs in epigenetic inheritance [ 53 , 55-

9 ]. Despite the proposal that epididymis and epididymosomes might

e potential sources [60] , the biogenesis of sperm-borne sncRNAs re-

ains a myth. tsRNAs have a varied range of functions, including Arg-

naute (Ago) family-dependent gene silencing [61–63] , translational in-

ibition [64–66] , and retrotransposon repression [67] . A recent study

urther indicates some 5 ′ -tRNA halves are vital for early embryonic de-

elopment in zebrafish, where they may enhance tRNA transcription

y forming stable, transcriptionally inhibitory hybrids with the tem-

late strand of DNA, competing with existing tRNA [68] . This suggests

hat RNA-derived fragments may function by mimicking their precur-

ors based on the sequence and structure similarity [ 67 , 69 ]. Although

sRNAs [70] and rsRNAs [47] are now thoroughly profiled, the molec-

lar mechanisms underlying their roles in different biological processes

emain largely unknown, including epigenetic inheritance. Moreover,

nowledge about additional types of RNA-derived fragments, such as

nRNA- and snoRNA-derived sncRNAs, is limited. Some of these RNA-

erived fragments were mistakenly identified as miRNAs [71] or piRNAs

72] , but their unique biogenesis, cellular abundance, and functionality

emain unknown. Although intriguing, it will be a challenge to com-

rehensively capture those sncRNAs in various biological situations and

ecipher their complex information in future studies [33] . 

. RNA modifications and structures: the additional layers of 

omplexity in the sncRNA kingdom 

The complexity of the sncRNA field isn’t solely due to diversity in se-

uence and genomic sources. Various factors have been discovered over

he past decade, influencing sncRNA functionality. Among these fac-

ors, several well-characterized RNA modifications can regulate sncRNA

unction (Table S1), particularly in mammalian germ cell development

nd epigenetic inheritance. 

To date, more than 150 chemical modifications, termed ‘epitran-

criptomics’, have been identified in different RNA species including

ncRNAs [73] . Advances in NGS methods for detecting RNA modifi-

ations demonstrate that RNA modifications play key roles in RNA

etabolism and functions. Alterations in RNA modifications may lead to

bnormalities in biological processes and cause diseases such as cancers

 74 , 75 ]. In particular, sncRNAs and their precursors have multiple mod-

fications, such as N6-methyladenosine (m6A), 5-methylcytosine (m5C),

DAR-mediated adenosine-to-inosine (A-to-I) editing, non-templated

ridine addition and pseudouridylation ( Ψ). The m6A may enhance the

ecognition and processing of primary miRNAs (pri-miRNAs) by DGCR8,

romoting the maturation of miRNAs [ 76 , 77 ]. Conversely, miRNAs may

ffect m6A abundance on mRNAs by modulating the activity of METTL3,

n m6A writer [78] . A-to-I editing, the most studied RNA editing form,

roduces an RNA sequence different from its template DNA. A-to-I edit-

ng is catalyzed by the Adenosine deaminase (AD) domain-containing

roteins ADAR1 and ADAR2 in humans (ADAR and ADARB1 in mice)

79] . ADAR-mediated A-to-I editing is quite prevalent in miRNAs and

heir precursors [80] and is known to affect miRNA processing [ 81 , 82 ]

s well as miRNA-mRNA interaction [ 83 , 84 ]. However, A-to-I editing,
678 
lthough essential for multiple biological events including embryonic

evelopment [82] , appears to be dispensable for mammalian male fer-

ility [85] . Non-templated addition of nucleotides (NTA), mainly con-

isting of 3 ′ mono- and poly-adenylation or uridylation, is generated by

erminal nucleotidyltransferases (TENTs). NTA occurs on multiple RNA

pecies, including miRNAs and snoRNAs [86] , and is involved in the

egulation of miRNA processing [87–89] , interaction with target mR-

As [90] , and stability [ 91 , 92 ]. Importantly, NTA is essential for miRNA

unctionality during various processes such as embryonic development

 93 , 94 ]. In mouse male germ cells, the loss of TUT4 and TUT7, which

re the primary uridylyl transferases, resulted in a significant loss of

 ′ uridylation of piRNAs [95] . During spermatogenesis, 3 ′ uridylation,

ith mono-uridylation as a major form, enhances the targeting efficacy

f piRNAs bound to MIWI [96] . Intriguingly, 3 ′ uridylation appears to

ompete with the signature 2 ′ - O -methylation modification at the 3 ′ end

f piRNAs. Hen1 (Henmt1 in mammals) deposits 2 ′ - O -methylation on

he 3 ′ terminal of piRNAs [97–101] . Loss of 2 ′ - O -methylation is often

inked with increased 3 ′ uridylation and enhanced degradation [102–

05] . However, mono-uridylation of MIWI-bound piRNAs can co-exist

ith 2 ′ - O -methylation [96] , which suggests that HENMT1 may com-

ete with TUT4/7, leading to most mono-uridylated piRNAs immedi-

tely methylated by HENMT1 to prevent further extension of the 3 ′

ailing. tRNAs and tsRNAs might be the sncRNA species that are most

eavily decorated with RNA modifications. Up to 39 types of modifica-

ions have been identified in human tRNAs and 50 tRNA modification

nzymes have been deposited in MODOMICS [ 73 , 106 , 107 ]. These modi-

cations provide a regulatory mechanism for tRNA functions and stabil-

ty, including tRNA cleavage or generation of tsRNAs. For example, m5C

odification, catalyzed by DNMT2 or NSUN2, promotes tRNA stability

y inhibiting the binding of endonuclease angiogenin (ANG), thereby

rotecting the tRNAs from being cleaved into tsRNAs [ 44 , 45 ]. Loss of

NMT2 leads to dysregulation of tsRNAs and rsRNAs in spermatozoa,

nd in turn, impairs the transmission of diet-induced metabolic dis-

rders [44] . N1-methyladenine (m1A), N3-methylcytidine (m3C), and

1-methylguanine (m1G) modifications on tRNAs have similar ANG-

nhibiting roles and thus repress the generation of tsRNA [108–111] .

ET2, which converts the m5C on tRNAs to 5-hydroxymethylcytosine

hm5C), enhances the generation of 5 ′ tRFs (i.e. tRFs containing the

 ′ sequence of tRNAs) but surprisingly also represses the generation of

ome 3 ′ tRFs (i.e. tRFs containing the 3 ′ sequence of tRNAs). tsRNAs

enerated from modified tRNAs can inherit those chemical modifica-

ions, although it remains elusive whether certain tsRNAs might also be

argets of some tRNA modifiers. Multiple RNA modifications, such as

5C, N2-methylguanosine (m2G), m6A, and pseudouridylation, have

een detected in tsRNAs in different biological samples, including ma-

ure sperm in mammals [44] . Pseudouridylation at position 8 ( Ψ8) of

RFs, potentially mediated by Pseudouridine synthase 7 (PUS7) and ad-

itional factors [112] , was shown to repress translation initiation by

equestering polyadenylate-binding protein 1 (PABPC1), a key transla-

ion factor [66] . This suggests that the chemical modifications in tsRNAs

ay have unique biological relevance beyond being inherited remnants

rom tRNAs. 

. The clinical application of small RNAs in human diseases 

.1. sncRNAs as biomarkers in diagnosis and prognosis 

sncRNAs have great potential to be novel biomarkers for various

iseases, including cancers [113] , neurological [ 114 , 115 ], metabolic

116] , cardiovascular [117] , reproductive [ 118 , 119 ], and infectious dis-

ases [ 120 , 121 ]. sncRNAs in biological fluids, which are often encapsu-

ated in exosomes or bound with carrier proteins [122–124] , can be

table and abundant enough for use as clinical biomarkers. Clinical us-

ge of these extracellular sncRNAs is an especially appealing concept

n liquid biopsy. Studies have profiled the sncRNA population in tissues

nd biological fluids (such as blood and seminal plasma) and identified
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articular sets of sncRNAs of which the abundance is strongly corre-

ated with diagnosis, prognosis, and treatment in human diseases. While

urrent studies primarily focus on miRNAs in liquid biopsy as biomark-

rs, as technology improves, other sncRNA species may become appli-

able as biomarkers in clinics. For example, multiple piRNAs have been

uggested as diagnostic or prognosis biomarkers in cancers [125] . The

uality of in vitro cultured embryos may also be significantly associ-

ted with a panel of miRNAs, tsRNAs, and rsRNAs in sperm. Thus, this

pecific set of sncRNAs in sperm may be considered biomarkers for suc-

essful in vitro fertilization (IVF) [126] . Furthermore, sncRNAs, includ-

ng miRNAs and piRNAs, have also been detected in the used culture

edia of IVF embryos, indicating that in vitro cultured embryos secret

ncRNAs-containing extracellular vesicles [127] . As a result, the pan-

ls of sncRNAs from the spent culture media may have an indicative

otential for embryo quality, such as ploidy and pregnancy outcomes

128–134] . 

The major challenge in clinical usage is that technical differences

n sample handling procedures (e.g. contaminations and degradation)

nd detection methods (e.g. qRT-PCR, microarray, or NGS) [135] can

eadily affect the sncRNA profile. Therefore, the sncRNA signatures re-

orted by different studies tend to be quite different and even contra-

ictory. Cross-validation is crucial to determine the clinical utility of

ncRNA signatures, and standardization of handling and detection pro-

edures is much needed. Once cross-validated, these sncRNA signatures

an be effective molecular targets for early diagnosis and effective treat-

ent. In addition, the sncRNA profiles of spermatozoa, which are sensi-

ive to environmental disturbances such as cigarettes [ 136 , 137 ], alcohol

 138 , 139 ], endocrine disruptors [ 140 , 141 ], and air pollution [142] , can

eflect parental exposures. Furthermore, the sncRNA profiles of seminal

lasma and follicular fluid may respond to parental exposures. Although

ot affecting sperm morphology, the sperm RNA code may still transmit

dverse information to the next generations in response to environmen-

al exposures. Therefore, the sncRNA profiles of sperm, seminal plasma,

nd follicular fluid may have the potential to serve as indicators for

ertain exposures in parents, which would be highly valuable in under-

tanding disease predisposition in the Developmental Origins of Health

nd Disease (DOHaD) field. 

.2. Small RNA-based therapeutics 

There have been significant advancements in the field indicating that

ncRNAs have strong therapeutic potential. RNA-based therapy is an

ctive and promising area of pharmaceutical development, which ex-

ands the range of druggable targets from disease-causing proteins to

NAs. Currently, there are 11 RNA-based therapeutics that have been

pproved by the FDA and/or the European Medicines Agency (EMA),

nd a few more are in late-stage clinical development (beyond phase

I trial) [143–145] . Among the approved RNA-based drugs, 4 are dou-

le ‐stranded siRNA that exploit the endogenous RNAi pathway to si-

ence target genes. The first RNAi drug that was approved by the FDA

as Patisiran (Onpattro) [ 146 , 147 ], which was followed by Givosiran in

019 [148] , Lumasiran in 2020 [149] and Inclisiran in 2021 [150] (Ta-

le S2). These approvals marked the beginning of a new generation of

NA therapeutics. 

Compared to small molecule drugs, The hydrophilic nature and

arger size of unmodified RNAs make it difficult for them to efficiently

ove across cell membranes. In addition, naked RNAs are prone to

egradation by RNases and unlikely delivered into specific tissues.

herefore, designing RNA-based drugs must consider key properties

ike A bsorption, D istribution, M etabolism, E xcretion, and T oxicity (AD-

ET), similar to other fields of pharmaceutical development. To im-

rove the ADMET properties, a variety of delivery approaches have

een developed for RNA-based drugs [ 143 , 151 , 152 ]. Patisiran, which

s administrated intravenously, is encapsulated in a lipid nanoparticle

LNP) that protects the siRNA during plasma circulation. The LNP ab-

orbs apolipoprotein E (ApoE), the ligand of low-density lipoprotein re-
679 
eptor (LDLR), which leads to a selective accumulation of patisiran in

epatocytes that express a high level of LDLR [ 153 , 154 ]. The other three

NAi drugs adopt alternative delivery approaches. Instead of being in-

orporated into nanoparticulate carriers, the therapeutic siRNA is di-

ectly conjugated to trimeric N ‐acetyl galactosamine (GalNAc) which is

 tissue-targeting ligand that binds to asialoglycoprotein receptor (AS-

PR) primarily expressed on hepatocytes, allowing effective and specific

ransport of the drug into the liver [ 148-150 , 155 ]. 

Aside from siRNAs, microRNA-based drugs, including microRNA

imics and antagomiR (i.e. microRNA inhibitors), show promise as ther-

peutic agents [ 144 , 156 , 157 ]. While no miRNA-based candidate drug

as been approved by the FDA, a handful have reached phase II clinical

rials (Table S2). As one miRNA can target multiple mRNAs often in-

olved in one pathway, miRNA-based therapeutics, compared to siRNA-

ased therapeutics, may elicit a broader therapeutic effect. In contrast

o gene silencers such as siRNAs and microRNAs, small activating RNAs

saRNAs) are double-stranded RNAs that activate target genes, making

hem a valuable addition to RNA therapeutics [ 158 , 159 ]. The first and

urrently the only saRNA drug entering clinical trials is MTL-CEBPA

hich upregulates C/EBP- 𝛼, a master transcriptional factor that regu-

ates hepatic and myeloid functions. MTL-CEBPA is being developed to

reat advanced hepatocellular carcinoma (HCC). [ 160 , 161 ]. 

. Conclusion and future perspective 

Over the past decades, studies have largely expanded our knowledge

f the sncRNA kingdom, revealing the diversity of sncRNA classes, the

omplexity of their regulation, and the abundance of their functions.

et, it is very likely that our current knowledge represents just the tip

f the iceberg. Among the newer classes of sncRNAs, only tsRNAs ap-

ear to be actively being studied, and our understanding of these novel

ncRNAs is still in its early stages, with little known about their biogene-

is, cellular abundance, or context-dependent biological relevance. More

mportantly, while the characterization of identified sncRNA species

ay begin soon, another pressing question remains: whether there are

ore sncRNA species to be discovered. Multiple NGS methods and bioin-

ormatic tools have been developed for the discovery of sncRNAs, yet

rofiling and quantification remain particularly challenging for sncRNA

pecies that are structured, heavily modified, and/or highly conserved

n sequences, such as tRNAs and tsRNAs. As the profiling of sncRNAs

sing NGS methods can be enormously interfered with by RNA modi-

cations, mapping of RNA modifications and uncovering new sncRNA

lasses are also challenges. Some base-resolution NGS methods, as well

s accompanied bioinformatics analyses, have been developed for a few

revalent RNA modifications, such as m6A, m5C, and pseudouridylation

 33 , 162 ], but most appear to only profile one modification at one time.

ultiple modifications may co-exist on one sncRNA molecule. There-

ore, it is tempting to speculate that crosstalk exists between different

odifications, and combinations of modifications may elicit a more pro-

ound effect compared to individual ones. This awaits the development

f new approaches that can simultaneously profile multiple RNA modifi-

ations. To explore the sncRNA kingdom further, combining NGS meth-

ds with mass spectrometry, such as MS ladder complementation se-

uencing (MLC-seq) [163] , as well as direct sequencing, may provide

lternative solutions [ 33 , 164 ]. Additionally, profiling of novel sncRNAs

nd their modifications in rare samples, such as preimplantation em-

ryos, remains mostly unachievable, presenting obstacles to further un-

erstanding in areas such as epigenetic inheritance. 

Despite the tremendous breakthrough achieved in the clinical ap-

lications of small RNAs in the past decade, the field still faces major

hallenges when it comes to specificity, delivery, and tolerability, all of

hich need to be seriously considered during the design of RNA-based

herapeutics [144] . Though challenging, with continued advancements

n technology and our understanding of the sncRNA kingdom, small

NA-based therapeutics will no doubt have the potential to revolution-

ze the treatment modality for a wide spectrum of untreatable diseases.
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It is important to note that this review only covers a few aspects of the

ast and thriving sncRNA field. There are many other active directions in

ncRNA research, such as sncRNA-protein interaction [ 165 , 166 ], coun-

eracting or synergistic effects among sncRNAs and other RNA species

167] , transport of sncRNAs within or across cells, i.e., the subcellu-

ar compartmentalization [168] and extracellular existence of sncRNAs

 123 , 124 , 169 ], all of which are integral to our current exploration of

his intriguing field. Collectively, we strongly believe that research in the

ncRNA field will continue to be active and future studies will increase

ur understanding of sncRNAs, as well as their pioneering applications.
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