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a b s t r a c t 

Kidney disease is a leading cause of death worldwide. Currently, the diagnosis of kidney diseases and the grading 
of their severity are mainly based on clinical features, which do not reveal the underlying molecular pathways. 
More recent surge of ∼omics studies has greatly catalyzed disease research. The advent of artificial intelligence 
(AI) has opened the avenue for the efficient integration and interpretation of big datasets for discovering clinically 
actionable knowledge. This review discusses how AI and multi-omics can be applied and integrated, to offer 
opportunities to develop novel diagnostic and therapeutic means in kidney diseases. The combination of new 

technology and novel analysis pipelines can lead to breakthroughs in expanding our understanding of disease 
pathogenesis, shedding new light on biomarkers and disease classification, as well as providing possibilities of 
precise treatment. 
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. Introduction 

Kidney diseases (KDs), including acute kidney injury (AKI), acute
idney disease (AKD), and chronic kidney disease (CKD), are major
ealth problems globally. KDs have high rates of death and morbid-
ty, and induce significant economic losses. It has been estimated that
lobally, around 850 million people are suffering from KDs of different
auses. By 2040, CKD will increase from the 16 th to the 5 th ranked lead-
ng cause of death around the world, which is one of the largest projected
ncreases of any major cause of death [1–3] . KDs are especially challeng-
ng to diagnosis and treatment, because they have diverse pathophys-
ologies and are always asymptomatic. When KD is not detected and
reated promptly, medical care requires specialized resources and im-
oses high costs for both patients and medical systems [4] . In the USA,
edicare costs for CKD and end stage kidney disease (ESKD) were over
114 billion in 2016. In China, from the 2016 Annual Data Report of
hina Kidney Disease Network (CK-NET), the total medical expenditure
n patients with CKD was about $4 billion USD, accounting for 6.50%
f the overall Chinese medical expenditure [5] . Worldwide, it was re-
orted that the median cost to treat a patient with CKD was significantly
igher than that to treat a patient without CKD. 
∗ Corresponding author. 
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Currently, the diagnosis of KDs and the grading of their severity are
ased on clinical features, such as measurement of markers (e.g., creati-
ine), proteinuria, imaging examination, such as ultrasound, and biopsy
ndings. However, this approach does not always reveal the underlying
olecular pathways, because different diseases might have similar phe-
otypes, symptoms, clinical parameters, or renal biopsy findings. In ad-
ition, patients with the same diagnosis might show high heterogene-
ty in terms of disease progression and response to the same regimen.
hus, the current classification systems remain unsatisfactory, which
ampers our ability to predict long-term prognosis and apply targeted
herapies. Unsurprisingly, there is a dearth of positive findings in clinical
rials regarding kidney diseases. 

However, there has been a surge of ∼omics studies in the past decade,
enerating large amounts of genetic, transcriptomic, proteomic, and
etabolomic data. Such studies have greatly expanded our understand-

ng of disease pathogenesis, shedding new light on biomarkers and dis-
ase classification, as well as providing possibilities for precise treat-
ent ( Fig. 1 ) [6–9] . In the age of ∼omics, blood, urine, and kidney

iopsy samples can be taken to generate transcriptomic, proteomic, and
etabolomic datasets; and digital images can be taken to produce high-
imensional, descriptive, and quantitative data for computer analysis.
Ai Communications Co. Ltd. This is an open access article under the CC 
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Fig. 1. Omics studies have contributed greatly to the diagnosis, phenotyping, therapy, and prognosis of kidney disease in the past ten years. Multiple 
biomarkers, e.g., genes, in blood and urine have been newly identified, and updated grading or classification systems in pathology and imaging have been proposed. 
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s biomedical research transitions into data-rich science, the era of “big
ata ” has emerged [10] . The integration of such multi-layered datasets
ith longitudinal assessments of patient outcomes has the capacity to

eveal different aspects of disease pathogenesis, progression, and cell-
pecific responses, which will be useful to guiding the design of targeted
herapies. 

Currently, it is imperative that kidney -omics compendia (genome
equencing, transcriptomics, proteomics, metabolomics, and micro-
iomics) are integrated with clinical datasets, such as electronic health
ecords (EHRs), digital pathology repositories, and medical images
 Fig. 2 ). Multi-source big data are thus suggested to be the major
river of precision medicine. However, without proper analysis meth-
ds, data alone cannot be transformed into clinically actionable knowl-
dge. Thanks to the advances in computing science, artificial intelli-
ence (AI) has been developed for robust data analysis [11–17] . 

This review discusses how AI and multi-omics techniques can be ap-
lied and integrated to develop novel diagnostic and therapeutic strate-
ies for KDs. In general, the use of AI in nephrology is still in a research
tage. Several other recent reviews with related foci might also be of
nterest [10–12,14–16] . 

. Omics study 

As introduced, recent -omics approaches, including genomics,
ranscriptomics, epigenomics, microbiomics, metabolomics, and pro-
eomics, offer the potential to refine current disease classification
aradigms and identify novel sub-phenotypes. The addition of “omics ”
 http://omics.org/ ) to a molecular item indicates an unbiased systemic
ssessment of a set of molecules. Omics studies systematically cap-
ure and assess a molecular dimension at the genome, epigenome,
ranscriptome, proteome, metabolome, or microbiome level. For ex-
mple, transcriptomics measure all transcripts at the same time in a
ample (databases for kidney such as Renal gene Expression Database,
ttp://rged.wall-eva.net ; Nephroseq, http://nephroseq.org ; Kidney in-
eractive Transcriptomics, http://humphreyslab.com/SingleCell ), and
roteomics measure all proteins (i.e. Humana Kidney and Urine Pro-
eome Project, http://www.hkupp.org ). All of these “omics ” approaches
nquire into human health and disease in an unbiased manner. The
127 
rosperity of this field is attributed to technological advances, which
ave made the analysis of biological molecules cost-efficient and high-
hroughput. Although comprehensive at each layer, each single “-
me ” can be regarded as checking only one dimension at the molec-
lar level. Some -omics studies, such as transcriptomics, metabolomics,
nd proteomics, might be different at the bulk or single cell level,
nd offer limited correlations, reflecting reactive associations rather
han causative ones. Combined and/or integrated analyses of multi-
le “ome ”-wide profiles were designated as “multi-omics ”. This strat-
gy is used to determine causative changes or treatment targets, be-
ause incidental association is reduced and the cause and effect can be
ested. 

As suggested, the concept of -omics integration can be divided into
wo kinds: post-analysis and the combination approach [6] . The first
rotocol integrates -omics data by analyzing each dataset separately and
hen validating the results with another omics dataset independently.
here are two methods to achieve this: top-down and bottom-up. The
op-down data reduction method uses genomic and transcriptomic data
o suggest phenotypic responses, and to find related molecular path-
ays. This can be validated by further metabolomics and proteomics.
owever, changes in genes, proteins, and metabolites might not corre-

ate with each other directly. In the bottom-up approach, metabolomics
nd proteomics are used to assess the upstream events responsible for
heir changes. However, the low molecule coverage limits comprehen-
ive interpretation. In the combination method, -omics data are com-
ined together before data interoperation and visualization. The idea
s to find similarities between different -omics data using mathemati-
al methods, such as canonical correlation analysis (CCA), knowledge-
ased approaches, and orthogonal two-way projection on latent struc-
ures (O2PLS) [18,19] . 

. Artificial intelligence 

Artificial intelligence (AI) is the science of studying computations,
aking it possible to perceive, reason, and act. Machine learning (ML)

s a branch of AI, representing a collection of computationally intensive
tatistical learning techniques, to learn and improve from learning. Cur-

http://omics.org/
http://rged.wall-eva.net
http://nephroseq.org
http://humphreyslab.com/SingleCell
http://www.hkupp.org
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Fig. 2. Multi-layered -omics should be integrated into a whole “data ocean ”. Single omics such as environmental data, epigenomics, genomics, transcriptomics, 
proteomics, metabolomics, microbiomics, and phenomics, represent just one dimension of data: The "width of data". Big data are multi-layered, representing the 
"depth of data". However, data may change or correlate with disease progression and time: The "length of data". Currently, omics data frequently have inherent 
defects and do not fully match, thus we should incorporate robust data analysis using computing science, such as artificial intelligence. 
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ent AI is mostly based on ML. ML has two major branches: supervised
nd unsupervised. Unsupervised ML is adopted in conditions where no
vailable outcome and ground truth annotations are present. For ex-
mple, using EHR data, an unsupervised method could predict patients
ubgroups with an increased risk of developing outcomes such as CKD
nd ESKD. In contrast, currently, we more rely on supervised ML. In
his scenario, a computer learns to predict the label only after being
rained on a large number of training samples with ‘ground truth’ la-
els. For example, we can recognize specific histological features in a
iopsy using supervised ML, thanks to the rapid expansion of whole
lide imaging by digital slide scanners (generating whole-slide images,
SIs). The most important breakthrough in the last decade in the field

f ML, may be ‘deep learning’ (DL) to train multilayered (‘deep’) neural
etworks (DNNs) ( Fig. 3 ). It is anticipated that convolutional neural net-
orks (CNNs), a specific subtype of DNNs, will create new opportunities

o analyze entire histopathological slides at high resolutions. In a typical
evelopment, available WSIs are divided into training, validation, and
est sets. The CNN is trained with the training set, while the process is
onitored by its performance on the validation set. The test set is used

o produce unbiased performance data after an optimal CNN has been
chieved. 

. Application of multi-omics in kidney disease 

It is important to bear in mind that the “central dogma ”, representing
he basic flow of information in bio-systems, from DNA (genome) to RNA
transcriptome) to proteins (proteome) and metabolites (metabolome)
 Fig. 4 ). Significant technological advances have enabled us to analyze
 billion DNA base pairs of the human genome at reduced cost. The
dvent of genome-wide associations studies (GWASs) and whole ex-
me sequencing (WES) have greatly benefitted our understanding of
athophysiology, risk prediction, and treatment of KDs. A GWAS has
he ability show that a disease is associated with some single-nucleotide
olymorphisms (SNPs). The identification of genetic factors associated
ith KDs has the potential to shed critical insights into disease mecha-
128 
isms. For example, several loci are associated with CKD across different
thnicities, including UMOD, SHROOM3, MPPED2, BCAS3 , and UNCX.

MOD was the first locus associated with CKD, with an OR of about 1.3
er copy of the risk allele, which remained unchanged after baseline
stimated glomerular filtration rate (eGFR) adjustment [20–25] . And
his risk variant directly increases the expression of uromodulin in a
ose-dependent manner, causing salt-sensitive hypertension and kidney
amage in mice and humans. Observational studies in the general pop-
lation showed that urinary uromodulin levels are positively associated
ith eGFR, markers of tubular transport, and kidney length and vol-
me. It thus suggested that the levels of uromodulin can be considered
s biomarkers of kidney tubule function. Low urinary uromodulin is a
arker of poorer tubular health in at-risk individuals (aged and early
KD), with decreased levels of uromodulin reflecting decreased pro-
uction (i.e., decreased renal functional reserve). As different KDs may
how differences in prevalence and severity among ancestral groups,
or population specific genes, an excess of African Americans with fo-
al segmental glomerulosclerosis (FSGS) and pathogen-triggered HIV-
ssociated nephropathy (HIVAN) prompted the discovery of genetic fac-
or of APOL1 by GWASs [26–43] . It was observed that APOL1 -associated
idney disease followed a recessive pattern of inheritance. APOL1 geno-
ype also influences the clinical course in kidney transplant recipients,
ypertension-attributed ESKD, severe forms of lupus-associated kidney
isease and subtypes of membranous nephropathy. Despite many re-
orts of different cellular phenotypes, such as cell death, actin cytoskele-
al structure, or mitochondrial dysfunction, the fundamental differences
n behavior between the APOL1 alleles at a molecular level have re-
ained elusive. Anyhow, environmental triggers may be important. The

verwhelming interaction between HIV infection and the APOL1 risk
ariants may be the most powerful evidence, with an odds ratio (OR)
f 29–89. And it was estimated that, in the pre- HAART (Highly Ac-
ive Anti-Retroviral Therapy) era, 50% of individuals with the high-
isk genotype developed HIVAN. One potential explanation is that both
he high-risk APOL1 genotype and high APOL1 expression (driven in
ome cases by virus or the innate immune response to virus) may be
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Fig. 3. Classification of artificial intelligence algorithms and relationships between artificial intelligence, machine learning, and deep learning. Artificial 
intelligence (AI) is a set of algorithms that enable computations making it possible to perceive, reason, and act. Machine learning (ML) is a branch of artificial 
intelligence in which algorithms have the ability to learn and improve from experience, without being explicitly programmed for a specific task. A popular way 
of classifying machine learning algorithms is by how much human supervision they require when training. Deep learning is a supervised or unsupervised machine 
learning algorithm based on neural networks, often specialized in image recognition, which has multiple layers of nonlinear processing units for feature extraction 
and transformation. 

Fig. 4. Overview of the "central dogma" and related methods in -omics data generation. The upper panel depicts the central dogma and regulations of different 
omics layers. The lower panel presents multiple analytical platforms which can be used to interrogate samples and systems at a molecular level. In general, nucleotide- 
based experiments, such as genomics (genome-wide association studies), and transcriptomics studies, use PCR, microarrays and sequencing technologies. Proteomics, 
and metabolomics approaches share common technologies, such as mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. 
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equired for disease to occur, as APOL1 can play as a multipurpose viral
estriction factor. Several GWASs in European and East Asian popula-
ions also have identified almost 20 risk variants for IgA nephropathy
IgAN), suggesting it is shaped by selective forces from host-pathogen
nteractions [44,45] . However, it seems that the genetic burden of mem-
ranous nephropathy and steroid-sensitive nephrotic syndrome is de-
ermined by significantly fewer variants with much larger effects [46] .
129 
part from case–control GWAS, the Chronic Kidney Disease Genetics
CKDGen) Consortium has focused on identifying genetic loci associated
ith quantitative traits, such as the glomerular filtration rate (GFR), al-
uminuria, blood urea nitrogen (BUN), and serum urate levels [47] .
n a more recent meta-GWAS in 42 longitudinal studies from the CK-
Gen Consortium and UK Biobank, Gorski et al. identified that seven
ariants located in the UMOD, PRKAG2, WDR72, OR2S2, GATM , and
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ARP4B genes were associated with rapid kidney function decline [48] .
lthough GWAS has provided significant insights into pathogenic mech-
nisms, most loci identified still need to be followed-up to find the real
ausal variants and specific mechanisms. The majority of SNPs identified
n GWASs are noncoding, nevertheless they implicate candidate genes or
ene regions tagged by the SNPs. Further studies are needed to reveal
he exact genetic changes driving the association and to prove causal
nferences. However, in genomics, whether for single-gene Mendelian
isorders or multi-gene complex diseases, in principle, the germ-line
hanges in the DNA sequence precede disease onset, indicating that the
emporal relationship between genetic variation and disease onset is uni-
irectional. 

One way to address the impact of variants on disease is by assessing
he expression quantitative trait loci (eQTLs) [49,50] . eQTLs are chro-
osomal loci where variants explain some of the variations in RNA or in
rotein expressions for the candidate gene. The representative available
atabases for kidney include NephQTL ( https://nephqtl.org ) and the
uman Kidney eQTL Atlas ( https://susztaklab.com/eqtl ). By this strat-
gy, lysosomal beta A mannosidase ( MANBA ), disabled-2 ( DAB2 ), and
achshund homolog 1 ( DACH1 ) have been suggested as potential targets

n CKD [51,52] . In one early study integrating eQTL in renal transcrip-
omics, Martini S et al. selected 18 SNPs associated with eGFR in a meta-
nalysis of genome-wide association data by the Cohorts for Heart and
ging Research in Genomic Epidemiology (CHARGE) and CKDGen con-
ortia as candidates, and found that renal transcript levels for 18 genes
n proximity to the SNPs significantly correlated with GFR (in -cis ). They
urther constructed a co-expression network of 97 pathways linked by
hose genes [53] . Of these pathways, 56 pathways have been previously
eported to be associated with CKD and 41 novel pathways. 78 pathways
nd 95% of the connections among those pathways were verified in an
ndependent North American biopsy cohort. Of importance, the study
evealed a signaling dichotomy in CKD, between activated inflamma-
ory and immune processes and suppressed metabolic processes [54] .
everal of the target factors and networks identified by this process, in-
luding the transcription factor NRF2 , and the JAK-STAT and retinoid
ignaling pathways, have been clinically investigated or are currently
nderway in clinical trials. And most pathways are shared among dif-
erent glomerular diseases, highlighting common pathways that mediate
idney injury. In a more recent report, integrating large-scale GWAS on
idney function with mRNA expression identified the kidney and liver
s the primary organs for some traits of kidney function [55] . The prox-
mal tubule is the critical cell type for eGFR, urate, and monogenic elec-
rolyte or metabolic disease-related genes. Podocytes show enrichment
f genes implicated in glomerular disease [55] . Notably, rare variants
f some of these genes also cause Mendelian kidney diseases, providing
mportant clues for further mechanistic studies. In the post-GWAS era, to
ake genetic data into clinical application, it is suggested that polygenic
isk scores (PRSs) can bridge this gap by aggregating results from risk
llele numbers. For example, Gorski et al. computed a PRS and found
hat individuals with a high-risk PRS (8–14 risk alleles) showed a 1.2
o 1.3- fold increased risk of AKI compared with those with a low-risk
core (0–5 risk alleles) [48] . 

The transcriptome comprises all RNA molecules in cells. Structural
imilarities between DNA and RNA mean that analysis methods for ge-
omics and transcriptomics are similar. Transcriptome analysis checks
or biologically dynamic alterations, which are unstable. Thus, appro-
riate sampling strategies are crucial. An analysis of longitudinal blood
ranscriptomes showed that type 1 diabetes (T1D) was characterized by
arly changes in gene expression before T1D and islet autoimmunity
56] . By a genome-wide transcriptome study of tubules from biopsy
amples [57] , it was suggested that inflammation and metabolism as
he top dysregulated pathways. Those involved genes encode key en-
ymes of fatty acid oxidation, including CPT1A, CPT2, ACOX1, ACOX2

nd their transcriptional regulators, PPARA and PPARGC1A . Further as-
ays from mouse models with fibrosis showed a reduction in transcript
nd protein levels of fatty acid oxidation enzymes associated with ele-
130 
ated lipids and triglyceride levels in tubular epithelial cells. The phe-
omenon can be observed prior to the occurrence of fibrosis, indicat-
ng likely pathologically causal and novel interventional targets [58] .
rinary epidermal growth factor (EGF) and monocyte chemoattractant
rotein-1 (MCP-1) were independently associated with disease progres-
ion as noninvasive indicators, which was supported by tissue transcrip-
omics and proteomics approach [59,60] . Tubulointerstitial injury was
orrelated with increased TGF- 𝛽 and TNF- 𝛼 mRNA and decreased EGF
RNA. It was reported that for a 10U decrease in the glomerular fil-

ration rate, there was an estimated increase of 5% and 10% in TGF-
and TNF- 𝛼 mRNA, respectively, whereas EGF mRNA decreased by

n estimated 15% [61] . And angiotensin-converting enzyme inhibitor
nalapril was effective in decreasing albumin and increasing EGF ex-
retion [62] . Thus measurement of urinary EGF may provide a new
aluable index of renal function. A “bulk ” transcriptome measurement
annot remove or solve the problem of cell heterogeneity, and might
e influenced by cell composition or time changes. Such data describe
nly averaged gene expression across the great heterogeneity of kidney
ell types. Single-cell RNA sequencing (scRNA-seq) was developed to
eveal transcriptome differences in heterogeneous samples, defining the
ranscriptome at cell resolution [63] . Using single-cell RNA sequencing,
esenchymal cells were identified as the major contributor and NKD in-
ibitor of WNT signaling pathway 2 (NKD2) as a myofibroblast-specific
arget in renal fibrosis [64] . Cadherin 11 (CDH11), SPARC related mod-
lar calcium binding 2 (SMOC2), and pigment epithelium-derived factor
PEDF) were identified as promising non-invasive biomarkers of kidney
brosis [65] . In humans, scRNA-seq data have been used to find novel
egment-specific proinflammatory responses in kidney allograft rejec-
ion [66,67] , lupus nephritis [68] , diabetic nephropathy [69] , and IgA
ephropathy [10,70,71] . 

Proteins are the major transcriptional products. They conduct most
f the functional work in cells, playing roles as structural proteins, tran-
cription factors, receptors, antibodies, hormones, transporters, and en-
ymes. The relative abundance of proteins, distinct proteins from alter-
ative splice variants, posttranslational modifications, specific protein-
rotein interactions (PPIs), or expression in specific cellular compo-
ents, all contribute to the complexity of the proteome. Immunoglob-
lins and cytokines can be detected or quantified using assays such as
nzyme-linked immunosorbent assay (ELISA), immunofluorescent stain-
ng, enzyme multiplied immunoassay technique (EMIT), or mass spec-
rometry (MS). The identification of the M-type phospholipase A(2) re-
eptor (PLA2R) in membranous nephropathy illustrated the potential
f proteomic investigation to inform pathobiology, promoting disease
iagnosis, and guiding treatment [72–74] . Importantly, by adding ge-
omic findings in an unbiased manner, PLA2R1 gene variants associated
ith membranous nephropathy in diverse populations were discovered

75–79] , supporting a causal effect. In a trans-ethnic meta-analysis of
93 plasma proteins among 2,882 participants, it was observed that
estican-2 might be a clinically relevant physiological marker in disease
rogression [80] . Urinary glycine might be a protective biomarker for
gAN [81] and higher levels of C-glycosyltryptophan might predict ad-
erse kidney outcomes and overall mortality [82] . The gut microbiota
re also important determinants of the serum metabolome, i.e. uremic
oxins and secondary bile acids (SBAs) [83] . Wang et al. suggested that
SKD-enriched Eggerthella lenta and Fusobacterium nucleatum increased
remic toxins production and promoted the development of CKD, and
 probiotic Bifidobacterium animalis reduced the levels of toxins and the
isease severity in rats [84] . To date, however, there is still a lack of
ata from large cohorts with serial measurements of the proteome and
etabolome over time, together with longitudinal outcomes. Further-
ore, the spatial heterogeneity of the proteome and metabolome only
rovided limited information about intra-organ biology. 

To reduce the risk of false positives in -omics studies, multiple
orrection testing is required. Moreover, AI and pathway analyses
ight be helpful in organizing and decoding -omics datasets. In these
atasets, the amount of variables might be collinear, which can be

https://nephqtl.org
https://susztaklab.com/eqtl
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ccounted for by random forest regression. The least absolute shrinkage
nd selection operator or elastic net are suitable methods to create a
arsimonious risk model. Support-vector machines or clustering can be
sed to categorize variables in supervised or unsupervised ML. These
pproaches can be adopted to select the “top hits ” with an appropriate
umber to meet the research goal. Pathway analysis includes several
ethods, aiming to organize many datasets into functional biological

inks. Many programs can be used for pathway analysis, such as Gene
et Enrichment Analysis (GSEA); Database for Annotation, Visualiza-
ion, and Integrated Discovery (DAVID); Search Tool for the Retrieval of
nteracting Genes/Proteins (STRING); and Ingenuity Pathway Analysis.
iological networks aim to analyze different biological substances such
s metabolites, genes, and proteins as an interacting system. There are
everal types of biological networks including protein–protein interac-
ion, signaling networks, gene regulatory networks (GRN), neuronal
etworks, and metabolomics networks. Many bio-informatic tools
ave been developed to create, visualize, and analyze these networks.
ecently WGCNA [85] , webCEMiTool ( https://cemitool.sysbio.tools/ )
86] and DiffCorr [87] have been applied to compare networks across
ealth and disease stages. Other user friendly tools are also avail-
ble, such as Networkanalyst ( https://www.networkanalyst.ca/ )
88] , RegNetwork ( http://www.regnetworkweb.org/home.jsp )
89] , OmicsNet ( http://www.omicsnet.ca ) [90] , Mibiomics
 https://shiny-bird.univ-nantes.fr/app/Mibiomics ) [91] , Paintomics
 http://www.paintomics.org/ ) [92] , or Metaboanalyst ( https://www.
etaboanalyst.ca/ ) [93] . One of most popular visualization and

ntegration tool is Cytoscape ( https://cytoscape.org/ ) [94] . 
These integration protocols can be adopted in Mendelian random-

zation (MR) studies to test whether candidate markers lie in causal
athways. For example, in a “multi-omics ” study using integrated anal-
sis of the genome, transcriptome, and DNA methylome from 430 hu-
an kidneys, Eales et al observed associations between 1,038 genes and
79 GWAS association signals related to blood pressure [95] . By uti-
izing kidney SNPs as genetic instruments in MR analyses, causal ef-
ects of blood pressure on clinical kidney outcomes (urinary albumin-
o-creatinine ratio and CKD) were identified. It provided evidence indi-
ating the kidney as the tissue mediator of the genetic effects on blood
ressure. 

What’s more, innovative integration approaches have also been
dopted to identify optimal CKD model systems with which to test
otential therapeutic targets. For example, a cross-species compari-
on of glomerular transcriptional networks was previously checked be-
ween human and murine diabetic kidney disease (DKD). By a network-
atching algorithm, it was observed that STAT3 was one of the central
odes [96] , suggesting the involvement of Janus kinase (JAK)/signal
ransducer and activator of transcription (STAT) signaling pathway
n DKD. It was further reinforced by functional assay, i.e., podocyte-
pecific JAK2 overexpression worsened DKD in mice [97] , and treat-
ent with a specific JAK1/2 inhibitor for 2 weeks could partially re-

erse the major phenotypic changes of DKD. This effect was not DKD
pecific, which can be also observed in focal segmental glomerular scle-
osis (FSGS) and IgA nephropathy [98,99] . 

. Exemplars of novel approaches to combine AI with ∼omics in 

idney disease 

Computers have been used for different tasks for several years, es-
ecially for repetitive and cumbersome work, as well as to enhance re-
roducibility. Technological AI-based approaches could provide a good
olution for precision medicine by delivering perfectly reproducible re-
ults. AI is also suited to precise and exhaustive extraction of the multi-
imensional data, including -omics (mRNA, microRNA, protein, and
thers). In clinical medicine, AI has shown promising roles across a wide
pectrum of applications, including diagnostics, therapeutics, public
ealth management, administration, and regulation. The vast quantity
nd accessibility of EHRs or wearable devices will influence decision-
131 
aking for physicians, patients, healthcare providers, and healthcare
ystems ( Fig. 5 ) [100–116] . 

AI has been used in nephrology, for example, to offer solutions for
epetitive work requiring significant attention [16] , to improve estima-
ion of the glomerular filtration rate [117] , to facilitate the early diag-
osis of AKI [118] or CKD [119] , to personalize anemia management in
SKD [120] , and to refine drug dosing [121] . 

Thus, in the field of nephrology, AI may be leveraged to analyze
ig data for: (I) clinicians: to make more accurate diagnoses and inter-
ret pipelines; (II) for health systems: to improve workflow and reduce
edical errors; (III) for patients: to promote health education and help
isease prevention. In this review, we discuss some of the spotlights in
he field related to aiding clinical decision-making. Good overviews of
I in other applications can be found in previous expert perspectives
6,7,10,15,16,122–124] . 

.1. Digital pathology 

The significance of a kidney biopsy is to make a diagnosis, deter-
ine the pathology classification and disease stage, assist treatment se-

ection, and predict prognosis. Using light microscopy, immunofluores-
ence microscopy, and electron microscopy, as well as various staining
echniques, recognition of distinctive patterns are reported and inter-
reted by a pathologist. Meanwhile, classification and grading systems
re always needed to assess the severity of pathological changes. Al-
hough pathologists are skilled in qualitative pattern recognition and
uantification, the pathological scores remain semi-quantitative, which
ight contribute to a low diagnostic consensus rate among different
athologists. In addition, the scoring task in research with large sam-
les can be tedious. Thus, it is necessary to develop tools to facilitate
ast, objective, and consistent assessment of renal pathology, which is
 prerequisite for fruitful clinical trials, better prediction, or response
valuation. The development of whole-slide scanners to generate WSIs
as made the digitization of histopathology fast and high-throughput.
he resulting progress in digital pathology has facilitated the implemen-
ation of AI in computer-aided diagnostics [125] . 

In general, the use of AI in kidney pathology is still in its infancy
nd mostly at the research stage [124] . Most reported studies have fo-
used on segmentation tasks [126,127] . This can efficiently segment
idney histopathology in periodic acid–Schiff (PAS) stained sections,
nd it was reported that some outputs correlate well with specific scor-
ng systems [128,129] . Several automatic segmentation [129] and clas-
ification [130] methods have been developed using AI, mostly using
 supervised deep-learning approach. High accuracy of the computa-
ional method can be obtained compared with the results produced by
xpert nephropathologists. To provide a continuous risk model instead
f a discrete category, AI has shown supportive value for clinical di-
gnostics. Although PAS staining is always readily available in differ-
nt kidney pathology laboratories, the full workup of kidney pathol-
gy includes further staining, such as methenamine silver and periodic
cid–methenamine silver staining (Jones), trichrome staining, Masson
richrome staining, and hematoxylin-eosin (HE) staining. For a defini-
ive diagnosis, in addition to bright field microscopy, immunofluores-
ence (IF) and electron microscopy (EM) are essential. For both clinical
se and research, AI might increase efficiency by replacing rigid tasks.
eveloped AI algorithms would yield objective and reproducible data

rom WSIs [131] . Applied in a clinical setting, this might increase ac-
uracy and reproducibility. In addition, it might have significance in
athology education, or in areas where nephrology pathologists are un-
vailable. This might aid tailored treatment for individual patients if ac-
urate quantitative descriptors are available. In research, the potential
f AI to analyze large numbers of WSIs in a standardized manner could
elp to develop novel biomarkers. To harness these opportunities, the
stablishment of large, well-curated multi-center data sets is required, as
ell as the training and involvement of clinicians. However, currently,

arge cohorts are not available in kidney pathology, and all the reported

https://cemitool.sysbio.tools/
https://www.networkanalyst.ca/
http://www.regnetworkweb.org/home.jsp
http://www.omicsnet.ca
https://shiny-bird.univ-nantes.fr/app/Mibiomics
http://www.paintomics.org/
https://www.metaboanalyst.ca/
https://cytoscape.org/
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Fig. 5. Use of artificial intelligence can help to address clinically relevant questions. In the medicine, AI is poised to play major roles across a spectrum of 
application domains, including diagnostics, therapeutics, population health management, administration, and regulation. The vast quantity and accessibility of EHRs 
and ∼omics will influence future decision-making on multiple fronts, including for patients, physicians, healthcare systems, healthcare providers, and regulatory 
bodies. 
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tudies just analyzed tens of WSIs. Even in these small cohorts, annota-
ion takes immense effort by pathologists. Although the renal pathology
eld has emphasized the precise definition of pathological findings and
niversally accepted definitions, gold standards for most annotations
re lacking. The involvement of deep learning in pathology has emerged
ery recently, and compared with established diagnostic algorithms, the
ack of multi-center validation and efficacy studies is not surprising. As
ntroduced above, because molecular diagnoses are derived from objec-
ive data from measurements, they are likely to be more accurate than
istology. It was suggested that an combination of molecular algorithms
ould improve the estimate stability [132] either by human experts or
sing an automated system. 

.2. Prediction and sub-phenotyping 

Different approaches have been developed for sub-phenotyping,
hich usually take clinical characteristics as the first step. In past
ears, several clinical risk scores have been developed to identify pa-
ients with high risk [133] . Access to large datasets in EHRs ( Table 1 ),
nd multi-omics data have contributed to recent ML approaches to
dentify sub-phenotypes in patients at risk of AKI [134] , CKD, and
SKD. 

For AKI, Tomasev et al . applied DL techniques to a large US Veterans
ffairs (VA) longitudinal dataset of 703,782 adult patients across 172

npatient and 1,062 outpatient sites to develop a predictive model for
KI [123,135,136] . With a lead time of up to 48 h, it was reported that

he model could predict 55.8% of all inpatient episodes and 90.2% of
ll dialysis cases within 90 days of the initial onset. However, for ev-
ry true alert, their algorithm generated two false positives. Churpek
t al . described a predictive model for AKI developed from 495,971
dult patients. The results showed an area under the curve (AUC) as
igh as 0.92 for AKI and 0.97 for dialysis. However, considering the
ow prevalence of outcome events (3.4% stage 2 AKI), the positive-
redictive value was low [137] . In an assessment of the MIMIC 3 dataset,
u et al. identified three phenotypes in patients with a high risk of AKI
132 
nd associated with the subsequent severity stage of AKI [138] . San-
okji et al . reviewed the EHRs of 6328 hospitalized children retrospec-
ively, and identified a time-updated prediction model with ten readily
vailable variables to predict AKI [139] . The retrospective nature of
he study limited its ability to make clear conclusions on the causal-
ty between predictor variables and the outcome [140] . Future AI al-
orithms developed to support real-time decisions in AKI, should be
ased on complete medical information, including EHRs, medical his-
ory, physical signs, laboratory data, and medications. AKI risk scores
ased on such an algorithm would stratify patients and inform clini-
al decisions to enable personalized therapy [141] . Utilizing an AI ap-
roach through perioperative data-driven learning to predict cardiac
urgery-associated acute kidney injury, suggested that the top three
ost influential features were the intraoperative urine output, the pre-

perative hemoglobin level, and transfused blood units during surgery
142] . This study represented a commendable attempt to optimize
ostoperative strategies to minimize complications following cardiac
urgery. 

CKD screening is a major challenge for both community and pri-
ary care settings, even in high-income countries. Sabanayagam et al

eveloped a DL algorithm to detect CKD using retinal images, with an
UC of 0.81–0.94 [143] . Kuo et al . predicted kidney function based
n ultrasound images with an overall CKD classification accuracy of
5.6%, offering a possibility of noninvasive assessment of kidney func-
ion [144] . It was reported that a deep-learning model based on electro-
ardiogram (ECG) data might improve the detection of life-threatening
yperkalemia in CKD, enabling noninvasive screening [145] . Shang et
l . designed an electronic CKD phenotype [146] using a combination of
ule-based and ML methods to identify patients on the staging grid of
lbuminuria by the glomerular filtration rate ( “A-by-G ” grid). Applying
his phenotype to 1.3 million patients indicated that over 80% of CKD
re undetected. This is might significant to improve phenotype defini-
ions in studies of CKD. 

Accurate ESKD prediction is vitally important in improving clinical
utcomes. To predict rapid kidney function decline, using EHR data
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Table 1 

Examples of current application of machine learning in CKD (taking IgA nephropathy as example) and AKI . 

Year Disease Type of data Sample size Purpose of AI Output Data (Label) Results Algorithms Notes PMID 

1998 IgAN Phenomics (6 
input variables) 

54 patients with 
IgAN 

Method 
investigation 

Outcome was 
assigned as ‘stable’ if 
serum creatinine was 
< 150 μmol/l after 7 
years and 
‘non-stable’ if serum 

creatinine was ≥ 150 
μmol/l. 

The ANN assigned the 
correct outcome to 
47/54 (87.0%) patients: 
sensitivity 
19/22(86.4%), 
specificity 
28/32(87.5%). The mean 
score for nephrologists 
was 37.5/54 (69.4%, 
range 35–40), mean 
sensitivity 72% and 
mean specificity 66%. 

artificial neural 
network (ANN) 

One of the main 
purposes of the study 
was to demonstrate the 
potential application of 
artificial neural networks 
to clinical nephrology. 
Studies of ANN to predict 
10-, 15- and 20-year 
outcome would be of 
value and would require 
data from more than one 
centre to provide 
sufficient training data. 

9481717 

2016 IgAN Phenomics (6 
input variables) 

1040 patients 
with IgAN 

Risk prediction predict ESKD status 
and the time to 
ESKD (defined as 
three categories: ≤ 3 
years, between > 3 
and 8 years and over 
8 years) 

The ANNs demonstrated 
high performance for 
both the prediction of 
ESKD (with an AUC of 
89.9, 93.3 and 100% in 
the Italian, Norwegian 
and Japanese IgAN 
population, respectively) 
and its timing (f-measure 
of 90.7% in the cohort 
from Italy and 70.8% in 
the one from Norway). 

artificial neural 
network (ANN) 

The first Clinical 
decision support system 

for end-stage kidney 
disease risk estimation in 
IgAN patients 

26047632 

2018 IgAN Phenomics (35 
input variables) 

262 patients 
with IgAN 

Risk prediction predict the ESKD 
status 

This RF model with 
obove CDSS 
( http://www.igan.net/ ) 
6 predictors (gender, 
age, hypertension, 24-h 
urine protein levels and 
histological grading) 
achieved an F-measure 
of 0.8 and the an AUC of 
92.57%. 

random forest model In addition to the 
predictors in the CDSS, 
Oxford-MEST scores, C3 
staining and eGFR 
conveyed additional 
information for ESRD 
prediction in Chinese 
IgAN patients using a RF 
model. 

30537719 

2019 IgAN Phenomics (36 
input variables) 

2,047 patients 
with IgAN 

Risk prediction combined event of 
end-stage kidney 
disease (ESKD) or 
50% reduction in 
estimated 
glomerular filtration 
rate within 5 years 
after diagnostic 
kidney biopsy 

a C statistic of 0.89 for 
the derivation cohort and 
0.84 for the validation 
cohort while using the 
10 most important 
variables 

eXtreme Gradient 
Boosting (XGBoost) 

a simplified scoring scale 
model (SSM) included 3 
variables: urine protein 
excretion, global 
sclerosis, 
and tubular 
atrophy/interstitial 
fibrosis was derived 

31031086 

( continued on next page ) 
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Table 1 ( continued ) 

Year Disease Type of data Sample size Purpose of AI Output Data (Label) Results Algorithms Notes PMID 

2019 IgAN Phenomics (14 
input variables) 

1,370 patients 
with IgAN 

Risk prediction predict the status of 
ESRD 

Logistic regression [area 
under the curve (AUC) 
= 96.1%] outperformed 
the other models 
[random forest (AUC 
= 95.5%), SVM (AUC 
= 95.8%), decision tree 
(AUC = 84.3%), ANN 
(AUC = 92.2%) and KNN 
(AUC = 94.6%)]. 

random forest model The formula was 
employed: 
P = eX/(1 + eX) where X = 
–1.354–(1.887 ∗ M) –
(2.970 ∗ T) + (0.22 ∗ 24 h 
urine pro- 
tein) + (1.792 ∗ treatment), 
e is the base of the 
natural logarithm. For M 

and T score, 0 and 1 
were defined as absent 
and present. For 
treatment, 1 and 2 were 
defined as no 
glucocorticoid use and 
glucocorticoid use. A P 
value of 0.645 was 
selected as a cut-off
point and P value > 0.645 
should be considered 
positive ESRD status and 
P < 0.645 should be 
considered negative. 

31317004 

2021 IgAN Phenomics (7 
input variables) 

948 patients 
with IgAN 

Risk prediction a two-step procedure 
of a classifier model 
that predicts ESKD, 
and a regression 
model that predicts 
development of 
ESKD over time 

The classifier model 
showed a performance 
value of 0.82 (area under 
the receiver operating 
characteristic curve) in 
patients with a follow-up 
of five years, which 
improved to 0.89 at the 
ten year follow-up. The 
regression model 
showed a mean absolute 
error of 1.78 years and a 
root mean square error 
of 2.15 years. 

artificial neural 
network 

A clinical decision 
support system (CDSS) 
( https://igan.poliba.it ) 
may predict ESKD in 
patients with IgAN with 
a median follow-up of 5 
and 10 years. 

32889014 

2021 IgAN Phenomics (7 
input variables) 

80 patients with 
IgAN 

Risk prediction analyze regression 
techniques, 
estimating the 
deterioration of 
renal function, as 
expressed by the 
difference in 
creatinine 
concentration, 
compared to the 
baseline 

The performance of the 
tested models was 
obtained: Random Forest 
Classifier showed an 
accuracy of 0.8–1.0, 
Multi-Layer Perceptron 
an Area Under Curve of 
0.8842–0.9035 and an 
accuracy of 0.7527–1.0) 
and regressors with a 
low estimation error 
(Decision Tree Regressor 
showed MAE 0.2059, 
RMSE 0.2645). 

Gaussian Naive 
Bayes Classifier; 
Support Vector 
Machine; Random 

Forest Classifier; 
K-nearest Neighbor 
Classifier; amd 
Multi-Layer 
Perceptron (an 
artificial neural 
network, ANN) 

The choice of input data 
and the choice of the 
right model have a direct 
impact on the 
performance. The 
limitation of our study is 
that it uses a 
retrospective design and 
a small number of 
samples. 

33920611 

( continued on next page ) 
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Table 1 ( continued ) 

Year Disease Type of data Sample size Purpose of AI Output Data (Label) Results Algorithms Notes PMID 

2015 IgAN Phenomics (8 
input variables) 

1,174 patients 
with IgAN 

Risk prediction 
identify significant 
predictors of ESKD 
and time-to-ESKD 

ANNs was superior 
performance compared 
to the other models. The 
ANN for ESKD prediction 
has accuracy greater 
than 90% as well as 
precision, recall, and 
f-measure 
for the class of patients 
not reaching ESKD, 
while precision, recall, 
and f-measure for the 
class of patients reaching 
ESKD are slightly lower. 

artificial neural 
networks (ANNs), 
neuro fuzzy systems 
(NFSs), support 
vector machines 
(SVMs), 
and decision trees 
(DTs) 

Four different 
data-driven models 
(artificial neural 
networks, neuro fuzzy 
systems, support vector 
machines, and decision 
trees) have been trained. 
Difference is due to the 
peculiarities of the 
dataset which includes a 
lower number of clinical 
records. 

26453758 

2021 IgAN Phenomics (36 
input variables) 

2,047 patients 
with IgAN 

Risk prediction predict the prognosis 
of IgAN patients by 
taking the 
time-to-event 
information 

The XGBoost-Surv 
achieved overwhelmed 
performance over the 
cox regression (0.655), 
lasso-cox (0.795), RSF 
(0.773) and SVM-Surv 
(0.781) on the external 
validation set. 

EXtreme Gradient 
Boosting for survival 
(XSBoost-Surv) 

Shapley Additive 
exPlanations (SHAP) was 
utilized to interpret the 
prediction result of our 
model. The Tubular 
atrophy/Interstitial 
fibrosis (%) and global 
sclerosis (%) were the 
strongest contributors to 
the model’s final 
decision. 

33936448 

2020 IgAN Phenomics (40 
input variables) 

4,047 patients 
with IgAN 

Subphenotyping different benefit 
from 

immunosuppression 
(IS) therapy 
measured by ESKD 
or 30%-50% 

reduction in 
estimated 
glomerular filtration 
rate 

Three identified 
subgroups obtained a 
significant IS benefits. In 
patients with serum 

creatinine ≤ 1.437 mg/dl, 
the benefits of IS were 
observed in those with 
proteinuria > 1.525 
g/24h, especially in 
those with proteinuria 
> 2.480 g/24h. In 
patients with serum 

creatinine > 1.437 
mg/dl, those with high 
proteinuria and crescents 
benefitted from IS. 

model-based 
recursive 
partitioning 

This study shed some 
light on individualised 
therapy in IgAN. 

32062356 

2018 AKI Phenomics (EHR 
data from the 
the University of 
Chicago) 

121,158 patients Risk prediction develop an acute 
kidney injury risk 
prediction model 
using electronic 
health record data 
for longitudinal use 
in hospitalized 
patients 

The AUC (95% CI) was 
0.90 for predicting stage 
2 acute kidney injury 
within 24 hours and 0.87 
within 48 hours. The 
AUC was 0.96 for receipt 
of renal replacement 
therapy (n = 821) in the 
next 48 hours. Accuracy 
was similar across 
hospital settings and 
admitting serum 

Gradient Boosting 
Machine algorithm 

The algorithm provides a 
nearly 2-day lead time in 
advance of more 
traditional SCr-based AKI 
definitions. This 
window of time between 
evidence of increased 
AKI risk and 
clinical AKI being 
present is the ideal 
period for a clinical 
intervention. 

29596073 

( continued on next page ) 
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Table 1 ( continued ) 

Year Disease Type of data Sample size Purpose of AI Output Data (Label) Results Algorithms Notes PMID 

AKI creatinine groupings. At 
a probability threshold 
of greater than or equal 
to 0.022, the algorithm 

had a sensitivity of 84% 

and a specificity of 85% 

for stage 2 acute kidney 
injury and predicted the 
development of stage 2 a 
median of 41 hours prior 
to the development of 
stage 2 acute kidney 
injury. 

2018 AKI Phenomics 
(institutional 
EHR data) 

1211 patients 
who underwent 
living donor 
liver 
transplantation 
(LDLT) or 
deceased donor 
liver 
transplantation 
(DDLT) 

Risk prediction predict AKI after 
liver transplantation 

Gradient boosting 
machine showed the 
largest test AUROC 
(0.90) and highest 
accuracy (84%). AUROC 
of the multivariable 
logistic prediction model 
for the test dataset was 
0.61. Decision tree and 
random forest techniques 
showed moderate 
performance (AUROC 
0.86 and 0.85, 
respectively). 

Scikit-learn, 
XGboost, and Keras. 

Variants important in the 
gradient boosting 
machine were SvO2 
(mixed venous oxygen 
saturation); 
Hb(hemoglobin); MEDL 
(model for end-stage 
liver disease); 
EBL(estimated blood 
loss); BMI(body-mass 
index); and ABP(arterial 
blood pressure) . 

30413107 

2018 AKI Phenomics (42 
input variables) 

2010 patients 
who underwent 
open heart 
surgery and 
thoracic aortic 
surgery 

Risk prediction predict acute kidney 
injury after cardiac 
surgery 

During the first 
postoperative week, AKI 
occurred in 770 patients 
(38.3%). The best 
performance regarding 
AUC was achieved by the 
gradient boosting 
machine to predict the 
AKI of all stages (0.78) 
or stage 2 or 3 AKI. The 
AUC of logistic 
regression analysis was 
0.69. Decision tree, 
random forest, and 
support vector machine 
showed similar 
performance to logistic 
regression. 

decision tree, 
random forest, 
extreme gradient 
boosting, support 
vector machine, 
neural network 
classifier, and deep 
learning 

Important covariates in 
the final model included 
angiotensin receptor 
blocker,body-mass index, 
coronary artery bypass 
graft, calcium channel 
blocker, chronic kidney 
disease, creatinine, 
history of 
cerebrovascular accident, 
ejection fraction, 
preoperative ratio of 
early transmitral flow 

velocity to early diastolic 
velocity of the mitral 
annulus, fresh frozen 
plasma, hematocrit, 
hypertension, 
intraoperative mean 
mixed venous oxygen 
saturation, three vessel 
coronary disease, 
preoperative packed red 
blood cells. 

( continued on next page ) 
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Table 1 ( continued ) 

Year Disease Type of data Sample size Purpose of AI Output Data (Label) Results Algorithms Notes PMID 

2018 AKI Phenomics (45 
input variables) 

970,869 patients 
undergoing PCIs 

Risk prediction AKI risk prediction 
after percutaneous 
coronary 
intervention (PCI) 
from the National 
Cardiovascular Data 
Registry (NCDR) 
CathPCI registry 

A total of 69,826 (7.4%) 
patients developed AKI. 
The XGBoost model 
using permutation 
selection, had the highest 
AUC (0.725), best Brier 
score (0.0630), highest 
resolution (0.0043), and 
best reliability 
(0.0004 × 10 − 2). 

XGBoost The improvement in 
performance of the 
proposed machine 
learning model over the 
current AKI model was a 
result of employing all 
available variables to 
modeling, using 
permutation test for 
variable selection and 
implementing XGBoost 
to model the relationship 
between variables and 
outcome. The best 
machine learning model 
only entailed the use of 2 
more variables than the 
current AKI model, 
posing minimal 
additional burden on 
data extraction and 
processing. 

30481186 

2019 AKI Phenomics (EHR 
data from the 
Medical 
Information 
Mart for 
Intensive Care 
III (MIMIC-III) 
database) 

23,950 patients Risk prediction develop and validate 
a data driven 
multivariable 
clinical predictive 
model for early 
detection of AKI 
among a large 
cohort of adult 
critical care patients 

It demonstrated that 
using machine learning 
models (multivariate 
logistic regression, 
random forest and 
artificial neural 
networks) with 
demographics and 
physiologic features can 
predict AKI onset as 
defined by the current 
clinical guideline with a 
competitive AUC (mean 
AUC 0.783 by our 
all-feature, 
logistic-regression 
model). 

multivariate logistic 
regression, random 

forest and artificial 
neural networks 

The comprehensive 
demographics and 
physiologic features can 
accurately predict max 
serum creatinine level 
during Day 2 and Day 3 
with a root mean square 
error of 0.224 mg/dL. 

30700291 

2019 AKI Phenomics (EHR 
data from the 
Medical 
Information 
Mart for 
Intensive Care 
III (MIMIC-III) 
database) 

6,682 patients Risk prediction prediction of volume 
responsiveness in 
patients with 
oliguric acute kidney 
injury in critical care 

The machine learning 
XGBoost model 
outperformed the 
traditional logistic 
regression model in 
differentiating between 
the volume-responsive 
(VR) and 
volume-unresponsive 
(VU) groups (AU-ROC, 
0.860 vs. 0.728). 

extreme gradient 
boosting (XGBoost), 
logistic regression 

Using advanced machine 
learning techniques, it 
was observed that some 
important clinical factors 
associated with VR-AKI 
such as age, urinary 
creatinine concentration, 
maximum BUN 
concentration, and 
albumin. These results 
have some implications 
and require further 
consideration. 

30961662 

( continued on next page ) 
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Table 1 ( continued ) 

Year Disease Type of data Sample size Purpose of AI Output Data (Label) Results Algorithms Notes PMID 

2019 AKI Phenomics (EHR 
data from the 
Medical 
Information 
Mart for 
Intensive Care 
III (MIMIC-III) 
database) 

58,976 patients Risk prediction prediction of 
mortality risk of AKI 
patients who are 
stratified according 
to their AKI stages 

Comparing the 
performance of four 
predictors, GBDT 
acquires better results. 
Comparing the Stages, 
Stage-III shows a higher 
mortality predictive 
performance. 

Logistic 
Regression (LR), L2 
norm regularized 
Logistic Regression 
(Ridge), Random 

Forest (RF), and 
Gradient Boosting 
Decision Tree 
(GBDT) 

The technique of 
stratifying patients with 
AKI into different stages 
obtained a better 
performance compared 
to the mixed cohort. The 
technique of constructing 
a mortality predictor 
based on different 
cohorts has the potential 
to consider different AKI 
causes. It might be useful 
to incorporate more 
information (e.g., 
imaging and genomic 
biomarkers) to further 
improve the performance 
of dynamic clinical 
mortality risk prediction 
models. 

31437966 

2019 AKI Phenomics (EHR 
data with 
3,599 clinically 
relevant 
features) 

703,782 adult 
patients across 
172 inpatient 
and 1,062 
outpatient sites 

Risk prediction develop a deep 
learning approach 
for the continuous 
risk prediction of 
future deterioration 
in patients from 

diverse clinical 
environments 

It predicts 55.8% of all 
inpatient episodes of 
acute kidney injury, and 
90.2% of all acute 
kidney injuries that 
required subsequent 
administration of 
dialysis, with a lead time 
of up to 48 h and a ratio 
of 2 false alerts for every 
true alert. This 
corresponds to an area 
under the receiver 
operating characteristic 
curve of 92.1%, and an 
area under the 
precision–recall curve of 
29.7%. 

Recurrent neural 
networks 

Recurrent neural 
networks achieve the 
highest performance for 
both PR AUC and ROC 
AUC. Feed-forward 
models (deep MLP, 
shallow MLP, Logistic 
Regression, Random 

Forest, Gradient Boosted 
Trees) do not have the 
capacity to aggregate the 
information about a 
patient over time, which 
necessitates manual 
collection and 
engineering of patient 
historical 
features. Gradient 
Boosted Trees (GBTs) 
benefited from heavy 
overweighting of 
observations with 
positive-labels while 
equivalent oversampling 
for random forest and 
neural-networkbased 
models did not bring a 
similar improvement. 

31367026 
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Table 1 ( continued ) 

Year Disease Type of data Sample size Purpose of AI Output Data (Label) Results Algorithms Notes PMID 

2019 AKI Phenomics (EHR 
data from the 
Medical 
Information 
Mart for 
Intensive Care 
III (MIMIC-III) 
database) 

19044 patients 
with AKI in the 
ICU 

Risk prediction consturct a mortality 
prediction model 
using the random 

forest (RF) algorithm 

for acute kidney 
injury (AKI) patients 
in the intensive care 
unit (ICU) 

The observed in-hospital 
mortality of AKI patients 
is 13.6% in the final 
cohort. The results of 
model performance 
comparison show that 
the Brier score of the RF 
model is 0.085 and 
AUROC of the RF model 
is 0.866. The accuracy of 
the RF model is 0.728. 
The F1 score of the RF 
model is 0.459. The 
calibration plots show 

that the RF model 
slightly overestimates 
mortality in patients 
with low risk of death 
and underestimates 
mortality in patients 
with high risk of death. 

Random forest 
model, Artificial 
neural network 
model, Support 
vector machine 
model, Customized 
SAPS II model 

The top five important 
predictor variables that 
have influence on the 
in-hospital mortality of 
AKI patients in the ICU 
produced by the RF 
model are urine output, 
systolic blood pressure, 
age, serum bicarbonate 
level and heart rate. 

30914181 

2020 AKI Phenomics (13 
input variables) 

212 patients 
received thora- 
coabdominal 
aortic aneurysm 

repair (TAAAR) 

Risk prediction acute renal failure 
(ARF) 

Five-fold cross-validation 
showed that among the 
four classification 
models, random forest 
was the most precise 
model for predicting 
ARF, with an average 
area under the curve 
(AUC) of 0.89 ± 0.08. 

logistic regression, 
linear kernel SVM, 
Gaussian kernel 
SVM, and RF 

Machine learning models 
can precisely predict 
ARF and paraplegia 
during early stages after 
surgery. This program 

allows cardiac surgeons 
to address complications 
earlier and may help 
improve the clinical 
outcomes of TAAAR. 

31765025 

2020 AKI Phenomics (EHR 
data from the 
Medical 
Information 
Mart for 
Intensive Care 
III (MIMIC-III) 
database) 

a total of 37,486 
ICU stays 
including 7,657 
AKI cases from 

6,933 unique 
patients, and 
29,829 controls 
from 24,366 
unique patients 

Subphenotyping discover AKI 
sub-phenotypes 
using structured and 
unstructured 
electronic health 
record (EHR) data of 
patients before AKI 
diagnosis 

Three distinct 
sub-phenotypes are 
obtained by using cluster 
method based on 
patients representations. 

memory networks 
(MN), Logistic 
Regression (LR), 
Random Forest (RF), 
and Gradient 
Boosting Decision 
Tree (GBDT) 

After Age adjustment, 
the following features 
are significantly different 
across the three 
subtypes: Glucose, 
Albumin, Creatinine, 
White Blood Count 
(WBC), Urine, and 
estimated Glomerular 
Filtration Rate (eGFR). 

31911172 

2020 AKI Phenomics and 
some 
biomarkers (9 
input variables) 

101 adult 
patients with 
≥ 20% total body 
surface area 
(TBSA) burns or 
non-burn 
trauma-related 
injuries 
requiring 
surgery 

Risk prediction early eecognition of 
burn- and 
trauma-related AKI 

The AI/ML algorithm 

helped predict AKI 61.8 
(32.5) hours faster than 
the Kidney Disease and 
Improving Global 
Disease Outcomes 
(KDIGO) criteria for burn 
and non-burned trauma 
patients. 

logistic regression 
(LR), k-nearest 
neighbor (k-NN), 
random forest (RF), 
support vector 
machine (SVM), and 
our multi-layer 
perceptron (MLP) 
deep neural network 
(DNN) 

NGAL was analytically 
superior to traditional 
AKI biomarkers such as 
creatinine and UOP. 
With ML, the AKI 
predictive capability of 
NGAL was further 
enhanced when 
combined with 
NT-proBNP or creatinine. 

31937795 
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Table 1 ( continued ) 

Year Disease Type of data Sample size Purpose of AI Output Data (Label) Results Algorithms Notes PMID 

2020 AKI Phenomics (17 
input variables) 

22,542 patients 
in the Medical 
Information 
Mart for 
Intensive Care 
dataset 

Risk prediction prediction of acute 
kidney injury 

Random forest was the 
best classifier using 
structural temporal 
pattern detection. The 
accuracy of the classifier 
with local and global 
trend features was 
significantly higher than 
that while using 
symbolic temporal 
pattern detection and the 
last recorded value 
(81.3% vs 70.6% vs 
58.1%; P < .001). 

Random Forest, 
Extreme Gradient 
Boosting Tree, 
Kernel-based 
Bayesian Network, 
Support Vector 
Machine (SVM), 
Logistic Regression, 
Naïve Bayes, 
K-Nearest Neighbor, 
and Artificial Neural 
Network (ANN) 

It highlights the 
importance of using all 
information in time 
series data rather than 
using a single value. 

32181753 

2020 AKI Phenomics (13 
input variables) 

1,173 
hepatectomy 
patients, 77 
(6.6%) of whom 

had AKI and 
1,096 (93.4%) 
who did not 

Risk prediction predict the 
likelihood of acute 
kidney injury after 
liver cancer 
resection 

The AUC values for the 
four algorithms were: 
Gbdt (0.772), gbm 

(0.725), forest (0.662) 
and DecisionTree 
(0.628). 

random forest 
(forest), LightGBM 

(gbm), decision tree 
(tr), gradient 
boosting (Gbdt) 

Age, cholesterol, tumor 
size, surgery duration 
and PLT influence the 
likelihood and 
development of 
postoperative acute 
kidney injury. 

32140301 

2020 AKI Phenomics (the 
EHRs of 15 
hospitals that 
are part of 
Aurora Health 
Care system) 

36,614 patients 
with 44,691 
total hospital 
stays 

Risk prediction continually predicts 
AKI to occur any 
time during the rest 
of the hospital stay 

The continual prediction 
model obtained 
statistically significantly 
better AUC than the 
one-time prediction 
model (0.724 vs. 0.653; 
p < 0.05; two-tailed 
paired t-test). 

Weka machine 
learning software 

Top ten medication and 
comorbidity features 
whose prescription or 
diagnosis during a 
hospital stay were 
associated with a change 
in the model’s prediction 
from non-AKI to AKI. 
Those include Cisplatin, 
Aminoglycosides, 
Hypercalcemia, 
Diuretics, Acyclovir, ACE 
inhibitors or NSAIDS or 
Diuretics, ARB or ACE 
inhibitors or NSAIDS or 
Diuretics, Respiratory 
failure, Rhabdomyolysis, 
K sparing. 

32001013 
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Table 1 ( continued ) 

Year Disease Type of data Sample size Purpose of AI Output Data (Label) Results Algorithms Notes PMID 

2020 AKI Phenomics (32 
input variables) 

1571 adult 
patients who 
started CRRT for 
acute kidney 
injury 

Risk prediction predict mortality in 
patients undergoing 
continuous renal 
replacement therapy 

For the ICU mortality, 
the random forest model 
showed the highest AUC 
(0.784), and the artificial 
neural network and 
extreme gradient boost 
models demonstrated the 
next best results (0.776). 
The AUC of the random 

forest model was higher 
than 0.611, 0.677, and 
0.722, as achieved by 
APACHE II, SOFA, and 
MOSAIC, respectively. 

𝜅-nearest neighbor 
(KNN), support 
vector machine 
(SVM), multivariate 
adaptive regression 
splines (MARS), 
random forest (RF), 
extreme gradient 
boost (XGB), and 
artificial neural 
network (ANN) 

The models developed 
using machine learning 
algorithms better 
predicted ICU and 
in-hospital mortalities 
than conventional 
scoring systems such as 
APACHE II and SOFA, 
and MOSAIC. 

32028984 

2021 AKI Phenomics (64 
input variables) 

200,859 
admissions 
between 2014 
and 2015 at 208 
hospitals of the 
United States 

Risk prediction use XGBoost to 
construct a 
predictive mortality 
model for AKI 
patients in the ICU 

The overall in-hospital 
mortality of AKI patients 
was 16.35%. The best 
performing algorithm in 
this study was XGBoost 
with the highest AUROC 
(0.796, p < 0.01), 
F1(0.922, p < 0.01) and 
accuracy (0.860). The 
precision (0.860) and 
recall (0.994) of the 
XGBoost model rank 
second among the four 
models. 

the XGBoot 
(eXtreme Gradient 
Boosting) decision 
tree model, LR 
(logistic regression), 
SVM (support vector 
machines), and RF 
(random forest) 

It indicates that the 
minimum creatinine was 
more useful in predicting 
AKI mortality than any 
of the other laboratory 
measurements or vital 
signs 

33539390 

2021 AKI Phenomics (64 
input variables) 

2,009 patients Risk prediction develop a predictive 
model for contrast 
induced 
nephropathy (CIN) 
in patients with 
coronary artery 
disease (CAD) with 
relatively normal 
renal function (NRF) 

With baseline UA ≥ 450 
𝜇mol/L, CK-MB ≥ 48 
U/L, and NT-proBNP 
≥ 850 pg/mL as the 
cut-off values, patients 
were devided into two 
risk groups (low risk and 
high risk, corresponding 
to a total score of < 10 
and ≥ 10, 
respectively).The CIN 
incidence of patients in 
the low-risk group was 
1.0%, while the 
incidence increased to 
14.8% when the total 
score was ≥ 10. 

elastic net Three independent risk 
factors in patients with 
CAD with relatively NRF 
for CI-AKI were: baseline 
UA level, CK-MB level, 
and NT-proBNP level of 
CIN. 

34778413 
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Table 1 ( continued ) 

Year Disease Type of data Sample size Purpose of AI Output Data (Label) Results Algorithms Notes PMID 

2021 AKI Metabolomics 214 individuals 
(122 patients 
with AKI, 92 
patients without 
AKI as controls) 

Risk prediction develop and evaluate 
the diagnostic use of 
metabolomics-based 
biomarkers in 
patients with 
Cardiac 
surgery-associated 
acute kidney injury 
(CSA-AKI) 

Gluconic acid, fumaric 
acid, and pseudouridine 
were significantly 
upregulated in patients 
with AKI. A random 

forest model constructed 
with selected clinical 
parameters and 
metabolites exhibited 
excellent discriminative 
ability (area under curve, 
0.939). In the AKI swine 
model, plasma levels of 
the 3 discriminating 
metabolites increased in 
a time-dependent 
manner. The predictive 
model remained robust 
when tested in a subset 
of patients with 
early-stage AKI in the 
validation cohort (area 
under curve, 0.943). 

random forest 
(RF), support vector 
machine (SVM), and 
logistic regression 
(LR) 

High-resolution 
metabolomics is 
sufficiently powerful for 
developing novel 
biomarkers. Plasma 
levels of 3 metabolites 
were useful for the early 
identification of 
CSA-AKI. 

34719239 

2021 AKI Phenomics (NA) 4,289 
hospitalized 
adult patients 
with acute 
kidney injury at 
admission 

Subphenotyping cluster patients with 
acute kidney injury 
at hospital admission 
into clinically 
distinct subtypes 
using an 
unsupervised 
machine learning 
approach and assess 
the mortality risk 
among the distinct 
clusters 

Consensus clustering 
analysis identified four 
distinct clusters. Cluster 
2 patients had lower 
serum bicarbonate, 
strong ion difference, 
and hemoglobin, but 
higher serum chloride, 
whereas cluster 3 
patients had lower serum 

chloride but higher 
serum bicarbonate and 
strong ion difference. 
Cluster 4 patients were 
younger and more likely 
to be admitted for 
genitourinary disease 
and infectious disease 
but less likely to be 
admitted for 
cardiovascular disease. 
Cluster 4 patients also 
had more severe acute 
kidney injury, lower 
serum sodium, serum 

chloride, and serum 

bicarbonate, but higher 
serum potassium and 
anion gap. Cluster 2, 3, 
and 4 patients had 
significantly higher 
hospital and one-year 
mortality than cluster 1 
patients (p < 0.001). 

unsupervised 
consensus clustering 
analysis 

It demonstrated using 
machine learning 
consensus clustering 
analysis to characterize a 
heterogeneous cohort of 
patients with acute 
kidney injury on hospital 
admission into four 
clinically distinct clusters 
with different associated 
mortality risks. 

34698185 
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Table 1 ( continued ) 

Year Disease Type of data Sample size Purpose of AI Output Data (Label) Results Algorithms Notes PMID 

2021 AKI Metabolomics 1st group 
included 61 
patients 
(non-AKI: 23, 
mild AKI: 24, 
severe AKI: 14) 
and 2nd group 
included 60 
additional 
patients 
(non-AKI: 40, 
mild AKI: 20). 

Risk prediction identify metabolites 
potentially 
associated with the 
progression of AKI 

Uinre glycine and 
ethanolamine were 
decreased in patients 
with AKI compared with 
non-AKI patients at 6-24 
h in the two groups. The 
linear statistical model 
constructed at each time 
point by machine 
learning achieved the 
best performance at 24 h 
(median AUC 89%) for 
the 1st group. When 
cross-validated between 
the two groups, the AUC 
showed the best value of 
70% at 12 h. 

the least absolute 
shrinkage and 
selection operator 
(LASSO) 

Urinary metabolomic 
profile analyses 
identified metabolites 
and time points that 
show patterns specific to 
patients who develop 
AKI. 

34677386 

2021 AKI Phenomics 
(52input 
variables) 

6093 patients 
(2442 in 
training and 
3651 in external 
validation) 

Risk prediction predict acute dialysis 
initiation in AKI of 
hospitalized patients 
with coronavirus 
disease 2019 
(COVID-19) 

Of the five machine 
learning models tested, 
the nonimputed XGBoost 
had the best 
performance, with an 
AUROC of 0.98 at 1 day, 
0.96 at 3 days, 0.94 at 5 
days, and 0.93 at 7 days 
on internal validation. 
The AUPRC was 0.82 at 
1 day, 0.80 at 3 days, 
0.79 at 5 days, and 0.78 
at 7 days. Using the 
optimal threshold 
derived using the Youden 
J statistic, nonimputed 
XGBoost had the highest 
sensitivity (ranging 
between 0.84 and 0.95) 
and specificity 
(0.9–0.96) across time 
points in the internal 
validation cohort. 

logistic regression, 
Least Absolute 
Shrinkage and 
Selection Operator 
(LASSO), random 

forest, and eXtreme 
GradientBoosting 
(XGBoost0 

During all time horizons, 
serum creatinine at 
admission was one of the 
major features driving 
model predictions. Other 
clinically relevant 
features included BUN, 
systolic BP, age, and 
oxygen saturation. 

34031183 

2021 AKI Phenomics (EHR 
data from the 
Medical 
Information 
Mart for 
Intensive Care 
III (MIMIC-III) 
database) 

12,347 patient Risk prediction evaluate the ability 
of a machine 
learning algorithm 

to predict for AKI as 
defined by KDIGO 

stage 2 or 3 up to 48 
hours 

On a hold-out test set, 
the CNN algorithm 

attained an AUROC of 
0.86 and PPV of 0.24, 
relative to a cohort AKI 
prevalence of 7.62%, for 
long-horizon AKI 
prediction at a 48-hour 
window before onset. 

XGBoost, and 
convolutional neural 
networks (CNNs) 

A CNN machine 
learning-based AKI 
prediction model 
outperforms XGBoost 
and the SOFA scoring 
system, revealing 
superior performance in 
predicting AKI 48 hours 
before onset, without 
reliance on serum 

creatinine (SCr) 
measurements. 

34013107 

An increasing amount of studies taking artificial intelligence for predicting, diagnosing and sub-phenotyping. And there are many promising models, but exhibit variable performance. The variability in ML prediction 
can be attributed, in part, to the specific ML model utilized, variable selection and processing, study and subject characteristics, and the steps associated with model training, validation, testing, and calibration. Apart 
from traditional models, there are some studies investigating ∼omics in AKI prediction. IgAN: IgA nephropathy; AKI: Acute kidney injury; EHRs: Electronic health records; PCI: Percutaneous coronary intervention; 
GBM: Gradient boosting machine; DT: Decision tree; RF: Random forest; SVM: Support vector machine; LR: Logistic regression; RNN: Recurrent neural network; ANN: Artificial neural network; ROC: Receiver operating 
characteristic curve; AUC: Area under curve. 
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n  

A  

d  

m  
rom 118,584 patients, Inaguma et al . observed that the amount of
rine protein, especially an increasing tendency, could serve as a promi-
ent risk factor [147] . Using an unsupervised latent class mixed model
148] , Raynaud et al . identified that donor age, eGFR, proteinuria, and
istological features including graft scarring, interstitial inflammation
nd tubulitis, microcirculation inflammation, and circulating anti-HLA
onor specific antibodies, could predict long-term kidney allograft out-
omes. Using a retrospective cohort of 948 patients, Schena et al . devel-
ped an ANN ESKD prediction model in IgA nephropathy [149] . Chen et
l . constructed a scoring scale model (SSM) with three variables (tubu-
ar atrophy/interstitial fibrosis, global sclerosis, and urine protein excre-
ion). They reported that the 5-year risks for the combined event using
he SSM risk scores for 0–4 points were 2.7%, 4.8%, 16.4%, 30.8%, and
2.4%, respectively. To date, several different models have been devel-
ped and tested to predict ESKD in IgAN [150–154] ( Table 1 ); however,
esults were conflicting, partially because different predictors were in-
olved and the selected predictors were limited. If the algorithm cap-
ures biases in the training data, the conclusions would not be strongly
upported. In cases of erroneous discoveries, it will be important to have
 better understanding of the disease and relationships among predic-
ors, as well as robust validation and mechanistic follow-up studies. In-
erestingly, Gonzalo-Calvo et al . suggested that adding -omics data, in-
luding circulating microribonucleic acids, to machine learning model-
ng could improve cardiovascular risk prediction in patients with ESKD
n hemodialysis [155] . In addition, the inclusion of metabolites might
lso improve risk prediction in people with diabetes [156] . However,
ample sizes in -omics studies need to be increased for reliable read-
uts. 

A beneficial impact of AI on life quality and survival in dialysis
nd kidney transplant patients has been proposed. It was suggested
hat AI-based algorithms were better than nephrologists to predict vol-
mes, Kt/V, hypotension, and cardiovascular events [157] . The applica-
ions of AI in dialysis also include: service process, dialysis procedure,
nemia management, diet, arteriovenous fistula assessment, peritoneal
echniques, infections, and outcome prediction. Applications of AI in
ransplantation studies include pretransplant organ-matching, graft re-
ection prediction, and therapy dose modulation. 

.3. AI based system for rare kidney diseases 

There are over 8000 kinds of rare diseases (RDs) worldwide. About
0% of RDs are genetic and about 75% are childhood onset. Although
ndividually rare, it is estimated that they could affect 350 million peo-
le in total, representing a major challenge for healthcare. Patients with
Ds frequently have several obstacles: multi-organ involvement without
pecific symptoms leading to late diagnosis and misdiagnosis, lack of
argeted therapies, and an absence of monitoring systems. Thus, these
atients could derive a particular benefit from AI technologies [158–
60] . To integrate and analyze data from different sources (e.g., multi-
mics and patient registries), the use of AI can overcome the above chal-
enges. Opportunities will include increased access to various expertise,
mproved patient participation and monitoring, and better patient em-
owerment. AI technologies can be used to identify patients from EHR
ata [161] , to provide real-world information about their medical his-
ory, and to determine effective drug selection and therapeutic regimens
162,163] . In genetic counseling, AI has also shown its superiority to
mprove the accuracy for variant calling, prediction, and classification
164–166] . 

.4. Drug discovery 

A variety of AI methods, such as Bayesian, support vector machines,
nd DNNs have demonstrated their merits in drug development. These
ethods leverage big datasets obtained from high-throughput screening

nd allow the prediction of target properties with enhanced accuracy
167–169] . AI has also been used to text-mine literature using natural
144 
anguage processing (NLP), to search druggable targets using genome
ide data [170–172] , and to perform ‘virtual screens’ on vast numbers of

ompounds. In the field of structure-based drug development or targeted
utagenesis, knowledge about protein structure is imperative. Despite

f decades of effort, only about 100,000 proteins revealed structures,
epresenting 17% of human protein sequences. AlphaFold is a newly de-
eloped ML approach that incorporates physical and biological knowl-
dge, leveraging multi-sequence alignments into the algorithm design
173–177] . By applying AlphaFold2 ( https://alphafold.ebi.ac.uk/ ) to
8.5% of human proteins at scale, it disclosed 58% of the residues with
 confident prediction. AlphaFold is a co-evolution-dependent method.
y contrast, physics-based approaches, such as end-to-end differentiable
odels, semi-supervised approaches, and generative approaches, are

lso gradually maturing, and might provide a complementary path to
ackle the prediction of protein structure [178] . These AI tools are pre-
icted to accelerate future drug design. Unfortunately, drug develop-
ent is a lengthy process. 

.5. Precision medicine 

Precision medicine is generalized as the delivery of tailored interven-
ions to specific patients, i.e., “the right drug for the right patient at the
ight time ”. The practice largely depends on detailed molecular charac-
eristics generated from -omics investigations. Omics data must be in-
egrated with accurate clinical measurements and detailed pathological
ssessments. While there are intrinsic limitations to the use of traditional
tatistical methods to deal with multi-layered big data, AI is a promising
echnique to enable the use and integration of -omics data. For instance,
n inflammatory bowel disease, ML techniques are able to stratify pa-
ients into sub-phenotypes based on the integration of immunological
ndings, endoscopic observation, and histological data [179,180] . De-
ision support systems based on AI have been used in patients receiving
emodialysis to guide drug and dialysis dose prescription [181,182] . In
ddition, ML models can help to cluster clinically similar patients into
olecularly different phenotypes, based on ‘-omics’ data, to select more

ffective treatment options [183] . These perspectives can be used as a
eference to stratify benefits and risks, as well as to develop individual-
ze treatment, by introducing non-invasive and more specific diagnostic
lassifications. 

Several collaborative projects have been launched to achieve the
oal of precision medicine in KDs. The Kidney Precision Medicine
roject (KPMP) ( https://www.kpmp.org/ ) is an NIH-funded plan that
s actively generating molecular and 3D imaging maps of reference
idneys from patients with AKI and CKD. The goal is to promote
ata sharing and accelerate molecular diagnosis of common KDs,
nally aiming to develop more precise advanced therapy [184] . In
his context, a repository of clinical and biospecimen data named
he Kidney Tissue Atlas has been created. It will be helpful to use
olecular data to define novel subtypes, which currently suffers

rom insufficient classification. Then, the anticipated targeted and
ffective therapies could be discovered. Other cohorts/consortia
nitiated include the ERCB (European Renal cDNA Bank), the
KDGen Consortium ( https://ckdgen.imbi.uni-freiburg.de ), NEP-
UNE (Nephrotic Syndrome Study Network) ( https://www.neptune-
tudy.org/ ), Clinical Phenotyping Resource and Biobank Core (C-Probe)
 https://kidneycenter.med.umich.edu ), and the CRIC cohort (Chronic
enal Insufficiency Cohort) ( http://www.cristudy.org ). 

. Current limitations and future directions 

As discussed in this review, new opportunities are opening up for
ephrologists because of the development of -omics technologies and
I methods. These new technologies will contribute to a better un-
erstanding of the molecular pathophysiology of kidney diseases, their
echanistic classification, and their targeted therapy ( Fig. 6 ). In this

https://alphafold.ebi.ac.uk/
https://www.kpmp.org/
https://ckdgen.imbi.uni-freiburg.de
https://www.neptune-study.org/
https://kidneycenter.med.umich.edu
http://www.cristudy.org
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Fig. 6. Interrogation of multi-layered omics data using by artificial intelligence to address disease molecular subtypes, to diagnosis and predict diseases 

early, and to develop precise targeted therapy are the current challenges in kidney diseases. Information from an individual can be de-identified and coded at 
the individual level, and then captured across multiple data domains, including omics and/or pathology data from tissue, urine or blood samples as well as electronic 
health records (EHR). Such approaches have the potential to aid risk stratification, provide insights into novel mechanisms associated with kidney disease, and aid 
the identification of clinically relevant subpopulations or subgroups who may benefit from targeted therapy. 
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cenario, multi-source data integration plays an important role. How-
ver, we need to recognize that the meaningful results of computational
nalysis can be only derived from valid data. Big data, particularly data
rom real-world clinical practice, are usually biased and might be mis-
nterpreted. Most reported studies also suffer from the biases resulting
rom the use of retrospective cohorts. The structures of clinical data
re complex, and need to be linked with different data resources. Data
torage might result in errors and missing information is almost in-
vitable. In addition, there is a lack of standardized reporting systems
hat are easy to process and identify. For -omics studies, the quality of
esearch, the transparency and reproducibility of assay data, general-
zation issues resulting from results being produced on different plat-
orms or laboratories, are all critical points. Using standardized refer-
nces, assay protocols, and procedures for quality control will improve
eproducibility among studies. In addition, large -omics studies have
he potential to find the most noteworthy changes, but are less use-
ul to observe uncommon, yet likely defining, events. Thus, it is nec-
ssary to complement strategies based on a priori knowledge and mech-
nistic models. Considerations of ethical issues are also required when
erging data access and sharing. Data disparities among different pop-
lations, inappropriate use of datasets, inaccurate or inappropriate dis-
losures, limitations in deidentification techniques, and little incentive
or data sharing in the current healthcare systems, may lead to privacy
reaches, minority discriminatory and biased treatment. Technologies
f AI will undoubtedly alter the traditional physician-patient relation-
hip, but it may also introduce safety challenges once system perfor-
ance fluctuates. In addition, for all medical devices and regimens,

here is tension between providing ethical medical care and generating
rofit. One key element to implementing AI in healthcare is develop-
ent of regulatory standards for assessment of safety and efficacy. One

f the organizations leading guidance in this area is the International
edical Device Regulators Forum (IMDRF), whose members currently

nclude Australia, Brazil, Canada, China, Europe, Japan, Russia, Singa-
ore, South Korea, and the United States [100–116] . The application of
ulti-omics, and artificial intelligence in nephrology is still at an early
145 
iscovery stage. We need to create and execute a roadmap to validate
hose basic discoveries and further translate into clinical care, creat-
ng a new era of personalized medicine to improve health and kidney
utcomes. 
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