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a b s t r a c t 

The difficulty of converting scientific research findings into novel pharmacological treatments for rare and life- 

threatening diseases is enormous. Biomarkers related to multiple biological processes involved in cell growth, 

proliferation, and disease occurrence have been identified in recent years with the development of immunology, 

molecular biology, and genomics technologies. Biomarkers are capable of reflecting normal physiological pro- 

cesses, pathological processes, and the response to therapeutic intervention; as such, they play vital roles in disease 

diagnosis, prevention, drug response, and other aspects of biomedicine. The discovery of valuable biomarkers has 

become a focal point of current research. Numerous studies have identified molecular biomarkers based on the 

differential expression/concentration of molecules (e.g., genes/proteins) for disease state diagnosis, characteri- 

zation, and treatment. Although technological breakthroughs in molecular analysis platforms have enabled the 

identification of a large number of candidate biomarkers for rare diseases, only a small number of these candidates 

have been properly validated for use in patient treatment. The traditional molecular biomarkers may lose vital in- 

formation by ignoring molecular associations/interactions, and thus the concept of network biomarkers based on 

differential associations/correlations of molecule pairs has been established. This approach promises to be more 

stable and reliable in diagnosing disease states. Furthermore, the newly-emerged dynamic network biomarkers 

(DNBs) based on differential fluctuations/correlations of molecular groups are able to recognize pre-disease states 

or critical states instead of disease states, thereby achieving rare disease prediction or predictive/preventative 

medicine and providing deep insight into the dynamic characteristics of disease initiation and progression. 
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B

. Introduction 

Rare disease patients face unique challenges in accessing diagno-

is, medical care, and access to support services [1] . There is currently

o uniform definition of a rare disease, but it is given that the inci-

ence of these diseases is extremely low [2] . Most rare diseases are

enetic, but at least one in five are caused by infections, allergies, or

nvironmental factors [3] . Of course, this is not set in stone. Rare dis-

ase patients face two conundrums. First, a correct diagnosis often takes

 long time [4] . Rare disease patients often go through a long diag-

ostic journey that can take years or even decades. Understandably,

ost doctors do not understand each and every rare disease, and to

ake matters worse, the same rare disease may manifest in different
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ays in different patients [5] . Second, even when a patient is accu-

ately diagnosed, they may not have many treatment options and may

nd up resorting to therapies designed to treat the associated condi-

ion or to simply relieve some of the symptoms rather than the actual

ause [6] . Currently, the US Food and Drug Administration (FDA) has

o specifically approved treatments for more than 95% of rare diseases

7] . 

Biomarkers refer to biochemical indicators that can mark the

hanges or possible changes in the structure and function of cells and

ubcellular structures of systemic organs and tissues. Biomarkers can

e used in disease diagnosis to determine the disease stage or to eval-

ate the safety and efficacy of new drugs or therapies in target pop-

lations. Currently, a large number of methods have been developed
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s  
n the search for biomarkers, including molecular biomarkers using

xpression/concentration information, network biomarkers using ad-

itional network information, and dynamic network biomarkers fur-

her using the dynamics of molecular information. Our aim herein

s to present a summary of the methods used to find various types

f biomarkers; we further consider their strengths and examine their

pplicability. 

In rare diseases, due to difficulties in diagnosis and limited devel-

pment of specific drugs it is necessary to find markers for diagnosis

nd treatment, and this is a current research focus. Fabry disease (FD)

s an X-linked lysosomal storage disorder caused by mutations in the

LA gene encoding the enzyme 𝛼-galactosidase A (agalA). Enzyme re-

lacement therapy (ERT) is a commonly used treatment. The enzyme

leaves the last sugar unit of glycosphingolipids such as globotriaosyl-

eramide (Gb 3 ), globotriaosylsphingosine (lyso-Gb 3 ), and galabiosylce-

amide (Ga 2 ) [8] . Urinalysis for Gb 3 isoforms (different fatty acid moi-

ties) as well as for lyso-Gb 3 and its analogs is a reliable method used

n monitoring and treatment. The efficacy of treatment can be followed

hrough the levels of these markers [9] . A recent study employed circu-

ating microRNAs (miRNAs) to examine their association with multiple

clerosis (MS) and disability progression. Using serum RT-PCR detec-

ion technology to analyze the expression of circulating miRNAs in 100

ubjects, it was found that miR-24-3p and miR-128-3p showed trends

elated to disability accumulation and disease activity in MS patients

10] . For anal squamous cell carcinoma (SCCA), a systematic review

f current prognostic markers in SCCA has been performed. A series

f biomarkers have been identified that are correlated with survival

fter chemoradiotherapy for anal cancer. The tumor suppressor genes

53 and p21 are markers that have been shown to have important

rognostic value in several studies [11] . However, researchers have yet

o identify a biomarker that consistently predicts the outcomes of this

isease. 

There are more than 8000 rare diseases that affect > 5% of the world’s

opulation, but only about 5% of rare diseases currently have licensed

reatments, and many rare diseases have no effective treatment. Drug

evelopment for rare diseases is plagued by multiple challenges, and

linical trial failures are not uncommon. Personalized medicine allows

or early warning, diagnosis, and guide treatment of human disease. In

his context, the discovery of biomarkers for rare diseases is critical for

imely prevention and effective treatment. A biomarker is defined as a

iological feature that can be objectively measured and assessed as a

ignal of normal biological or pathological processes, and thus has the

otential to improve diagnosis, predict disease manifestation, and mon-

tor the response to therapeutic intervention. Because 80% of rare dis-

ases are of genetic origin, the identification of novel genes and disease-

ausing mutations is central to identifying valuable biomarkers. In addi-

ion, molecular markers such as expressed genes, metabolites, and pro-

eins are also important for diagnosis and treatment. Current advances

n platform technology for molecular analysis can identify a broad range

f candidate biomarkers for rare diseases, but few of these candidates

ave been sufficiently validated to be integrated into clinical manage-

ent programs for patients. 

. Molecular biomarkers 

Genes, RNAs, proteins, and metabolites can serve as molecular

iomarkers, playing important roles in the diagnosis, prognosis, pre-

iction, and therapeutic treatment of diseases. With the accelerated de-

elopment of high-throughput sequencing technologies, large amounts

f omics data have been accumulated and further exploited to iden-

ify molecular biomarkers. Molecular biomarkers are defined as one

r a group of individual molecules measured by differential expres-

ion/concentration between a disease state and a normal control state.

or a credible molecular biomarker, it should be objectively measured

nd significantly abnormal in a specific disease and thus should distin-

uish a disease state from a normal state [12] . 
895 
.1. Methods for identifying molecular biomarkers 

Methods to identify molecular biomarkers have been widely ex-

lored ( Table 1 ). DESeq2 [13] and edgeR [14] are two well-known

ethods used to identify differentially expressed genes (DEGs) from

NA-sequencing data. Thousands of differentially expressed genes for

 specific disease have been found using these two methods, but the

umber of molecular biomarkers for a certain disease should be small

rom the perspective of clinical applications [12] . Thus, additional sta-

istical and data mining approaches are also applied to identify reliable

olecular biomarkers of diseases; these include support vector machines

SVM) [ 15 , 16 ], partial least square-discriminant analysis (PLS-DA) [17–

9] , least absolute shrinkage and selection operator (LASSO) [20] and

ecursive feature elimination (RFE) [21] to screen for potential biomark-

rs. 

.2. Application of molecular biomarkers in rare diseases 

Mutations, gene polymorphisms, RNAs, proteins, and metabolites

hat become altered as diseases progress may be valuable molecular

iomarkers for characterizing cell pathophysiology in rare diseases. 

The most advanced omics technology is genomics, and research on

he genome typically focuses on gene sequences and genetic variation

22] . In a genetic study of 124 people with FD, Niemann et al. discovered

hat the biomarker lyso-Gb 3 may identify the clinically related agalA

utations leading to the disease [23] . Cerasuolo et al. developed a ge-

etic screening test for the STK11 gene to investigate the molecular basis

f the genotype-phenotype correlation of Peutz-Jeghers syndrome (PJS)

nd highlighted the importance of early genetic testing in young PJS

atients [24] . 

Transcriptomics is a qualitative and quantitative omics involving

NA at the overall level. The qualitative analysis comprises studying

he existence of transcripts and identifying alternative splicing events

nd RNA editing sites, while the quantitative analysis considers the

xpression level of each transcript [25] . Apart from messenger RNA

mRNA), which can encode proteins, transcriptome sequencing tech-

ology can also quantify some non-coding RNAs, including miRNAs,

ong non-coding RNAs (lncRNAs), and circular RNAs (cirRNAs). Many

tudies have shown that these non-coding RNAs play regulatory roles

n the occurrence and development of multiple rare diseases [ 10 , 26-

8 ]. Gupta et al. performed RNA-seq on 20 patients with MS and em-

loyed RT-qPCR on a validation cohort of 44 participants. Four lncRNAs

ith significant differential expression in both cohorts were regarded as

iomarkers for distinguishing the severity of the MS phenotype [26] .

orroglosa et al. screened the expression of 84 lncRNAs and identified

hree ( SOCS2-AS, MEG3 , and NEAT1 ) associated with enteric nervous

ystem (ENS) development in Hirschsprung disease (HSCR) [27] . Ex-

ression levels of CASC2 and miR-21 were evaluated in a study on ma-

ignant gliomas, and it was found that the lncRNA CASC2 that acts as a

umor suppressor gene was downregulated in gliomas and likely inter-

cted with miR-21 [28] . 

Metabolomics is an emerging discipline that includes qualitative and

uantitative analyses of small molecular weight metabolites in a cer-

ain organism or cell. The methods can help us to better understand

he process of pathological change. Because body fluids can be used

or metabolomics, this is a noninvasive method that can lead to the di-

gnosis and grading of diseases [22] . A series of published studies have

hown that metabolomics can be applied to identify molecular biomark-

rs for rare diseases [29–31] . For example, Auray-Blais et al. identified

ovel urinary Fabry disease biomarkers using a time-of-flight mass spec-

rometry metabolomic approach [30] . Menkovic et al. performed a semi-

argeted plasma metabolomic study using an ultra-performance liquid

hromatography system coupled to a time-of-flight mass spectrometer

o identify novel Gaucher disease (GD) biomarkers [31] . 

Proteins are biomolecules composed of amino acids, and they are re-

ponsible for cell functions. Proteomics studies the characteristics of pro-
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Table 1 

Overview of analysis methods for molecular biomarkers . 

Methods Description Applications Reference 

DESeq2 A method using shrinkage estimation for differential 

expression analysis of count data. 

Quantitative analysis of comparative RNA-seq data using 

shrinkage estimators for dispersion and fold change. 

[13] 

edgeR Examining differential expression of replicated count data. Can be used 

in experiments that generate counts. 

[14] 

SVM A powerful method to build a classifier. Cancer genomic classification or subtyping. [ 15 , 16 ] 

PLS-DA A discrimination method based on PLS regression. Predictive and descriptive modeling as well as for 

discriminative variable selection. 

[17–19] 

LASSO A shrinkage and selection method for linear regression. Estimating parameters and selecting variables. [20] 

RFE Method of gene selection utilizing SVM methods based on 

recursive feature elimination. 

Selecting features by recursively considering smaller sets of 

features. 

[21] 

Table 2 

Application of molecular biomarkers in rare diseases . 

Data type Sequencing technology Examples Reference 

Genomics WGS, WES Identify agalA mutations determining clinically relevant FD. [23] 

Perform STK11 genetic screening test and investigate the genotype-phenotype correlation in PJS. [24] 

Transcriptomics RNA-seq, RT-qPCR Investigate possible lncRNA biomarkers to differentiate phenotypic severity in MS. [26] 

Perform qRT-PCR on a set of lncRNAs to identify lncRNAs associated with ENS development in HSCR. [27] 

Assess levels of CASC2 and miR-21 and their interplay in glioma. [28] 

Metabolomics NMR, MS Detect lyso-Gb 3 -related FD biomarkers in urine using mass spectrometry metabolomic approach. [30] 

Perform metabolomic study to identify novel GD biomarkers. [31] 

Proteomics MS Identify gender-specific plasma protein biomarker panels for AFD. [32] 

Perform serum proteomics profiling in CF patients and healthy subjects. [33] 

Assess proteome changes in peripheral blood mononuclear cells from FD patients and healthy controls. [34] 

WGS: whole-genome sequencing; WES: whole-exome sequencing; NMR: nuclear magnetic resonance; MR: mass spectrometry 

t  

a  

a  

n  

o  

p  

p  

a  

fi  

e  

b  

t  

o  

t

2

 

c  

c  

o  

t  

i  

p  

u  

l  

M  

a  

b  

e  

d  

w  

c

3

 

m  

s  

m  

[  

i  

t  

T  

o  

g  

t  

i  

c  

t  

o  

d  

n  

l  

p  

c  

m  

l  

o  

t  

m  

t  

e  

e  

c

3

 

s  

a  

a  

c  

a  

M  

n  
eins on a large scale to quantify their abundance and to detect the inter-

ctions between different proteins. The in-depth study of proteomics has

dvantages for a comprehensive understanding of the molecular mecha-

isms of disease, investigation of early diagnosis biomarkers, and devel-

pment of new treatment schemes. Hollander et al. utilized an unbiased

roteomic screening approach and identified gender-specific plasma

rotein biomarker panels for Anderson-Fabry disease (AFD) [32] . Ben-

bdelkamel et al. performed serum proteomics profiling in 28 cystic

brosis (CF) patients and identified 15 proteins as potential biomark-

rs for CF [33] . Cigna et al. assessed proteome changes in peripheral

lood mononuclear cells to pinpoint FD-specific biomarkers and to bet-

er understand the pathophysiological changes involved in FD [34] . An

verview of application of molecular biomarkers in rare diseases men-

ioned above is given in Table 2 . 

.3. Deficiencies of molecular biomarkers 

Although traditional molecular biomarkers are widely applied in

linical practice, their use has some limitations and shortcomings, in-

luding accuracy and reliability. First and foremost, the interactions

r associations between biomarkers are usually not considered, al-

hough this may be critical for a robust diagnosis and for understand-

ng the molecular mechanisms of complex diseases [35] . Many com-

lex or chronic diseases result not from the dysfunction of individ-

al genes or molecules, but rather from the dysfunction of molecu-

ar networks/pathways, and thus can be viewed as network diseases.

oreover, disease progression is not a static phenomenon but rather

 dynamic process. In addition, identification of traditional molecular

iomarkers is often achieved from the differential analysis between dis-

ase and normal states while ignoring the dynamic changes during the

evelopment and progression of the disease [36] . Therefore, biomarkers

ith networks and with dynamic information are essential in order to

haracterize complex biological systems [37] . 

. Network biomarkers 

Although molecules are fundamental components of cells and that

olecular biomarkers play a vital role in the occurrence and progres-
896 
ion of diseases, complex diseases are generally affected by a group of

olecules or a molecular network rather than an individual molecule

38] . As a matter of fact, the causes of diseases are diverse; alterations

n cell signaling, chromatin, epigenome regulation, RNA splicing, pro-

ein homeostasis, or metabolism are all likely to trigger diseases [39] .

hese alterations are influenced by differential associations/correlations

f molecule pairs and thus cannot be elucidated via single molecules. Re-

arding the disease state in the organism as a dynamic system gives rise

o systems biology, defined as the study of all components in a biolog-

cal system and the associations between these units under particular

ircumstances [40] . In other words, a disease is generally caused not by

he dysfunction of individual genes or molecules but by the dysfunction

f molecular networks/pathways, and thus can be viewed as a network

isease. Hence, in addition to expression information, a biomarker with

etwork information is of greater value. Network biomarkers or modu-

ar biomarkers composed of several interacting molecules with similar

erformance could supply a more quantifiable and stable approach to

haracterizing biomedical phenotypes or diseases instead of individual

olecular biomarkers, thus motivating the investigation at a network

evel in systems biology [41] . Consequently, utilizing high-throughput

mics data to reveal the interactions among molecules or to construct

heir networks and integrating biological data through computational

odeling will contribute to a deeper understanding of the biological sys-

em. To address the difficulties in obtaining samples, network biomark-

rs can be employed to improve the study of biomarkers for rare dis-

ases. In addition, a multi-dimensional omics analysis of a single sample

an efficiently identify network biomarkers. 

.1. Methods for network biomarkers 

Network biomarkers can be used to comprehend how a biological

ystem operates, determine personalized medicine or treatment plans,

nd predict the disease progression and prognosis of individual patients,

s well as the potential targets of established or novel drugs. Various cal-

ulation methods based on omics data have been developed to achieve

ccurate categorization of patients and reliable diagnosis of diseases.

ethods of network biomarkers can be divided into two categories: a)

etworks constructed based on significant molecular biomarkers; b) net-
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Table 3 

Overview of analysis methods for network biomarkers . 

Methods Description Applications Reference 

PPI Estimate edge biomarkers according to differential 

expressed genes and protein-protein interactions. 

Classify patients accurately and integrate 

protein-protein interaction information. 

[50] 

EdgeBiomarker Construct an individual specific network through 

the expression profile of a single sample and 

integrating the edge and node markers of the 

biological network. 

Diagnose the phenotype of each individual. [42] 

SSN Construct individual specific networks based on 

the molecular expression of a single sample. 

Clarify the molecular mechanisms of complex 

diseases of each individual at the system level. 

[43] 

P-SSN Construct single-sample network and retain the 

direct interactions by excluding indirect 

interactions. 

Predict driver mutation genes based on 

single-sample data, subtype complex diseases and 

cluster single cells. 

[44] 

TRFBA Integrate transcriptional regulatory and metabolic 

models using a set of expression data for various 

perturbations. 

Integrate transcriptome and metabolome data and 

improve the quantitatively prediction of growth 

rate. 

[45] 

SCS Use mutation data and expression data to identify 

personalized driver mutation profiles from the 

perspective of network controllability. 

Predict personalized driver mutation spectrum. [46] 

CSN Construct a cell-specific network (CSN) for each 

single cell from scRNA-seq data. 

Cluster and pseudo-trajectory at network level; 

find important non-differential genes. 

[47] 

c-CSN Eliminate indirect associations to measure direct 

associations between genes. 

Resolve the direction of differentiation trajectories 

by quantifying the potency of each single cell. 

[48] 

NBSBM Method of sparse Bayesian machine based on 

network. 

Predict drug sensitivity and reveal the underlying 

mechanism of drug action. 

[49] 
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orks built directly and used to find the various biomarkers. The first

ethod relies on existing networks such as the KEGG and PPI networks.

hile this type of method is widely used, it is difficult to develop new

pecific network biomarkers using this approach due to the limitations

f existing knowledge. At present, many methods of the second type

ave been developed. For example, Zhang et al. proposed the Edge-

iomarker method to diagnose the phenotype of each individual by inte-

rating the edge and node markers of a biological network [42] , and this

ethod can construct person-specific networks from the expression pro-

le of a single sample, meaning that it is suitable for small sample sizes.

urthermore, Liu et al. introduced the sample-specific network (SSN)

ethod to construct individual networks based on a set of reference

amples [43] . Through this method, one can elucidate the molecular

echanisms of complex diseases for each patient at the system level. To

xclude indirect interactions in the SSN method, a partial correlation-

ased single-sample network (P-SSN) was proposed that only retained

irect relations and could competently subtype complex diseases as well

s cluster single cells via the network distance between two samples

44] . Integration of data from different platforms is an important issue

n systems biology, and the transcriptional regulated flux balance anal-

sis (TRFBA) algorithm is an approach that focuses on integrating tran-

criptional regulatory and metabolic models for multiple perturbations

45] . In addition, by using mutation and gene expression data, a single-

ample controller strategy (SCS) was developed to accurately identify

ersonalized driver mutation spectra from the perspective of network

ontrollability, thereby providing new ideas for personalized medicine

nd targeted treatment of cancer [46] . The technology of single-cell se-

uencing has made tremendous progress in the last decade, while the

igh noise level and low coverage have led many of the traditional com-

utational methods to fail. Hence, new methods for single-cell data have

merged; for example, the cell-specific network (CSN) was developed

o quantify the overall relationship among genes at a single-cell res-

lution level [47] . Subsequently, the conditional cell-specific network

c-CSN) method has improved CSN through eliminating indirect asso-

iations to better measure direct interactions between genes [48] . In

he field of drug development, a disease-specific network-based sparse

ayesian machine (NBSBM) method is able to predict drug sensitivity

nd reveal the underlying mechanism of drug action by selecting the

ost predictive sub-network from a network [49] . An overview of the

nalysis methods for the network biomarkers mentioned above is given

n Table 3 . 
897 
.2. Application of network biomarkers in diseases 

The application of network biomarkers in rare diseases is still rel-

tively limited, and most studies have focused on regulatory networks

f molecular biomarkers instead of taking the edge or network as an

ndependent biomarker. Villalba-Benito et al. concentrated on explor-

ng the interaction network of PAX6 during ENS formation to better

utline HSCR etiology [51] . Nuzziello et al. have constructed a compre-

ensive miRNA-TF co-regulatory network for MS and recognized that

F- 𝜅B and STAT3 collaboratively regulate the immune response genes

52] . 

In common complex diseases that have been more intensively stud-

ed (e.g., cancer), network biomarkers have been used to analyze the

roblems of biomedical phenotypes as well as the occurrence and de-

elopment of diseases that traditional molecular biomarkers cannot ex-

lain. For example, in order to examine the discrepancy between es-

rogen receptor (ER)-negative and ER-positive breast cancer, one study

valuated the correlations between molecular pairs in the kinase regula-

ory network to find kinase-substrate nodes and edge biomarkers and to

emonstrate their ability for prognosis [53] . A Chinese colorectal cancer

CRC) cohort study employed kinase network analysis to reveal signif-

cant heterogeneity between primary colorectal tumors and associated

iver metastases, and through kinase-substrate network analysis, it was

ossible to obtain personalized responses of tumors via in vivo xenograft

rug testing [54] . In addition to research on disease mechanisms, net-

ork biomarkers can also be used for genetic robustness research. Zhang

t al. constructed a gene modular network (GMN) using expression data

rom Drosophila and performed an asymptotic dynamics analysis on the

MN showing that a morphogen-directed GMN could tolerate most ge-

etic disturbances and was essential to ensure proper tissue patterning

55] . 

.3. Advantages and disadvantages of network biomarkers 

From a systems perspective, network biomarkers are formed by

ntegrating multiple omics data; as a result, network biomarkers are

xpected to diagnose disease states more accurately than conven-

ional molecular biomarkers. The network biomarkers determined by

 systems analysis or differential association/correlation analysis may

nclude non-differentially expressed genes, called "dark genes", that

onetheless contain abundant disease information and can make up for
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Table 4 

Overview of analysis methods for dynamic network biomarkers . 

Methods Description Applications Reference 

DNB The original DNB method to detect a pre-disease state 

based on correlations and deviations among molecules. 

Detect critical states from population samples. [58] 

sDNB Single sample DNB based on the SSN method. Expand adoption of DNB on individual sample. [63] 

l-DNB Construct DNB landscape of the observed variables by 

exploiting SSN to establish a local module. 

Reliably detect the critical point and identify real 

network biomarkers for disease prediction in 

individual samples. 

[64] 

Pathway-Induced DNB Induce sparsity on the adjacency matrix of the genes 

by considering the biological pathways 

Detect the DNBs responsible for catastrophic 

transition into the disease stage based on 

optimization-based algorithms. 

[70] 

A metaheuristic 

multi-objective 

optimization method for 

DNB 

Filter the relevant genes in the dataset and identify 

DNBs from a multi-objective optimization viewpoint. 

Identify DNBs that are the smallest gene network 

while showing the strongest signal at the earliest 

time-point and best correlate with the phenotype. 

[71] 

Predict critical state 

transitions in single-cell 

gene expression data 

Propose a new type of early warning signal: an index 

I c based on changes in high-dimensional cell 

population structure obtained from single-cell data. 

Predict tipping point-like transitions in 

multicellular systems. 

[72] 
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he lack of molecular biomarkers based on differential expression anal-

sis. The requirement for biomarker standardization and the associa-

ion of biomarkers with clinical and other quantitative characteristics

re fundamental recommendations in rare diseases. More research into

he underlying molecular mechanisms of disease pathology as well as

he integration of biomarker studies into controlled clinical trials will

llow for improvement in an area that has many needs. Perhaps net-

ork biomarkers can contribute to resolving this issue. However, the

arly warning signals of disease occurrence or deterioration are vital

ndicators for the prevention and treatment of complex diseases. Ac-

urate early warning signal measurements have far-reaching implica-

ions for disease prevention. Generally, disease development is a dy-

amic process, and thus forecasting disease requires dynamic data. Al-

hough network biomarkers may reliably diagnose diseases, they can-

ot foresee diseases in the same way that biological biomarkers can.

s a result, novel biomarkers should be developed by further studying

he dynamic information contained in the data. Patients with rare dis-

ases may have more complete electronic medical records that will aid

n the application of dynamic network approaches to the analysis of

iomarkers. 

. Dynamic network biomarkers 

Molecular biomarkers and network biomarkers are largely restricted

o comparisons between disease states and normal states. However, nor-

ally there is little or almost no change at the molecular level in the pre-

isease state before the disease occurs compared to the normal state. In-

reasing evidence shows that non-smooth or sudden state changes exist

n various biological processes, including the disease system [56 , 57] . In

he progression of a complex disease, the system gradually shifts from

he normal state to the pre-disease state and then rapidly passes to an

rreversible disease state. Hence, in order to realize an early diagnosis

f a complex disease, it would be necessary to detect the critical state

r the pre-disease state to prevent the immediate deterioration to the

ull disease state [ 12 , 56 ]. To circumvent this difficulty, a method based

n a model-free concept called dynamic network biomarker (DNB) was

eveloped [58] based on nonlinear dynamic systems theory by exploit-

ng the information contained in both the network and the dynamic

atterns in the data. A DNB is a group of associations/correlations be-

ween molecules and their fluctuations, or among a group of collectively

orrelated molecules. DNB was identified based on differential fluctua-

ions/correlations/distributions of a group of molecules, and as a model-

ree method, it is able to detect critical states just before the bifurcation

oint from the normal to the disease state, even with a small amount of

igh-throughput sequencing data [ 37 , 56 ]. 
898 
.1. Methods and applications of dynamic network biomarkers 

Theoretically, it can be shown that when the system is about to ap-

roach a critical point or tipping point, there exists a dominant group

f molecules that comprise the so-called DNB meeting the following

hree necessary conditions. First and foremost, variation (standard de-

iations) within the DNB group drastically increases. Secondly, correla-

ions among the DNB group also increase. Finally, correlations between

he DNB group and non-DNB molecules decrease [58] . According to

hese statistical criteria, DNBs are measurable sub-networks composed

f several specific molecules. When the system is near the tipping point,

he molecules within the sub-network are strongly correlated and show

uctuations. Furthermore, DNB elements/members tend to be separated

rom non-DNB molecules. For quantitatively identifying DNB molecules

s well as detecting the critical point, a composite index (CI) combining

wo or three features was proposed as follows [58] : 

 𝐼 𝐷𝑁𝐵 = 𝑆𝐷 𝑖𝑛 ∗ 
𝑃 𝐶 𝐶 𝑖𝑛 

𝑃 𝐶 𝐶 𝑜𝑢𝑡 

or 𝑆𝐷 𝑖𝑛 ∗ 𝑃 𝐶 𝐶 𝑖𝑛 

In the last several decades, DNB theory has been successfully em-

loyed in numerous cases and has revealed crucial states and their key

olecules in the progression of various diseases. Tong et al. utilized DNB

o reveal the critical transitions of CRC, finally concluding that MYC was

ssociated with tumor amplification, immune cells, and survival [59] .

pithelial-mesenchymal transition (EMT) plays an essential role in can-

er metastasis, and via DNB Jiang et al. discovered the early-warning

ignals of EMT along with two key genes, SMAD7 and SERPINE1 , that

ould promote EMT by acting as switches in their regulatory networks

60] . Moreover, Chen et al. succeeded in recognizing the early signals

rior to the catastrophic transition to an influenza pandemic using the

NB method [61] . In addition to the prediction of disease progression,

NB can also be applied to study other biological processes. For exam-

le, Tang et al. detected the critical periods of infant brain development

y taking advantage of DNB [62] . 

The original DNB method was based on population samples. Thus,

ingle-sample DNB (sDNB) was developed to extend the method to indi-

idual samples and enable DNB to be applied in clinical practice [63] .

he sDNB method was generated based on the SSN method [29] . In

he beginning, a set of control/reference samples are employed to con-

truct a reference network, and then the difference in correlation in-

ormation on each sample relative to the reference network is calcu-

ated to achieve personalized disease prediction. Theoretically, when the

umber of control samples is sufficiently large, the single-sample net-

ork can be uniquely determined, even if there is genetic heterogeneity
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Fig. 1. Schematic of biomarkers in diseases. (a) Brief description on methods of molecular and network biomarkers. (b) Brief description of DNB theory (left) and 

dynamic change of the network (right). 
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mong samples. The CI of sDNB can be described as follows [63] : 

𝐼 sDNB = sS 𝐷 in ∗ 
sPC 𝐶 in 

sPC 𝐶 out 

or sS 𝐷 in ∗ sPC 𝐶 in 

Furthermore, a new methodology called landscape DNB (l-DNB) was

esigned through constructing a DNB landscape of the observed vari-

bles for efficiently determining the DNB molecules in a single sample

64] . Consistent with sDNB, l-DNB also takes advantage of SSN theory,

he difference being that l-DNB exploits SSN to establish a local mod-

le for each gene and its first-order neighbors, and then estimates the

NB composite index of each local module in order to rank the genes

29] . l-DNB can not only reliably detect the critical point prior to serious

isease deterioration but also identify dynamic network biomarkers for

isease prediction within each person. It has been demonstrated that l-

NB works well for various diseases and biological processes, including

reast cancer cell differentiation, coronary atherosclerosis, hepatocellu-

ar carcinoma progression, malignant development of gallbladder can-

er and skin response to repetitive ultraviolet B irradiation [65–69] . Ad-

itional optimization methods for DNB from different aspects include a

ethod taking advantage of biological pathways [70] , a method of iden-

ifying DNBs from a multi-objective optimization viewpoint [71] , and a

ethod for predicting tipping point-like transitions in single cell reso-

ution data [ 72 , 73 ], i.e., CI DNB = < PCC(g i ,g j ) > / < PCC(c k ,c l ) > where g i
s a vector of gene-i for all cells, c k is a vector of all genes at cell k, and

 PCC > denotes the average of all Pearson’s correlation coefficients of re-

pective pairs of vectors, which is actually equivalent to the original DNB

ndex but at a single cell level. An overview of the analysis methods for

he dynamic network biomarkers mentioned above is given in Table 4 . 
899 
To characterize the early warning signs of the diseases or block the

urther deterioration to the disease state, it is essential to investigate

he critical points in the occurrence and progression of complex dis-

ases. Because there is little or no difference in molecular/phenotypic

evels between the critical state and the normal state, neither traditional

olecular biomarkers nor network biomarkers can assess the tipping

oint exactly. Therefore, a model-free approach based on nonlinear dy-

amic systems theory called DNB was developed to overcome this dif-

culty by exploiting the information from both dynamic data and net-

orks [41] . DNB is based on second-order statistics (i.e., correlations

nd deviations), in contrast to the first-order statistics of the molecular

iomarkers (i.e., average values). Because it considers the perturbations

f correlations among a group of molecules, the false positives or false

egatives caused by the high expression levels of individual molecules

ill be effectively controlled. DNB is able to accurately estimate the tip-

ing points in complex diseases as well as their corresponding disease-

ssociated molecules. Further interfering with these molecules may con-

ribute to the prevention of disease worsening. In addition, using SSN

heory, DNB can detect pre-diseases state and to predict the disease

ased only on a single sample, thus providing a foundation for the re-

lization of personalized treatment. According to the methods of DNB,

tandardization of health management can be established, e.g., (1) quan-

ifying the health status of individuals by DNB in addition to disease sta-

us quantified by traditional molecular biomarkers; (2) quantifying com-

lex diseases based on the distance from their critical states measured

y DNB from the available time-series data. Although there is presently

o study on dynamic network indicators for rare diseases, early warning

f rare diseases could be achieved if long-term biological data records
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Fig. 2. Prospects for biomarkers in rare diseases . 
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f patients are successfully exploited in conjunction with the idea of

ynamic disease development. 

In summary, we have comprehensively reviewed recent advances

nd applications of molecular biomarkers, network biomarkers, and

ynamic network biomarkers in diagnosis, prediction, and therapy

or rare diseases. The molecular biomarkers are primarily based on

ifferential expression/concentration, while network biomarkers are

argely based on differential associations/correlations, and dynamic net-

ork biomarkers are a collection of associations/correlations between

olecules accompanied by their patterns of fluctuation ( Fig. 1 ). 

. Prospects for biomarkers in rare diseases 

Due to the difficulty in the diagnosis and treatment of rare diseases,

he use of high-throughput sequencing technology and advances in al-

orithm development will enable the identification of better diagnos-

ic and prognostic biomarkers that will aid patients with such diseases.

haracterizing diseases at the molecular level helps reveal biochemi-

al pathways for potential drug targets. However, the main problem

t present is that due to the limited number of rare disease patients,

t is very difficult to obtain a large sample size. This problem can be

vercome through national and international cooperative efforts and

ulti-omics data sharing. At the same time, the small sample size prob-

em could also be solved by using a network approach that can be re-

lized with small amounts of data or even individual data such as in a

ingle-sample network. The main advantage of network biomarkers over

olecular biomarkers is that a network biomarker further considers as-

ociations/correlations among molecular biomarkers at a system level or

xploits the network information from the data, and thus is better able
900 
o accurately diagnose complex diseases. Furthermore, a dynamic net-

ork biomarker considers both network and dynamic information from

he data, i.e., correlations/fluctuations of biological processes, and thus

an robustly predict complex diseases. Dynamic network biomarker the-

ry can also be used in the small-sample analysis. Therefore, if long-term

ata records of rare disease patients are properly used in combination

ith the concept of dynamic disease progression, early warning of rare

iseases can be achieved. With the development of multi-omics technol-

gy, more efficient methods of integrating data to construct biomarkers

or predicting disease states may appear in the future rather than be-

ng limited to a single type of data [74] . Compared with single-gene

esting alone, whole-genome and exome sequencing can improve the

dentification of causal variants with a diagnostic rate of about 50% for

nherited diseases, and integrated multi-omics analysis can further im-

rove the rare disease diagnosis rate. In addition, compared with single-

mics analysis, multi-omics analysis can better deal with genetic and

henotypic heterogeneity. Moreover, while edge information has been

sed in network biomarkers to obtain a more systematic understand-

ng of the disease, the measurement of edge information is largely re-

tricted to correlations. Recently, several methods have utilized entropy

o characterize edges, and superior indicators may emerge in the future.

n brief, molecular biomarkers using expression information, network

iomarkers using additional network information, and dynamic network

iomarkers further using additional dynamic information have been ef-

ectively applied in the diagnosis, prediction, and treatment of diseases.

t is possible to achieve accurate disease diagnosis and prognosis via

etwork biomarkers, and robust prediction of disease can be obtained

rom dynamic network information via DNB. All in all, customized per-

onalized treatment will be guided by an individual’s specific biomarker
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anel, especially in rare diseases where early diagnosis and treatment

emain a bottleneck. A personalized medicine approach will have a ma-

or impact on improving the quality of medical care for patients with

are diseases ( Fig. 2 ). In addition, with an increasingly accurate diag-

osis by various biomarkers, a common disease can be subtyped into

ore detailed subtypes or subclasses, each of which can be considered

s a rare disease from the perspective of the numbers and mechanisms

f such a disease subtype. Hence, developing accurate biomarkers is of

reat importance for both common and rare diseases. 

. Conclusion 

Recent developments and applications of molecular biomarkers, net-

ork biomarkers, and dynamic network biomarkers in the diagnosis,

rediction, and therapy of rare diseases have been thoroughly explored.

uch research on molecular markers in rare diseases has been con-

ucted. Unfortunately, the majority of these findings have not been

uccessfully implemented in clinical practice. The limited sample size,

igh level of phenotypic heterogeneity, and difficulty in drug discov-

ry remain three major challenges for reliable biomarker identifica-

ion in rare diseases. Several network biomarker and dynamic network

iomarker approaches have performed well with small data sets, and

hus are suitable for identifying rare disease biomarkers. Moreover, net-

ork biomarkers consider the relationships of molecular markers at the

ystem level to extract network information from data and thereby more

ccurately diagnose complex rare diseases. Furthermore, dynamic net-

ork biomarkers incorporate the dynamic changes in the relevant bio-

ogical processes and thus can reliably predict complex diseases at the

arly stages. Additionally, the utilization of different forms of omics data

an be used to analyze a complex biological process from many aspects

or non-single gene rare diseases. Exploring the interplay between mul-

iple levels of data will provide more trustworthy and comprehensive

nformation for exploring the occurrence and development mechanisms

f rare diseases. 
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