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ABSTRACT
This paper aims todetect anomalous changes in social network struc-
ture in real time and to offer early warnings by phase II monitoring
social networks. First, the exponential randomgraphmodel is used to
model social networks. Then, a test and onlinemonitoring technique
of the exponential random graph model is developed based on the
split likelihood-ratio test after determining themodel and its param-
eters for a specific data set. This proposed approach uses pseudo-
maximum likelihood estimation and likelihood ratio to construct the
test statistics, avoiding the several steps of discovering Monte Carlo
Markov Chain maximum likelihood estimation through an iterative
method. A bisection algorithm for the control limit is given. Simu-
lations on three data sets Flobusiness, Kapferer and Faux.mesa.high
are presented to study the performance of the procedure. Different
change points and shift sizes are compared to see how they affect
the average run length. A real application example on the MIT real-
ity mining social proximity network is used to illustrate the proposed
modelling and online monitoring methods.
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1. Introduction

Social network has infiltrated practically every part of our lives. Many things, such as
transportation, telephone or Internet communication, disease transmission and criminal
activity, can be defined as social networks [4,8]. A social network may be described as
a graph with nodes (people) and edges (social ties), which can allow users to investigate
its structural aspects using mathematical and statistical methods. The social network in a
group may change dynamically over time. When a major event occurs, the network struc-
ture frequently shifts dramatically. Expecting that bymonitoring the social network,wewill
be able to detect structural changes in the social network in time and offer an early warn-
ing when anomalous occurrences occur, such as criminal activities, public opinion storms
and so on. Social network analysis and statistical process control (SPC) are the aims of this
paper.
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SPC is a technique widely used to monitor industrial processes [13,27,32,38,41]. Appli-
cations of SPC are divided into two stages: Phase I and Phase II. In Phase I, a set of process
data is collected and analysed all at once to determine whether the process has been in-
control (IC). After Phase I, we have a set of data that is representative of IC process. In
Phase II, control charts are used to monitor the process by comparing the sample statistic
to the control limits. This paper focuses on the Phase II monitoring methods for social
networks.

When it comes to combining social network analysis and SPC methods, the overview
papers [30,40] gave comprehensive overviews of some statistical methods for the monitor-
ing of social networks before 2018. Besides the references therein, [5] suggested a change
point detection approach for correlation networks and [20] discussed several possible net-
work metrics to be used for a change point detection problem. More recently, [35] fitted
the network data with an exponential random graph model (ERGM) to obtain maximum
likelihood estimation (MLE) of the model parameters, and applied Hotelling T2 and mul-
tivariate exponentially weightedmoving average (MEWMA) control charts to monitor the
parameters, and [26] used ERGMandHotelling’sT2 and likelihood ratio test control charts
in Phase I. From the perspective of ERGMs, the global structure is made by a combina-
tion of different substructures, which is similar to the multiple regression analysis. ERGMs
use some summary statistics as covariates, rather than the entire information of network
structure such as adjacency matrix, which leads to some information loss of the network
structure. However, unlike models that require an independent and specific distribution of
the observation data, ERGMs may describe related network data with ease, and the node
attributes can be simply added to the model. As a result, despite the limitation of ERGMs,
they can be used to explain the network data with complicated associations in a variety
of ways, which hence motivates us to use ERGMs to model social networks. In addition
to ERGMs, recently, [1] fitted the network data with degree corrected stochastic block
model (DCSBM) and used three multivariate process monitoring techniques Hotelling
T2, MEWMA, and MCUSUM to monitor the model parameters simultaneously. Then [2]
proposed a labelled DCSBM (LDCSBM) and used Shewhart control chart to monitor the
LDCSBM. [25] considered monitoring attributed social networks based on count data and
random effects. Considering the interaction between nodes as a function of nodal similar-
ities, [29] used zero-inflated Poisson regression to model sparse and attributed network.
Furthermore, they proposed a likelihood ratio test and an EWMA chart to monitor social
networks. [9] integrated the Hurdle model with a state-space model to capture temporal
dynamics of the edge formation process and used EWMA control charts to monitor the
residuals and detect change points. What is more, [28] combined zero-inflated generalized
linearmixedmodels (ZI-GLMMs)with the state-spacemodel to fit the sequences of sparse,
attributed, and weighted multilevel networks and monitor changes in them.

In aspect of ERGM, much effort is devoted to the estimation of the parameters of
ERGMs [10,14,16,18,37]. Assuming a finite dimension of the parameter space, [34] showed
that the MLE is not consistent in the ERGMs when the sufficient statistics involve k-stars,
triangles and motifs of k-nodes (k ≥ 2 ). When dealing with a higher-order complex net-
work sequence, the computational burden will be very high, as the MLE of ERGM is
derived using the Markov Chain Monte Carlo (MCMC) approach [36]. [39] proposed the
sample split likelihood ratio test (Split LRT). This is a fairly basic test procedure that does
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not require any regular conditions. Therefore it is ideal for statistical inferences in compli-
cated scenarios. The modelling and on-line monitoring method of social networks based
on ERGM is provided in this paper, which is combined with the sample Split LRT.

The rest of this paper is organized as follows. The ERGMs and Split LRT of ERGMs are
briefly introduced in Section 2. The proposed onlinemonitoringmethods of ERGMs and a
searching algorithm to find the control limit are presented in Section 3. Several computer
simulations are carried out in Section 4, in which ERGMs are used to fit three datasets:
Flobusiness, Kapferer and Faux.mesa.high, the power of the test is displayed, and the per-
formance comparisons of the proposed control chart withMEWMA and T2 control charts
are given. Section 5 studies a real application example on the MIT reality mining social
proximity network to illustrate the proposed modelling and on-line monitoring methods.
Section 6 outlines the merits of the proposed methods, as well as future study possibilities.

2. Background

2.1. Brief introduction to ERGMs

For a graph with adjacency matrix y, ERGMs have the following form [10,14]:

Pθ (Y = y) = exp{θ�Z(y)− φ(θ)}, (1)

where Z(y) is the chosen statistics, θ ∈ Rq is the matching parameter, and φ(θ) =
log

∑
y exp{θ�Z(y)} is a normalized parameter that assures Equation (1) is a suitable

probability distribution.
The items in Z(y) denote the number of edges and substructures in the graph (k-star, k-

triangles, k-twopath, etc.). The selection of statistics usually depends on the presupposition
of the correlation between elements yij in the adjacencymatrix [10].When considering the
simplest case, in which the graph is undirected and Z(y) is the number of edges, the model
degenerates into the Erds–Rényi model, in which each element yij(i < j) of the adjacency
matrix y is independent and follows the Bernoulli distribution. ERGMs takes the elements
yij as samples, and Pθ (Y = y) can be seen as the joint probability density of these samples.

Some widely selected statistics are as follows [16,37]:
Edges:

E(y) =
∑
i,j

yij;

geometrically weighted degree statistic (gwdegree(γs)) :

gwdegree(y, γs) = eγs
n−1∑
k=1
{1− (1− e−γs)k}Dk(y);

geometrically weighted edgewise shared partner statistic (gwesp(γt)):

gwesp(y, γt) = eγt
n−2∑
k=1
{1− (1− e−γt )k}EPk(y);



1624 Y. CAI ET AL.

geometrically weighted dyad-wise shared partner statistic (gwdsp(γp)):

gwdsp(y, γp) = eγp
n−2∑
k=1
{1− (1− e−γp)k}DPk(y);

where Dk(y) is defined to be the number of nodes in network y whose degree equals k,
EPk(y) is defined as the number of unordered pairs {i, j} in network y such that yij = 1 and
nodes i and j have exactly k common neighbours (edgewise shared partner), andDPk(y) is
the number of unordered pairs {i, j} such that i and j have exactly k common neighbours
whatever the value of yij (dyadic shared partner).

By these definitions, it is always true thatDPk(y) ≥ EPk(y), and in factDPk(y)− EPk(y)
equals the number of unordered pairs {i, j} for which yij = 0 and i and j share exactly k
commonneighbours. The gwdegree, gwesp and gwdsp can be rewritten fromalternating k-
star statistic, alternating k-triangle statistic and alternating k-twopath statistic respectively,
where

alternating k-star(y, λs) = S2(y)− S3(y)
λs
+ · · · + (−1)n−3 Sn−1(y)

λn−3s
;

alternating k-triangle(y, λt) = 3T1(y)− T2(y)
λt
+ · · · + (−1)n−3Tn−2(y)

λn−3t
;

alternating k-twopath(y, λp) = P1(y)− 2P2(y)
λp
+ · · · + (−1)n−3Pn−2(y)

λn−3p
,

and Sk(y), Tk(y), Pk(y) are k-star, k-triangle and the k-twopath respectively. What is more,
degree statisticsDi(y) and the edge wise and dyadic shared partner statistics EPi(y),DPi(y)
are related to k-star statistics Sk(y), k-triangle Tk(y) and k-twopath statistics Pk(y), respec-
tively, by the following equations:

Sk(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

n−1∑
i=1

iDi(y), k = 1,

n−1∑
i=k

(
i
k

)
Di(y), 2 ≤ k ≤ n− 2;

Tk(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
3

n−2∑
i=0

iEPi(y), k = 1,

n−2∑
i=k

(
i
k

)
EPi(y), 2 ≤ k ≤ n− 2;

Pk(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

n−2∑
i=2

(
i
2

)
DPi(y), k = 2,

n−2∑
i=k

(
i
k

)
DPi(y), 1 ≤ k ≤ n− 2, k �= 2.
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Figure 1. A five-node network example.

To make these concepts concrete, consider the simple undirected graph in Figure 1
presented by [16]. For this five-node network, the edgewise and dyadic shared partner dis-
tributions are (EP0,EP1,EP2,EP3) = (1, 4, 1, 0) and (DP0,DP1,DP2,DP3) = (2, 6, 2, 0),
respectively. The k-triangle and k-twopath distributions are (T1,T2,T3) = (2, 1, 0) and
(P1,P2,P3) = (10, 1, 0), respectively.

To rewrite the alternating k-star, alternating k-triangle and alternating k-twopath statis-
tics in terms of theDk(y), EPk(y) and DPk(y), begin by substituting Sk(y), Tk(y) and Pk(y)
into the equations above, then introduce the parameters γs=log λs, γt=log λt and γp=log λp.
Finally, after simplification, the statistics gwdegree, gwesp and gwdsp can be calculated
directly byDk(y),EPk(y),DPk(y). These statisticsmay be expected to avoid the large degen-
eracy problems associated with the traditional specification such as k-star statistic and
k-triangle statistic, and lead to much better results. [16,37] provided more details about
these statistics. In this article, we will consider them as candidate variables for the model.
For the sake of simplicity, we will assume that γs, γt , γp are fixed at 0.7 in the following of
this paper.

2.2. Split LRT of ERGMs

Classical LRT requires that the statistical model satisfy certain regularity conditions such
that the log-likelihood-ratio has asymptotic chi-square distribution. But if the regular-
ity conditions do not hold, like ERGMs, the limiting distribution of likelihood-ratio will
be intractable. Therefore Split LRT is a simple method without any regularity condi-
tions, which can be used for any parametric model. Although [3,6,11,12,33] have given
approaches to calculate the likelihood ratio of ERGMs, the asymptotic distribution of the
estimated likelihood ratio remains unknown due to the limitations of the model and the
complex correlation between edges (sample) yij, 1 ≤ i < j ≤ n [34]. In such irregular statis-
tical models, the sample Split LRT [39] can be employed to test composite null hypotheses.
The main idea is to split the data into two sets. Under the null hypothesis, the two sets of
data are independent and identically distributed (i.i.d.). One set of data is used to estimate
the parameters, while the other set is utilized to generate the likelihood ratio, which is then
used as a test statistic. The advantage of this method is that it does not require any extra
conditions, but only i.i.d. of the two sets of samples.

[39] considered a possibly composite null set �0 and the testing

H0 : θ ∈ �0 versus H1 : θ /∈ �0,
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and argmaxθ∈�0 L0(θ) is used in likelihood ratio. To apply Split LRT to the test of ERGMs,
in our setting, we assume that the graphs Y0 and Y1 are identically distributed Pθ (Y), and
we consider the simple null hypothesis

H0 : θ = θ� versus H1 : θ �= θ�. (2)

Here we suppose θ� is known. Let L0(θ) = Pθ (Y0), L1(θ) = Pθ (Y1), and θ̂0, θ̂1 be the esti-
mation of θ based on sample Y0,Y1, respectively. Let U = L0(θ̂1)/L0(θ�), and Uswap =
L1(θ̂0)/L1(θ�). Since

Eθ�

[
L0(θ̂1)
L0(θ�)

]
=

∑
Y0

L0(θ̂1)
L0(θ�)

Pθ�(Y = Y0)

=
∑
Y0

L0(θ̂1) = 1,

in the case of the null hypothesis, and by Markov inequality, we have

Pθ�

(
U >

1
α

)
≤ αEθ�

[
L0(θ̂1)
L0(θ�)

]
= α.

Denote the Split LRT statistics recommended in [39] as

SL = U + Uswap

2
. (3)

It can be similarly seen that

Pθ�

(
SL >

1
α

)
≤ α

2
Eθ�

[
L0(θ̂1)
L0(θ�)

+ L1(θ̂0)
L1(θ�)

]
= α. (4)

When the significance level α is set, the null hypothesis H0 will be rejected if SL > 1/α,
hence the probability of the Type I error can be controlled less than α.

It can be seen from the construction process that we do not need the particular form
of the statistic θ̂1, θ̂0, and all we need is a solid estimate of θ , which can be MLE, Bayesian
estimation, or any other estimation [3,33,39].

3. Onlinemonitoring of ERGMs

3.1. Onlinemonitoring of ERGMs based on split LRT

In this section, we construct a split LRT-based online monitoring method of ERGMs.
Assuming that Y1,Y2, . . . ,Yt , . . . are an online sequence of independent un-directed
graphs observed during Phase II process monitoring. It is necessary to monitor whether
the distribution of the new sample Yt changes in comparison to the previous observations,
that is, whether the parameter θ in the ERGM shifts. Assuming that the IC distribution is
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Pθ�(Y). We consider the hypothesis:

H0 : Y1,Y2, . . . ,Yt , . . . ∼ Pθ�(Y)

versus

H1 : Existt0 ≥ 1,Y1,Y2, . . . ,Yt0−1 ∼ Pθ�(Y)and Yt0 , Yt0+1 · · · ∼ Pθ (Y), θ �= θ�.

(5)

In statistical process monitoring, the two phases, Phase I and Phase II, are different in their
goals. In Phase I, it aims to get a stream of IC observations and estimate the IC parameters.
For example, the IC parameters can be estimated by the mean of MLEs of the IC observa-
tions. In Phase II, it attempts to detect anomalies on the foundation of known parameter
estimation obtained in Phase I. In this paper, we focus on the Phase II monitoring method,
so we assume that θ� is known or can be estimated through a setm of Phase I observations,
in which case it is denoted as θ̂ �

m.
In the case of offline, we might use SL = (U + Uswap)/2 as test statistic. But in the case

of online, we have only one new sample at a time. It is not straightforward to use the cross-
fit statistic as SL recommended in [39], so we consider the sequential version of the Split
LRT statistic. The performance of SL is shown based on simulation study, and we found
that the application of Split LRT to test ERGMs is effective. And then we can expect the
on-line version to perform well in monitoring. To build an on-line monitoring method, let
θ̂1,t :=

∑t
i=1 θ̂i/t denote the mean value of the previous t estimates. The disadvantage of

the average is that as the running time t increases, the impact of the new estimations on the
average θ̂1,t gets smaller. Therefore, the exponential weighted average approach is utilized,
that is

θ̂1,t =
{

θ̂1, t = 1,
(1− w)θ̂1,t−1 + wθ̂t , t ≥ 2,

where θ̂t is the pseudo MLE of Pθ (Y = Yi) [6], and the weight 0<w<1 is defined as
smoothing constant, which ensures that each new estimate θ̂t has the same level of influ-
ence on θ̂1,t . It can be set to 0.2 for instance. It can be seen that if the first t−1 samples
come from the same distribution Pθ�(Y), θ̂1,t−1 is still a solid estimate of θ�. In the previ-
ous section, we know that the test does not require θ̂i to be a specific estimation. As the
calculation speed of pseudo MLE is substantially faster than that of MCMC MLE [33],
pseudo MLE is chosen as the estimation of θ in our detection method.

Specifically, when θ� is known, we consider the test statistics

Mt =
⎧⎨
⎩

1 t = 1,
P

θ̂1,t−1(Yt)

Pθ�(Yt)
, t ≥ 2.

And when θ� is unknown, let θ̂ �
m be the estimate obtained in Phase I. We consider the test

statistics

Mt =

⎧⎪⎨
⎪⎩

1, t = 1,
P

θ̂1,t−1(Yt)

P
θ̂ �
m
(Yt)

, t ≥ 2.
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EWMA is a famous method in the SPC theory [22,23,42], which is more effective for small
changes of process. The following EWMA procedure is suggested at time t,

St =
{

1 t = 1,
(1− λ)St−1 + λMt , t ≥ 2, (6)

where 0 < λ ≤ 1 is defined as smoothing constant. For a given IC average run lengthARL0,
the control limit h is determined. The process is out-of-control (OC) when St > h. The
control limit h of the EWMA control chart can be derived from the formula

h = μ0 + Lσ
√

λ

2− λ
,

where L is a constant, μ0 = Eθ�[Mt] = 1, σ = √Varθ�(Mt). Assuming that Mt , t =
1, 2 · · · is i.i.d., σ can be replaced by the sample standard deviation.

For the proposed EWMA statistic St in (6), we have the following property.

Proposition 3.1: Define the stopping time τ = inf{t|St > 1/α, t ≥ 1}. Then
Pθ�(τ <∞) < α.

Proof 3.1: Define the natural filtration Ft = σ(Y1,Y2, . . . ,Yt). Noting that

Eθ�[Mt|Ft−1] = Eθ�

[
P

θ̂1,t−1(Yt)

P
θ̂ �
m
(Yt)

|Ft−1

]
≤ Eθ�

[
P

θ̂1,t−1(Yt)

Pθ�(Yt)
|Ft−1

]
= 1, (7)

Eθ�[Sτ |Fτ−1] = Eθ�[Sτ |Fτ−1, τ <∞]Pθ�(τ <∞)

+ Eθ�[Sτ |Fτ−1, τ = ∞]Pθ�(τ = ∞), (8)

Eθ�[Sτ |Fτ−1] = Eθ�[(1− λ)Sτ−1|Fτ−1, τ <∞]Pθ�(τ <∞)

+ Eθ�[(1− λ)Sτ−1|Fτ−1, τ = ∞]Pθ�(τ = ∞)

+ λEθ�[Mτ |Fτ−1]. (9)

Combining (7)–(9), then

Eθ�[(1− λ)Sτ−1|Fτ−1, τ <∞]Pθ�(τ <∞)+ λ ≥ Eθ�[Sτ |Fτ−1, τ <∞]Pθ�(τ <∞).

Knowing that Sτ−1 ≤ 1/α and Sτ > 1/α, then

1
α

(1− λ)Pθ�(τ <∞)+ λ >
1
α
Pθ�(τ <∞).

So we have Pθ�(τ <∞) < α. �

The property above is similar to [15,39]. This conclusion demonstrates that the proba-
bility of the type I error can be controlled below α for online split LRT tests with rejection
region {St > 1/α, t ≥ 2}. Note θ̂1,t−1 is still an estimate of θ� when the tth sample Yt is
the first OC sample, so the value of Mt should be smaller than 1. When the OC process
proceeds, the new sample Yt+1 is OC and i.i.d. with Yt . No matter the shift of parameter
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Figure 2. Plots of the networks for Flobusiness (a), Kapferer (b) and Faux.mesa.high (c).

θ� is decreasing or increasing, since θ̂1,t is more close to the MLE of Yt and Yt+1, the LRT
P

θ̂1,t
(Yt+1)/Pθ�(Yt+1) will increase and so as the values of Mt+1 and St+1. Therefore, we

only need to define an upper control limit for the EWMA statistic St . It will be alerted if the
control limit h is exceeded. The performance of the EWMA statistic St in simulation for
both decreasing and increasing parameter shifts is shown in Section 4. However, this rejec-
tion region is too conservative, and the performance is not as good when the new sample
changes slightly. In the following section, we will find a more appropriate control limit by
simulation [24].

3.2. Searching algorithm for control limit h

The control limit h of EWMA with smoothing constant λ is adjusted to have an IC values
of ARL0. Following [23,24], MC simulation and the bisection method are used to calculate
the values of the control limit h under various parameters. The detailed procedure is in
Algorithm 1, where ARL0 is the average run length under IC process, λ is the smoothing
constant in EWMA, hmin and hmax are the initial values of the bisection method.

4. Simulation study

All the results of the simulation experiments are implemented in R 4.1.0. The package
mainly used is ‘ergm’ [19] with version of 4.0 [21].

4.1. Datasets andmodel selection

The social networks of the three data sets Flobusiness, Kapferer and Faux.mesa.high
contained in the ‘ergm’ package are shown in Figure 2.

Taking Flobusiness as an example, the data come from the business contacts between
Renaissance Florentine families. Each vertex (family) in Figure 2(a) has three attributes:
(1) wealth: family wealth level; (2) priorates: seats in the civic committee; (3) totalities: the
total number of business contacts and marriages.

With the data set Flobusiness, the ERGM of Equation (1) is fitted. Edges of the network
are always a term of the model when choosing statistics. In addition, the three statistics
gwesp(0.7), gwdsp(0.7) and gwdegree(0.7) are chosen as the statistics, as well as the three
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Algorithm 1 Search for control limit h.
Require: ARL0, λ, hmin and hmax
Ensure: h
1: Set B, ε1, ε2;
2: Let h = (hmin + hmax)/2;
3: for each b ∈ [1,B] do
4: SetM1 = 1, S1 = 1, generate sample Y1 ∼ Pθ�(Y);
5: h = (hmin + hmax)/2, t = 1;
6: while St ≤ h do
7: t← t + 1;
8: Generate sample Yt ∼ Pθ�(Y);
9: Calculate statisticsMt , St ;
10: Update parameters θ̂1,t ;
11: end while
12: RLb← t
13: end for
14: ARL← 1

B
∑B

b=1 RLb
15: if ARL < ARL0 − ε1 and hmax − hmin > ε2 then
16: Update hmin← h;
17: Update h = (hmin + hmax)/2;
18: Turn to line 3;
19: end if
20: if ARL > ARL0 + ε1 and hmax − hmin > ε2 then
21: Update hmax ← h;
22: Update h = (hmin + hmax)/2;
23: Turn to line 3;
24: end if
25: The algorithm will stop at |ARL− ARL0| or hmax − hmin being small enough.
26: Output h.

vertex attributes wealth, priorates and totalities. Since there are at least one term, combina-
tions of edges and the additional six statistics yield a total of 27 − 1 = 127models. For each
model, the AIC value [17] is obtained using MCMC MLE [33]. Table 1 lists the selected
statistics and estimations with the first five of the smallest AIC values.

According to the results in Table 1, edges and gwesp(0.7) are selected as the statistics of
the ERGM. The results of MCMCMLE are displayed in Table 2. Then the final model is

P(Y) = exp{−2.9304× edges+ 0.8600× gwesp(0.7)− φ(−2.9304, 0.8600)}. (10)

A large number of network data can be simulated using the givenmodel (10) andMetropo-
lis–Hastings algorithm, which is used to sample exponential random graphs [36]. Figure 3
shows the goodness-of-fit diagnostics, which depicts a comparison between the sample
distribution of many typical network data statistics and the real observation [17]. The fol-
lowing statistics were chosen: degree distribution, edge-wise shared partners, minimum
geometric distance, and the two statistics used in the model: edges and gwesp(0.7). The
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Table 1. Model selection of ERGM for data set Flobusiness.

Models Statistic Estimation Significance AIC

1 edges −2.9304 *** 84.59
gwesp(0.7) 0.8600 ***

2 edges −2.9178 *** 86.26
gwesp(0.7) 0.9025 ***
priorates −0.7179

3 edges −3.0250 *** 86.36
gwesp(0.7) 0.8884 ***
totalties 0.6209

4 edges −3.1164 * 86.61
gwesp(0.7) 0.9276 *

gwdegree(0.7) 0.1391

5 edges −2.8582 *** 86.89
gwesp(0.7) 0.8096 *
gwdsp(0.7) 0.0042

Table 2. MCMC results of the bestmodel of ERGM for data
set Flobusiness.

Statistic Estimate Std. Error z value Pr(> |z|)
edges −2.9304 0.4231 −6.926 < 1e-04
gwesp(0.7) 0.8600 0.2521 3.412 0.000645

Table 3. Information and percentiles of−2 log(SL) of the
three datasets.

Flobusiness Kapferer Faux.mesa.high

vertex 16 39 205
edges 15 158 203
5% percentile −1.9177 −1.9077 −40.2981
25% percentile 0.0253 0.4776 0.5431
50% percentile 1.3432 2.1708 3.0410
75% percentile 3.2073 5.4429 56.7055
95% percentile 8.6733 17.4505 400.0304

sample distributions of the statistics acquired from the generated data are shown in the
box plots in Figure 3, and the real line in the center represents the true statistics of the net-
work for Flobusiness. The real statistics are essentially close to the mean value of the box
plots, showing that the model is well-fitted to the data.

4.2. Sample split LRT performance

Flobusiness and the other two datasets, Kapferer and Faux.mesa.high, were used to fit the
model

P(Y) = exp{θ1 × edges+ θ2 × gwesp(0.7)− φ(θ1, θ2)}

and 3000 samples of the statistics SL in Equation (3) are generated separately. Table 3
displays the number of vertices and edges, and some percentiles for the three datasets.
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Figure 3. Goodness-of-fit diagnostics of Model (10).

The sample distribution is depicted in Figure 4, with chisq(1) serving as the benchmark,
showing a chi-square distribution with 1 degree of freedom. It can be seen from Figure 4
that there are some discrepancies between the distributions.

The sample distribution of −2 log(SL) is presented in Figure 5, with reference to the
form of likelihood ratio statistics. It is clear from Figure 5 that they do not follow the chi-
square distribution, which is different from the conventional likelihood ratio statistics.

The percentiles of the sample distribution in Figure 5 are also shown in Table 3. It can
be seen that as the number of network edges and vertices increases, the distribution of the
statistics becomes more concentrated to zero and the tail becomes more heavier. There are
also some large numbers of SL for the dataset Faux.mesa.high, indicating that statistical
properties do not perform well when the network order is high. The explanation for this
might be that when the order is huge, fitting the model becomes more difficult, and the
parameter estimation becomesworse.When the order is high, however, even if the network
topology or parameters change slightly, the model’s likelihood changes dramatically, and
the statistic SL is more susceptible to extreme instances.

To produce simulation data, we use the data set Flobusiness as an example. Set the
parameter shift to δ times the standard deviation (see Table 2) of estimation, and use the
model (10). That is,

P(Y) = exp{(−2.9304+ 0.4231δ)× edges+ (0.8600+ 0.2521δ)× gwesp(0.7)}
c(−2.9304+ 0.4231δ, 0.8600+ 0.2521δ)

. (11)

For the significant level α, the rejection region is {SL|SL > 1/α}. The simulated power
of the test in Equation (4) is shown in Figure 8. In this simulation, δ varies from 0.05 to
0.7 in steps of 0.005. At each of these 131 δs, 150 simulations were run. Two networks are
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Figure 4. The sample distributions of the statistics SL for the three datasets.

Figure 5. The sample distributions of the statistics−2 log(SL) for the three datasets.

generated following themodel (11) and the results of the test are record in every simulation.
The solid lines in Figure 8 are the smoothing lines of the corresponding points.

Based on the same simulation data, the bootstrap method is used to calculate the
25%, 50%, 75%, 95% percentiles for the 150 SL samples at each δ, as illustrated in Figure 7.
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Figure 6. Percentiles of−2 log(SL) changes with δ.

Table 4. The control limitsh for various combinations
of λ and ARL0 of Split LRT based EWMA control chart.

λ

ARL0 1 0.2 0.1 0.05

100 5.2140 1.6875 1.3010 1.0640
200 7.9347 2.3924 1.6084 1.2595

The trend of the sample percentiles of−2 log(SL)with δ is shown in Figure 6 and the solid
lines are smoothing lines of the corresponding points. As shown in Figures 8–6, the statis-
tic SL grows exponentially with δ. When the shift is greater than 0.5 times the standard
deviation, the power is nearly 1, indicating that the shift can be detected even if the control
limit is set to 1/α. As a result, we will discuss the case when the shift is less than 0.5 times
the standard deviation in the following section.

4.3. Control limit h and ARL performance

In this section, we only consider the situation when θ� is known. When θ� is unknown,
we can replace θ� with the estimated θ̂ � obtained in Phase I. Set model in Equation (10) as
the null hypothesis, with θ� = (−2.9304, 0.8600).We consider the performance of EWMA
statistic in Equation (6).

At first, we set the smoothing parameters λ = 1, 0.2, 0.1, 0.05 andARL0 = 100, 200, and
Algorithm 1 is used to get the control limit h. The results are shown in Table 4.

The first experiment is to show the performance of ARL with increasing shift. For the
parameters λ = 1, 0.2, 0.1, 0.05, ARL0 = 100, 200 and the change point τ = 0, 20, 50, the
corresponding control limits h in Table 4 are set. The ARL results are displayed in Table 5.
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Figure 7. 25%, 50%, 75% and 95% percentiles of SL changes with δ.

Figure 8. The power of the test in Equation (4) varies with δ.

The table shows that as δ increases, theARL at each λ value drops. TheARL values fluctuate
with δ under these four λ, as shown in Figure 9.When λ = 1, the ARL values of τ = 20, 50
are nearly identical. And when λ = 0.2, 0.1, 0.05, the bigger the τ , the smaller the ARL,
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showing that the monitoring method is more effective when the length of the IC process is
longer.

The next experiment is to show the performance of ARL under decreasing shift. We
consider negative δ, i.e. δ = −0.2,−0.3,−0.5.Wefix τ = 0, as the effect of τ are the same as
before. The results are displayed in Table 6.We can conclude that the proposedmonitoring
method still work well when decreasing shift occurs.

To compare the performance of the proposed control chart with the methods discussed
in [35], we introduce Hotelling’s T2 and MEWMA control charts here. Hotelling’s T2 is
also known as multivariate Shewhart control chart. Let θ̂i be a new sample, and 
 be the
covariance matrix of θ̂i. The Hotelling T2 statistic is

T2
i = (θ̂i − θ�)�
−1(θ̂i − θ�).

And the MEWMA statistic is

T2
i = (zi − θ�)�
−1zi (zi − θ�),

where λ is the smoothing constant, zi = λθ̂i + (1− λ)zi−1, z0 = θ� and 
zi ≈ λ
2−λ


. We
can replace 
 by sample covariance matrix in simulation. The upper control limit can
also be computed by Algorithm 1. The results are shown in Table 7 for ARL0 = 100, 200,
respectively.

The ARL performances are shown in Table 8. Compared with Table 5, it is obvious that
the performances of proposedmethod are uniformly better thanMEWMA and T2 control
charts.

5. Real application example

The real dataset to illustrate the proposed modelling and on-line monitoring meth-
ods is the MIT reality mining social proximity network. The dataset contains call
records and other information of students and staff at a major university dur-
ing the months between July 2004 and June 2005. The website of the dataset is
http://realitycommons.media.mit.edu/realitymining.html. Andmore detailed information
on the data can be found in [8].

After cleaning and preprocessing, the dataset contains 80 subjects (nodes) during the
months from 2004-07-20 to 2005-06-14. To be comparable with other studies [20,31], the
datasets were split up into weekly time windows. Finally, according to the time sequence,
we get 48 undirected networks (observations), and each network has 80 nodes. Each edge
in the graph indicates that two nodes are connected at least once in a week.We assume that
networks at different weeks are independent.

For the selection of models, we still use pseudo MLE parameters [6] and AIC mini-
mum criterion [17] to determine the model. Therefore, gwdsp(0.7) and gwdegree(0.7) are
selected as the sufficient statistics of the ERGM. The AIC of this model is approximately
equal to 77.74. For themonitoring process, we choose the first two observations as IC sam-
ples and the mean of their pseudoMLE is set as IC parameters, θ̂ �

m = (−0.2392,−3.7467).
The parameter λ is set to 1. When the monitoring statistic SL is greater than 20 (α=5%),
the control charts will send OC signal. Figure 10 shows the OC signals against the selected
metrics of networks. These three metrics are centralized and standardized.

http://realitycommons.media.mit.edu/realitymining.html
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Figure 9. ARL varies with δ and τ when λ = 1, 0.2, 0.1, 0.05 and ARL0 = 100, 200.

Table 5. ARL values for different λ, δ, τ and ARL0 of Split LRT-based EWMA control chart.

ARL0 = 100 ARL0 = 200

λ

τ δ 1 0.2 0.1 0.05 1 0.2 0.1 0.05

0 0 102.50 99.11 101.10 99.25 200.85 202.34 199.51 198.64
0.2 6.36 5.52 7.27 7.50 6.67 7.43 7.48 8.03
0.3 3.52 3.68 3.87 4.54 4.01 4.01 4.40 4.50
0.5 2.46 2.52 2.64 2.84 2.60 2.55 2.83 2.91

20 0 102.50 99.11 101.10 99.25 200.85 202.34 199.51 198.64
0.2 5.09 4.72 4.53 5.22 6.49 4.70 5.14 6.28
0.3 3.28 3.07 3.58 3.13 3.42 2.83 3.22 3.64
0.5 2.02 2.16 2.19 2.28 1.86 2.06 2.13 2.37

50 0 102.50 99.11 101.10 99.25 200.85 202.34 199.51 198.64
0.2 4.95 4.59 4.04 4.07 5.64 4.80 4.65 5.34
0.3 3.35 2.70 3.16 2.85 3.52 3.44 3.31 3.14
0.5 2.11 2.03 1.99 2.28 2.16 2.30 2.06 2.24

From Figure 10, in this application example, the charts give OC signals at the 11th, 20th,
24th, 28th, 43rd observations, respectively. The dates corresponding to the observations
are 2004/09/28-2004/10/04, 2004/11/30-2004/12/06, 2004/12/28-2005/01/03, 2005/01/25-
2005/01/31 and 2005/05/10-2005/05/16, respectively. Consistent with [31], 2004/11/30-
2004/12/06 is the last week of classes and the independent activities were held from
2004/12/28 to 2005/01/31, so the OC signals are given at the 20th, 24th, 28th observa-
tion. Moreover, we found that 2004/09/06 was the start of the semester, which may lead
to the OC signal at 2004/09/28-2004/10/04. And the OC signal at 2005/05/10-2005/05/16
means the end of this semester.
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Table 6. ARL values for decreasing δ of Split LRT-based EWMA control chart.

ARL0 = 100 ARL0 = 200

λ

τ δ 1 0.2 0.1 0.05 1 0.2 0.1 0.05

0 0 102.50 99.11 101.10 99.25 200.85 202.34 199.51 198.64
−0.2 3.51 4.91 7.13 9.24 9.60 7.40 7.98 11.58
−0.3 2.77 4.03 5.35 7.70 9.90 5.62 6.52 9.61
−0.5 2.03 2.99 4.33 5.95 6.30 4.22 4.73 7.23

Table 7. The control limitsh for various combinations of
λ and ARL0 of MEWMA control chart.

λ

ARL0 1 0.2 0.1 0.05

100 14.25 17.45 17.96 18.18
200 19.40 21.85 23.53 24.87

Table 8. ARL values for different λ, δ and ARL0 of MEWMA control chart.

ARL0 = 100 ARL0 = 200

λ

τ δ 1 0.2 0.1 0.05 1 0.2 0.1 0.05

0 0 99.77 97.19 101.34 97.49 200.65 202.25 202.77 200.48
0.2 27.35 58.99 91.58 82.53 43.34 108.24 175.66 174.11
0.3 16.06 29.80 41.37 69.21 22.49 50.89 69.18 104.94
0.5 6.98 12.72 24.25 32.72 8.81 19.19 34.87 44.59

Figure 10. Density, average betweenness and average closeness of the networks for the MIT data. Ver-
tical dotted lines are indicated the OC signals, including (a) the start of the semester, (b) the last week of
classes, (c) the beginning of independent activities, (d) the ending of independent activities, and (e) the
end of the semester.

6. Concluding remarks

This paper proposes methods to detect anomalous changes in social network structure in
real time. First, we model social networks by ERGMs. Then by merging sample Split LRT



JOURNAL OF APPLIED STATISTICS 1639

with SPC, this paper proposes a testing and online monitoring technique. The statistic
Mt utilized in the approach is sensitive to parameter changes. According to the simula-
tion studies, the performance is quite good when the parameter shift is not so small (0.5
times standard deviation or above). For tiny shifts, EWMA control charts and simulation
search are proposed to find the control limit. Three data sets Flobusiness, Kapferer and
Faux.mesa.high are used in the numerical simulations, and one data on the MIT reality
mining social proximity network is used to illustrate the proposed modelling and online
monitoring methods.

However, a limitation is that ERGMs use summary statistics rather than the entire infor-
mation of network structure such as adjacency matrix. Future research may find a way
to model the network data and explain the complicated associations behind it, reducing
information loss of network structure.

Although we focus on Phase II monitoring, the Phase I sample sizemmay cause estima-
tion error for parameter estimates. It is worth exploring how to get a stream of IC networks
for Phase I, and the relationship between the sizem and the performance of ourmonitoring
method in Phase II. And, inmonitoring process, we assume the independence of social net-
works at different time. To reflect the evolution of social networks more accurate, we need
to develop some new methods to model and monitor the temporal dynamic structures of
the networks, which is an interesting area of future research.

The characteristics of the statistic SL require more investigation to reach more con-
centrated results than Pθ�(SL > 1/α) ≤ α. [7] proved and characterized the degeneracy
observed in the ERGM with the counts of edges and triangles as the exclusively sufficient
statistics.When the network order is high, however, the statistic SL is more sensitive to net-
work structure changes and is more prone to extreme big values. As a result, the approach
needs to be enhanced for high-order network data.
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