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Abstract

Background and purpose: The apparent diffusion coefficient (ADC), a potential imaging 

biomarker for radiotherapy response, needs to be reproducible before translation into clinical use. 

The aim of this study was to evaluate the multi-centre delineation- and calculation-related ADC 

variation and give recommendations to minimize it.

Materials and methods: Nine centres received identical diffusion-weighted and anatomical 

magnetic resonance images of different cancerous tumours (adrenal gland, pelvic oligo metastasis, 

pancreas, and prostate). All centres delineated the gross tumour volume (GTV), clinical target 

volume (CTV), and viable tumour volume (VTV), and calculated ADCs using both their local 

calculation methods and each of the following calculation conditions: b-values 0–500 vs. 150–

500 s/mm2, region-of-interest (ROI)-based vs. voxel-based calculation, and mean vs. median. 

ADC variation was assessed using the mean coefficient of variation across delineations (CVD) 

and calculation methods (CVC). Absolute ADC differences between calculation conditions were 

evaluated using Friedman’s test. Recommendations for ADC calculation were formulated based 

on observations and discussions within the Elekta MRI-linac consortium image analysis working 

group.
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Results: The median (range) CVD and CVC were 0.06 (0.02–0.32) and 0.17 (0.08–0.26), 

respectively. The ADC estimates differed 18% between b-value sets and 4% between ROI/voxel-

based calculation (p-valu es < 0.01). No significant difference was observed between mean and 

median (p = 0.64). Aligning calculation conditions between centres reduced CVC to 0.04 (0.01–

0.16). CVD was comparable between ROI types.

Conclusion: Overall, calculation methods had a larger impact on ADC reproducibility compared 

to delineation. Based on the results, significant sources of variation were identified, which should 

be considered when initiating new studies, in particular multi-centre investigations.

Keywords

Apparent diffusion coefficient; MRI-Linac; Adaptive radiotheray; Diffusion-weighted magnetic 
resonance imaging; ADC reproducibility; MRI biomarkers

Quantitative imaging biomarkers (QIBs), derived from in-vivo imaging, are useful in 

oncology, as they non-invasively provide quantitative information on tissue characteristics 

[1–3]. Development of QIBs has the potential to improve precision and reduce subjectivity 

of image analysis, and hereby enable a more robust association between image-derived 

parameters and biological and clinical parameters [4,5]. QIBs may provide spatially and 

temporally resolved information linked to tumour biology, which in radiotherapy may 

be used for improved target delineation, dose-painting and prediction and monitoring of 

response. Hence, QIBs may improve personalization of the treatment [6].

The advanced magnetic resonance imaging (MRI) technique, diffusion-weighted MRI 

(DWI), is a potential QIB for the above-mentioned radiotherapy purposes [6–9]. In standard 

DWI, strong magnetic gradients are applied to sensitize the MRI signal to the random 

motion of water molecules within the scanned object. The amount of diffusion weighting 

is defined by the b-value, and if at least two appropriately selected b-values are acquired, 

the quantitative parameter, the apparent diffusion coefficient (ADC), can be derived. ADC 

correlates with tissue cellularity, and have been shown to identify radio-resistant regions 

[10,11]. DWI and derived ADC maps are used in the clinic to guide target delineation 

for some tumours, and may be a future tool for dose painting [12,13]. Further, baseline 

ADC and ADC changes during treatment have shown potential to predict response, 

although lack of consistency is preventing translation to the clinic [8,14–17]. Specifically, 

varying acquisition protocols and analysis methods reduce ADC reproducibility, potentially 

hindering validation of ADC as a QIB. To overcome this problem, a standardization of 

measurements is needed, and large multi-centre validation trials are warranted [2,18].

Hybrid MRI linear accelerators (MRI-linac) allows daily measurement of ADC, with no or 

limited prolongation of the radiotherapy fractions [19,20]. As such, an MRI-linac provides 

an ideal platform for clinical validation of potential QIBs such as ADC. Accuracy of ADC 

on MRI-linac has been demonstrated using phantoms, and feasibility has been demonstrated 

in patients [18,21,22]. Furthermore, recommendations for MRI protocols to acquire DWI on 

an Elekta MRI-linac have been published [23]. The current study focused on the analysis of 

the acquired DWI scans to obtain an ADC value.
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Different approaches to DWI analysis may introduce a variation across centres/studies. 

Within the Elekta MRI-linac consortium image analysis working group [24], two expected 

sources of variation were identified: The delineation of a region of interest (ROI), and 

the calculation method. Delineation uncertainty is a well-known source of uncertainty in 

radiotherapy and propagates as ADC variation as well [25,26]. The impact of calculation 

methods on ADC reproducibility has been investigated to a lesser extent [27]. The current 

study investigated the impact of variations in both delineations and calculation methods 

on the ADC reproducibility utilizing the same data, which enabled assessment of their 

relative contributions. The aim was to give vendor-neutral recommendations to improve 

ADC reproducibility, based on an evaluation of the observed ADC variation between MRI-

linac centres and discussions within the working group.

Methods

Study design

Nine MRI-linac centres participated in the study using anonymized patient MRI data from 

four different clinical cases, acquired at one of the participating centres. At each centre, two 

steps were performed (Fig. 1). In step 1, an oncologist performed delineations. In step 2, 

each centre calculated ADC for delineations made at all centres using their local calculation 

method. This resulted in a 9×9 table of ADC values for each clinical case and delineation 

type.

Clinical cases

The study included four patients with different cancerous tumours.

1. Adrenal gland (76 year old male with oligo progression after systemic treatment 

for non-small cell lung cancer)

2. Pancreas (68 year old male with recurrent pancreas cancer, consolidative 

radiotherapy after systemic treatment)

3. Oligo metastasis in the pelvis (54 year old woman with recurrent ovarian cancer, 

consolidative radiotherapy after systemic treatment)

4. Prostate and adjacent seminal vesicles (74 years old man with low volume 

metastatic prostate cancer)

All patients received treatment on the same 1.5 T MRI-linac (Unity by Elekta, 

Stockholm, Sweden) at one of the participating centres. The patients were included in 

the MOMENTUM study (clinicaltrials.gov NCT04075305) [28]. Informed consent was 

obtained from all patients, and DICOM-data was anonymized and stored adhering to ethics 

standards.

MRI data

MRI data were acquired at fraction one, prior to beam delivery and included T2-weighted 

images (T2W) and DWI with the b-values 30, 80, 150, 300 and 500 s/mm2 (adrenal 

gland and pancreas), and 0, 30, 80, 150 and 500 s/mm2 (oligo metastasis and prostate) 

adhering to the normal MRI-linac workflow [29]. Sequence details are listed in Table S1 in 
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supplementary materials. DWI were acquired twice in succession while the patient remained 

in position, to obtain test–retest data for repeatability estimation.

Delineation

T2W images and DWI images with b-values 150 and 500 s/mm2 were available for 

delineation. Provided with brief clinical case descriptions, the oncologists delineated the 

gross tumour volume (GTV), clinical target volume (CTV) (prostate only) and the viable 

tumour volume (VTV) (except for prostate) in a mutually blinded manner using the 

ProKnow platform (Version 1.32.0, Elekta Solutions AB, Stockholm, Sweden). The VTV 

was defined as the GTV excluding cystic and necrotic parts. A description of the technical 

data preparation is given in supplementary materials.

ADC calculation

Each centre provided a brief description of their local calculation method, including 

software implementation, choice of b-values, and whether a ROI- or voxel-based calculation 

was used. The ROI-based method refers to ADC calculation using the mean or median ROI 

signals of DWIs, whereas the voxel-based method refers to calculating ADC within each 

voxel, after which the mean or median value is calculated within the ROI. If a centre’s 

standard approach was to use the scanner software for ADC calculation, that centre was 

provided with ADC maps calculated with the scanner software using all b-values, the lowest 

and the highest value, and b ≥ 150 s/mm2, respectively. They were asked to choose the set 

best representing their normal choice.

Each centre provided ADC values for both their own and other centre’s delineations. The 

calculation was based on 1: the centre’s own calculation method, and 2: all combinations 

of the following calculation conditions: all b-values vs. b ≥ 150 s/mm2, ROI-based vs. 

voxel-based and mean vs. median (referred to as pre-specified calculation conditions).

Data analysis and statistics

Delineations were compared pairwise to calculate the Dice similarity coefficient (Dice) and 

mean surface distance (MSD). ADC variation across delineations and calculation methods 

was assessed using the mean coefficient of variation (CV), calculated in the following way 

(Cf. Fig. 1): The CV describing variation across calculation methods was calculated for each 

of the nine delineations, and the average of these nine values was used as a measure of 

variation across calculation methods (CVC). Likewise, the CV describing variation across 

delineations was calculated for each of the nine calculation methods, and the average was 

used as a measure of variation across delineations (CVD).

Retest ADC values were calculated using rigid contour propagation of GTVs between test- 

and retest-scans. Median ADC values within the GTVs were extracted from ADC maps 

calculated with the scanner software using b ≥ 150 s/mm2. The within-subject coefficient 

of variation (wCV) was calculated as a measure of test–retest ADC variation (ADC 

repeatability), as recommended by the Quantitative Imaging Biomarkers Alliance (QIBA) 

[30].
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The ADC difference between the sets of b-values, ROI/voxel-based analysis and mean/

median values, respectively, were evaluated using Friedman tests with a 5 % significance 

level and with Bonferroni correction for multiple testing. Only GTVs were used for this 

purpose.

Results

A total of 69 out of 72 expected delineated volumes (9 centres × 8 volumes) were available 

for the analysis. Within these volumes, a total of 4483 ADC values were obtained out 

of 5589 (69 delineation × 9 centres × 9 combinations of calculation conditions). The 

reasons for the reduced number were the following: One centre omitted calculation within 

two prostate volumes and two centres omitted the ROI-based calculations due to technical 

difficulties or limitations of their local software. One centre omitted ADC calculation using 

the pre-specified calculation conditions due to limited time and resources. One centre used 

software that reported only one decimal, which in some cases led to CV’s of zero. CV’s of 

zero were excluded before calculating the mean CV.

Representative delineations are presented in Fig. 2. The delineation variation was large for 

pancreas VTV and prostate GTV (Dice: 0.20–0.22 and MSD: 9.09–9.23 mm) compared 

to the remaining cases (Dice: 0.48–0.88 and MSD: 1.52–4.09 mm) (Fig. 3.A–B). A closer 

inspection of the prostate delineations revealed that some GTV delineations did not overlap 

(Fig. 2). The prostate CTV delineation variation was smaller (Dice: 0.80, MSD: 2.68 mm), 

despite not all centres included the seminal vesicles in the delineation. The CVD was 

comparable between GTV and VTV, although the delineation variation was slightly smaller 

for GTV compared to VTV (Fig. 3.A–B). There was a clear correlation between delineation 

variation and ADC variation (Fig. 3.A–B).

All centres used a voxel-based approach as their local calculation method. One centre 

used ADC maps generated by the scanner software, while remaining centres used in-house 

software for ADC calculation with a mono-exponential Stejskal-Tanner model [31]. The 

main differences between the local calculation methods were the choice of b-values, fitting 

method, and applied filtering. A full comparison of the centres’ local calculation methods is 

presented in Table S2 in supplementary materials.

With the centres’ own calculation methods, the median (range) CVD and CVC were 0.06 

(0.02 – 0.32) and 0.17 (0.08 – 0.26), respectively (Fig. 4.A). The delineation-related 

variation was larger for pancreas VTV and prostate GTV (CVD: 0.15–0.32) compared to 

the remaining cases (CVD: 0.02–0.06). In comparison, the ADC repeatability (wCV) based 

on test–retest scans was estimated to 4.0% (adrenal gland), 6.6% (pancreas), 1.3% (oligo 

metastasis), and 15.2% (prostate). A detailed overview of the ADC variation for each 

delineation and calculation method is shown in Fig. S1–3 in supplementary materials.

When centers aligned their calculation methods according to any of the pre-specified 

calculation conditions, the calculation-related ADC variation was clearly smaller than when 

centres used their own choice of calculation conditions (Fig. 4.B–I compared to Fig. 4.A), 
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with a reduction of median (range) CVC to 0.04 (0.01–0.16) (or 0.04 (0.01–0.08) with the 

low-agreement prostate GTV excluded).

In terms of absolute ADC, there was a trend towards larger values for calculation methods 

that included b-values below 150 s/mm2, (calculation methods no. 1, 4 and 9 in Figure 

S1 and S3 and Table S2 in supplementary materials). Averaged across all combinations of 

the pre-specified calculation conditions, ADC estimates were 18% larger for the full b-set 

compared to b ≥ 150 s/mm2 (p < 0.01) and 4% larger for ROI-based analysis compared to 

voxel-based (p < 0.01) (Table 1). There was no significant difference between mean and 

median values (p = 0.64).

Discussion

This study evaluated the ADC variation related to differences in delineation and calculation 

methods between centres. The calculation-related variation was generally larger than 

delineation-related variation (Fig. 4.A), and was primarily driven by different choices 

of b-values. When calculation conditions (all b-values vs. b ≥ 150 s/mm2, ROI-based 

vs. voxel-based, and mean vs. median) were aligned between centres, the calculation-

related variation was reduced to about the same level as the delineation-related variation. 

Furthermore, the delineation- and calculation-related ADC variation was comparable to the 

ADC repeatability, indicating that acquisition and post-processing of the images contribute 

equally to the ADC variation. The GTV and VTV performed comparably with respect to 

ADC reproducibility.

Overall, the observed delineation-related ADC variation largely agreed with other studies, 

showing CV of 0.1 and inter-observer coefficient of repeatability of 1.9–14% in pancreas 

[32,33], and 9.5–13.7% in prostate [34], although not directly comparable due to differences 

in methods. The large delineation variation of the pancreas VTV was likely due to the 

higher sensitivity to delineation of small volumes (Fig. 3.C). For the prostate GTV, the large 

delineation variation could arise from the GTV not being a standard delineation type. In 

fact, large variation in definitions of intraprostatic lesions has been reported in earlier studies 

[35,36]. Potentially, the use of a higher b-value would have improved the conspicuity of 

the intra-prostatic lesions. To comply with the MRI-linac recommendations, a maximum 

b-value of 500 s/mm2 was used [18,23]. The delineation variation in prostate may also have 

been overestimated as not all centres included the vesicles in the CTV (as case descriptions 

indicated).

Other studies have shown that the type of ROI influences both absolute ADC values, relative 

ADC changes during treatment, and the reproducibility of delineations [18,25,26,37]. 

Therefore, this study included two types of ROIs. The GTV, because it has the advantage of 

being available before the start of treatment in both the standard and MRI-linac radiotherapy 

workflow. The so-called VTV was included because it excludes non-viable parts of the 

tumour and may be relevant for probing the cellular response directly and assessing 

treatment response, as suggested by Padhani et al. [18]. Further, one study showed that ADC 

based on VTV was superior to GTV in stratifying between responding and non-responding 

patients [38]. An advantage of the VTV is that, by definition, it contains only high signal-to-
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noise-ratio (SNR) voxels. For tumours with no significant necrotic/cystic components, e.g. 

prostate, the VTV corresponds to the GTV.

Since the choice of ROI type did not influence the ADC reproducibility in the current 

study, selection of ROI type depends on its application in radiotherapy. While the VTV may 

define radio-resistant regions and be relevant for dose painting, it is not obvious which ROI 

is best suited for response prediction. The literature investigating the potential benefits of 

using GTV vs. VTV is limited [16,38]. In general, the results of the current study advocate 

improving delineation consistency (Fig. 3.A–B), which underlines the importance of having 

as precise consensus guidelines as possible. In the future, delineation variation may be 

reduced by automatic delineation tools including AI models, as indicated in several studies 

[17,39–41].

The DWI-signal is sensitive to perfusion at low b-values (below 100 s/mm2), and therefore, 

including low b-values in the analysis is expected to overestimate ADCs [18,42] as observed 

in this study also (all b-values compared to b ≥ 150 s/mm2) (Table 1). Therefore, a previous 

publication by the Elekta MRI-linac working group, recommended that the lowest b-value 

should be 100–150 s/mm2 [23]. A maximum b-value of 500 s/mm2 was also recommended 

to ensure sufficient SNR and a diffusion time comparable to that of a diagnostic scanner. 

Moreover, if notably higher b-values are included in the calculation (b > 1000 s/mm2), 

non-Gaussian diffusion effects may result in an underestimation of ADC, as the mono-

exponential model assumes a Gaussian diffusion behaviour [43].

The ROI- and voxel-based approach have been used in previous studies and are therefore 

relevant from a reproducibility point-of-view [25,33,37,44,45]. It should be noted that 

strictly speaking, the average ADC across voxels within a ROI cannot be derived using 

the ROI-based approach, which is based on the mean DWI signal within the ROI. I.e. 

the ROI-based method is mathematically inconsistent with the exponential model of ADC 

calculation (when more than one voxel is present within a ROI). However, using the ROI-

based method may lead to better estimates of ADC as it is expected to be more robust to 

motion induced misalignment of individual DWI acquired at different b-values, which if not 

properly corrected can lead to invalid ADC values. Further, it may improve SNR which may 

give a better goodness of fit of data, as was confirmed using the current data (not shown) 

[6]. In the current study, the ROI-based approach led to larger ADC values compared to 

the voxel-based approach (Table 1), while the two approaches performed comparable with 

respect to ADC reproducibility (Fig. 4.B–I).

The residual calculation-related ADC variation present after aligning the pre-specified 

calculation conditions between centres (Fig. 4.B–I) may be accounted for as use of different 

software implementations, including different fitting and filtering methods (Table S2 in 

supplementary materials). Specifically, five centres used linear least squares fitting of ln(S) 

as a function of b-values to estimate the ADC (Table S2 in supplementary materials). 

Since the SNR decreases with increasing b-value, the uncertainty of ln (S) also increases 

with b-values, if not accounted for by averaging signals from multiple excitations. Thus, 

a better approach will be to use weighted linear least squares fitting (see supplementary 

materials) [46]. For the voxel-based approach, five centres used filtering by excluding 
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voxels containing non-physical values, i.e. values outside a certain range (Table S2 in 

supplementary materials). Alternative to this, voxels may be removed based on low SNR 

or poor quality of the fit, which is a more objective criterion. Contributions from fitting 

and filtering were not determined individually, nevertheless, in combination, they resulted in 

calculation-related ADC variations comparable to the delineation-related variations (points 

close to the dotted line in Fig. 4.B–I). This stresses the importance of excluding sources 

of variation whenever possible, especially if the aim is to establish common ADC cut-off 

values, e.g. for response prediction. Making a platform-independent software available for 

public download might be a way to proceed such that in-house developed software can be 

validated against a common software.

The SNR has also been shown to play a role in estimation of the ADC [23,47]. Although 

not specifically investigated in this study, it is worth mentioning a few implications. Low 

SNR levels lead to an underestimation of the ADC, due to the so-called noise floor present 

in magnitude reconstructed DWI-images [6,48]. Therefore, to allow a comparison between 

studies, the SNR should always be reported based on defined standards, e.g. published 

by the National Electrical Manufacturers Association (NEMA) [49] or QIBA [50]. For 

practicality, it may be sufficient to measure SNR once, if patient and coil positioning is 

consistent between scans [6]. Applying noise correction has been shown to reduce the ADC 

bias [47].

Other specific points of attention when calculating ADC include pre-processing of the 

image data. For example, to minimize the effect of motion, registration between b-values 

is recommended [51], and is available on most MRI scanner software, including the Unity 

MRI-linac. As a minimum, b-value images should visually be inspected for motion and 

artefacts. Further, as the intensity-histogram of DWI images may be “stretched” to fully 

utilize the storage bit depth, the stored pixel values should as a general rule be “unscaled” 

prior to quantitative analysis as described by Chenevert et al. [52].

A main limitation of this study is that only one patient was included per tumour type. 

This was deemed a necessary compromise to increase the realizability of the investigation. 

However, by including four tumour types instead of e.g. four tumours of the same type, we 

were able detect differences in the analysis-related ADC variation between tumour types. 

Minor limitations include that no re-positioning of the patient was performed between the 

test and retest scans, which may underestimate the true repeatability. ADC reproducibility 

may also be affected by the sequence used to acquire the images (turbo-spin-echo (TSE) vs. 

echo planar imaging (EPI) [53]) and the diffusion time [54], but investigations of this was 

outside the scope of the current study where EPI based readout was used. Moreover, as EPI 

is notorious for low geometric accuracy [55], a high ADC reproducibility can still lead to 

a misinterpretation of the extent of the GTV. The effect of geometric distortions on ADC 

reproducibility and GTV misalignment should be investigated in a future study.

Conclusion

This investigation provides recommendations for improving reproducibility of ADC 

calculations, based on observations and discussions within the Elekta MRI-linac consortium 
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image analysis working group. These recommendations are focused towards future 

investigations of ADC as a potential imaging biomarker in radiotherapy. Investigations of 

other potential quantitative imaging biomarkers using a similar setup, and the geometric 

accuracy of these, are warranted.

In summary, the calculation-related ADC variation was larger than the delineation-related 

ADC variation. Specifically, the calculation-related ADC variation can be attributed to 

the choice of b-values, ROI-based/voxel-based calculation, and software implementation 

including fitting and filtering method. Therefore, it is recommended to align these factors 

in multi-centre studies, and to report details of the ADC calculation method within a study 

to allow comparison between studies. In general, delineation variation correlates with ADC 

variation, and should therefore be reduced as much as possible. Selection of GTV vs. 

a dedicated volume for ADC derivation seems less critical for ADC reproducibility, and 

should depend primarily on feasibility and the radiotherapy purpose.
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Fig. 1. 
Study design. Each of the nine participating centres performed delineation and ADC 

calculation. The collected ADC values were organized in a table as illustrated to the right, 

where rows and columns represent the delineations and calculation methods from the nine 

centres. Tables were made for each combination of cancer diagnosis and delineation types 

(GTV, CTV, VTV). The ADC variation across delineations and calculation methods were 

assessed using the mean coefficient of variation (CV), as indicated on the table.
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Fig. 2. 
Examples of delineations. Delineations made by the nine participating centres for prostate 

and adrenal gland, shown on b = 500 /mm2 DWI images, cropped to an area of 7.7 × 7.7 

cm2 (prostate) and 4.9 × 4.9 cm2 (adrenal gland) around the tumour. For the prostate, not all 

delineated contours included the shown slice, thus, only five contours are visible.
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Fig. 3. 
Delineation-related ADC variation. Delineation-related ADC variation (mean coefficient 

of variation, CVD) as a function of mean Dice Similarity Coefficient (A), Mean Surface 

Distance, MSD (B), and volume (C), for the different clinical cases (marker colors) and 

types of ROIs (marker types).
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Fig. 4. 
ADC variation. ADC mean coefficient of variation across delineations (CVD) and 

calculation methods (CVC) from the nine MRI-linac centres, with the centres’ own choice 

of calculation conditions (A), and with pre-specified calculation conditions (B-I). Median 

ADC values were used in (A). The marker colours and types represent the different clinical 

cases and types of ROIs. The dotted line at x = y represents the points where delineation- 

and calculation-related ADC variation are the same. For the prostate GTV, CVD is outside 

the axis range, and therefore, the true coordinates are indicated next to the marker.
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