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ABSTRACT
This paper presents a novel approach for analyzing bivariate posi-
tive data, taking into account a covariate vector and left-censored
observations, by introducing a hierarchical Bayesian analysis. The
proposed method assumes marginal Weibull distributions and
employs either a usualWeibull likelihood orWeibull–Tobit likelihood
approaches. A latent variableor frailty is included in themodel to cap-
ture the possible correlation between the bivariate responses for the
samesamplingunit. Theposterior summariesof interest areobtained
through Markov Chain Monte Carlo methods. To demonstrate the
effectiveness of theproposedmethodology,we apply it to abivariate
data set from stellar astronomy that includes left-censored obser-
vations and covariates. Our results indicate that the new bivariate
model approach, which incorporates the latent factor to capture the
potential dependence between the two responses of interest, pro-
duces accurate inference results. We also compare the two models
using the different likelihood approaches (Weibull or Weibull–Tobit
likelihoods) in the application. Overall, our findings suggest that the
proposed hierarchical Bayesian analysis is a promising approach for
analyzingbivariate positive datawith left-censoredobservations and
covariate information.
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1. Introduction

Multilevel data structures are prevalent in various fields, including epidemiology, public
health, education, and sociology. For the analysis of survival datawithin amultilevel frame-
work, one extensively researched class of models is the Cox proportional hazards models
with mixed effects, which incorporate cluster-specific random effects modifying the base-
line risk function [51,52,66]. The Cox proportional hazards regressionmodel is commonly
employed for survival data analysis [1], where random effects are typically introduced
to account for within-cluster homogeneity in the outcomes. Also, Cox regression mod-
els with mixed effects are useful for analyzing survival data with repeated measures on
individuals, individuals nested within some hierarchy, or other scenarios requiring both
fixed and random effects. The inclusion of random effects in a Cox proportional haz-
ards model shares similarities withmethods for analyzingmultilevel data with continuous,
binary, or count outcomes [62]. In this way, bivariateWeibull or, as a special case, bivariate
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exponential distributions have been proposed as an alternative for data analysis [40,41,59].
In some cases, the bivariateWeibull distribution is obtained by introducing random factors
to capture the dependence between two random variables [24]. Another approach is to use
copula functions. Various copula functions have been employed to obtain bivariateWeibull
distributions [27], such as the Farlie–Gumbel–Morgenstern (FGM) copula with Weibull
marginal distributions, which is referred to as the FGM bivariate Weibull (FGMBW) dis-
tribution [4]. The FGMBWdistribution, for example, is useful for describing bivariate data
with weak correlation between variables in lifetime data.

The main goal of this paper is to introduce a hierarchical Bayesian analysis for bivari-
ate Weibull data. We consider both the usual Weibull likelihood and a Tobit likelihood
approach based on marginal Weibull distributions in the presence of left censoring and
covariates. The dependence structure between the bivariate data is modeled by the intro-
duction of a frailty or latent variable. The introduction of a random effect that captures the
dependence between the responses implies in best fit to the data used in the study (astron-
omy data) when compared to models assuming independent data. When the proportion
of left censoring is very large, the use of usual likelihood techniques in the presence of left
censored data (classical or Bayesian approaches) assuming a specified probability distri-
bution for asymmetric positive data (in this study, a Weibull distribution) in general, may
not be satisfactory assuming the same probability distribution for the censored and non-
censored observations. In this situation, an alternative introduced in the literature would
be to assume a Tobit–Weibull model in the data analysis. In the application considered in
the study with astronomy data, the proportion of left censorship is not large. Thus themain
goal of the study is a comparison of the two methodologies under a hierarchical Bayesian
approach. The assumption of aWeibull model and the choice of covariates was considered
from a preliminary data analysis that showed an asymmetry of the data. The main reason
for the use of the Weibull distribution, usually the most used lifetime distribution in life-
time data applications, is due to the great flexibility of fit for the data. Besides the great
flexibility of fit, this model has only two parameters, which implies in great simplicity to
get the inferences of interest, especially assuming a left censored scheme.

Many parametric regression models were introduced in the literature to analyze life-
time data in the presence of censored data (see, e.g., [42]). A very popular semi-parametric
regression model extensively used in survival data analysis was introduced by Cox [15]
assuming proportional hazards (see also [13,16,38,39,43]). In all these models, inde-
pendent observations are usually assumed, that is, the sample units are not related
to each other. However, in some situations, it is possible to have dependent bivariate
responses (two or more measurements in the same unit). To capture the correlation
between two or more survival times, we could consider the introduction of ‘frailties’
or latent variables [12,24,54,55,61]. Random effects models are largely used to model
heterogeneity as the frailty model introduced by Vaupel [68] used in multivariate sur-
vival analysis. Another possibility in the statistical analysis of bivariate lifetime data is to
assume existing parametric probability bivariate lifetime distributions as bivariate expo-
nential, bivariateWeibull, bivariate Lindley or bivariate log-normal distributions (see, e.g.,
[5,7,17,19–21,25,32,33,35,48,49]).

As an example, and motivation for this study, we consider a stellar astronomy bivariate
dataset (https://www.iiap. res.in/astrostat/School08/datasets/censor.html) in the presence
of left censored observations introduced by Santos et al. [60] (see dataset in Appendix 1 at

https://www.iiap.res.in/astrostat/School08/datasets/censor.html
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the end of the manuscript). In this example, the authors seek differences in the properties
of stars that do and do not host extrasolar planetary systems where a previously identified
sample of objects (stars, galaxies, quasars, X-ray sources, etc.) are observed at some new
wavelength or for some new property. This data set is related to the birth and death of
stars where many questions still exist, despite the scientists now understand over 90% of a
star’s life [11,14]. Some of the target objects are detected and the value of the new property
is measured, while others are not detected. These are assigned as an upper limit to the
value of the property based on the uncertainty of the unsuccessful measurement, that is,
we have the presence of left-censored data. The probability to find a planet is a steeply
rising function of the star’s metal content, but it is unclear whether this arises from the
metallicity at birth or from later accretion of planetary bodies. The study introduced by
Santos et al. [60] focuses on two responses associated to the same star: the abundances
of the light elements beryllium (Be) and lithium (Li) that are thought to be depleted by
internal stellar burning, so that the excess of Be and Li should be present only in the planet
accretion scenario of metal enrichment. In this way, we have the presence of left censored
bivariate data associated to each star.

Censored data is common in many applications. Usually we have right-censored data
especially in medical studies, for example, where we do not know the true survival time for
some patients. This could occur when an individual does not experience the event of inter-
est when the study is over; when an individual is lost to follow-up during the study period
or when an individual withdraws from the study. The literature presents three major cen-
soring mechanisms: right, left and interval censoring. This study focuses on the censored
data on the left, since it occurs when the lower detection limit of an assay is fixed in many
fields including stellar astrophysics, biology, chemistry, and environmental sciences.

Several statistical methods have been proposed in the literature to account for left-
censoring in cross-sectional (with one measure per subject) or longitudinal (with several
measures per subject) studies. Among thesemethods, we could point out tomultiple impu-
tation [22,34,44,56], reverse survival analysis methods [23,31,34,47], quantile regression
[26,69] and censored quantile regression [57,58]. Other possibility is to assume the Tobit
model with censored outcomes [36,37,45,53,67,71] or by the Buckley–James estimator [8].
Soret et al. [63] propose to reverse the Buckley–James least squares algorithm to handle left-
censored data enhanced with a Lasso regularization to accommodate high-dimensional
predictors.

This paper is organized as follows: Section 2 presents the proposed Weibull model
approaches for bivariate data assuming data with left-censoringmechanism and covariates
and inference methods for the parameters of the model. Section 3 presents an application
of the proposed methodology considering a stellar astronomy data under a hierarchical
Bayesian approach. Finally, Section 4 closes this paper with some concluding remarks and
directions for future research.

2. Statistical methods

2.1. Weibull likelihood function considering bivariate data in the presence of
left-censored data and covariates

Assuming Weibull distributions [70] for the univariate responses, widely known for its
simplicity and flexibility in accommodating different forms of hazard function, is the most
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widely used distributionmodel for lifetime analysis. TheWeibull distribution for a random
variable T has probability density function given by

f (t) = α

βα
tα−1 exp

{
−

(
t
β

)α}
, t ≥ 0 (1)

where α is the shape parameter and β is the scale parameter, both positive. Let us denote
the Weibull distribution with density (1) as Wei(α,β). For this distribution, the survival
function S(t) = P(T > t) and the hazard function h(t) are given respectively by,

S(t) = exp
{
−

(
t
β

)α}
and h(t) = α

βα
tα−1 (2)

where t > 0 and α > 0, β > 0. The mean of the Weibull distribution with density (1) is
given by E(T) = β�(1 + 1/α) where �(·) denotes the gamma function. In this case, one
may have increasing risks (failure rates) ifα > 1; decreasing ifα < 1 and constant if α = 1,
that is, we have great flexibilty of fit for the data.

In the analysis of bivariate data (T1,T2) in the presence of a covariate vector x =
(x1, x2, . . . , xp)′ affecting both dependent random variables assuming Weibull distribu-
tionsWei(α1,β1) andWei(α2,β2), respectively, we consider the use of hierarchical Bayesian
methods. In this way, we assume regression models for the scale parameters βj in the
Weibull density (1), given by

βji = exp(γj0 + γj1x1i + γj2x2i + . . . + γjpxpi + wi) (3)

where γj = (γj0, γj1, γj2, . . . , γjp)′ is the regression parameter vector associated to the
covariate vector x = (x1, x2, . . . , xp)′, j = 1, 2; i = 1, 2, . . . , n (sample size); wi is a ran-
dom factor which captures extra-Weibull variability and dependence structure between
both dependent variables (T1,T2). The random factors or latent variables (not-observed)
Wi, i = 1, . . . , n, are assumed to be independent random variables with a normal N(0, σ 2)
distribution.

Assuming a left-censored mechanism, the lifetime data is given by Tj = max(Cj,Yj)

where Cj is a censored time and Yj is a complete observation, j = 1, 2. Define a censorship
indicator variable given by δj = 1 if Tj is a complete observation (Yj > Cj) and δj = 0 if
Tj is a left censored observation (Yj ≤ Cj). In this way, the likelihood function based only
in one bivariate observation (t1, t2) is given by, F1(t1)δ1−1f1(t1)δ1F2(t2)δ2−1f2(t2)δ2 where
Fj(tj) = P(Tj ≤ tj) = 1 − Sj(tj) and fj(tj) is the probability density function, j = 1, 2.

Thus assuming Weibull distributions Wei(α1,β1) and Wei(α2,β2) with density (1) for
the random variables T1 and T2 and the regression models (3) for the scale parameters β1
and β2, the likelihood function for the parameters α1, α2, σ 2 and the parameter regression
vectors γ1 and γ2 in the presence of the fixed covariate vector x and the random factor wi
based on the ith multivariate observation (t1i, t2i, δ1i, δ2i) is given by

L(α1,α2, γ1, γ2,wi, σ 2) =
[
1 − exp

{
−

(
t1i
β1i

)α1}]1−δ1i

×
[

α1
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α1
1i

tα1−1
1i exp
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)α1}]δ1i
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×
[
1 − exp

{
−

(
t2i
β2i

)α2}]1−δ2i

×
[

α2

β
α2
2i

tα2−1
2i exp

{
−

(
t2i
β2i

)α1}]δ2i

(4)

Inferences for the parameters α1,α2, γ1, γ2 and τ = 1/σ 2 are obtained using a Bayesian
hierarchical approach in two stages. For a Bayesian analysis, we could assume uni-
form or Gamma, G(a, b), prior distributions for the parameters α1,α2 with a and b as
known hyperparameters where G(a, b) denotes a gamma distribution with mean a/b and
variance a/b2 ; and normal N(c, d2 ) prior distributions for the regression parameters
γj0, γj1, γj2, . . . , γjp, j = 1, 2 in the first stage of the hierarchical Bayesian approach; in the
second stage of the hierarchical Bayesian approach, we assume a gamma prior distribution
for the parameter τ = 1/σ 2 associated to the normal distribution N(0, σ 2) assumed for
the random factors wi, i = 1, 2, . . . , n. Let us denote this model as ‘model 1’.

2.2. Tobit models for left-censored data

Another possibility in the data analysis in the presence of left-censored data is to consider
a Tobit model [67] that could fit the data by assuming a regression model whose response
variable is censored to a prefixed limiting value. The censoring occurs when the response of
the regressionmodel is not directly observable, but its independent variables (or covariates)
are observed. Tobitmodels usually assume the normality assumption but could bemodeled
by other probability distributions (see, e.g., [50]).

If we have a complete observation, that is, (T>C), let us assume a truncated Weibull
distribution with probability density function given by

f (t | T > C) = f0(t)
P(T > C)

(5)

where f0(t) = α/βαtα−1 exp{−(t/β)α} and S0(t) = P(T > t) = exp{−(t/β)α}. In this
way, let us assume the mixture model, given by the probability density function,

f (t) = pδC(t) + (1 − p)
f0(t)
S0(C)

(6)

where δC(t) is the Dirac measure at C and p is the associated probability of T to be
left-censored for the mixture model and 1−p is the probability to be non-censored data.
In this case, if T ≤ C, S(t) = 1 ; otherwise, if T>C, S(t) = (1 − p)S0(t)/S0(C) where
S0(C) = exp{−(C/β)α}. Observe that for this truncatedmixturemodel the expected value
for T>C is given by E(T) = (1 − p)β�(1 + 1/α)/S0(C)whereC is fixed (left-censoring).
The likelihood function for the parameters p, α and β based on the ith observation is given
by

L(p,α,β/ti) = pδC(ti) + (1 − p)
f0(ti)
S0(C)

(7)

With the censoring information, let us define a binary variable δ = 1 if T is a complete
observation (T>C) and δ = 0 if T is a left censored observation (T ≤ C) with conditional
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probabilities given by

P(δ = 0 | p,α,β , t) = p

p + (1 − p) f0(t)
S0(C)

P(δ = 1 | p,α,β , t) =
(1 − p) f0(t)

S0(C)

p + (1 − p) f0(t)
S0(C)

(8)

In this way, we have a Bernoulli distribution with probability function

P(δ) =
⎡
⎣ p

p + (1 − p) f0(t)
S0(C)

⎤
⎦
1−δ ⎡

⎣ (1 − p) f0(t)
S0(C)

p + (1 − p) f0(t)
S0(C)

⎤
⎦

δ

(9)

where δ = 1(T > C) or δ = 0(T ≤ C). Thus, combining (7) with (9), the likelihood
function L(p,α,β) based on n observations is given by

L(p,α,β/t, δ) =
n∏

i=1
p(1−δi)

[
(1 − p)

f0(ti)
S0(Ci)

]δi

(10)

For our analysis, we assume a truncated Weibull distribution. Moreover, in the analysis
of bivariate data in the presence of a covariate vector x = (x1, x2, . . . , xp)′ affecting both
dependent random variables T1 and T2, we also assumeWeibull distributions Wei(α1,β1)
and Wei(α2,β2), respectively, as considered in Section (2.1). In this way, we assume the
same regression models for the scale parameters βj given by (2.3) and logit models for the
parameters pji, given by,

logit(pji) = log
(

pji
1 − pji

)
= ζj0 + ζj1x1i + ζj2x2i + . . . + ζjpxpi (11)

for j = 1, 2; i = 1, 2, . . . , n. Observe that we are assuming the same structure for the ran-
dom factor wi considered in (3) assuming a normal distribution N(0, σ 2) to capture
the possible dependence between the two responses. Furthermore, the likelihood func-
tion for the parameters α1,α2, γ1, γ2, ζ1 and ζ2, where γ1 = (γ10, γ11, γ12, . . . , γ1p)′, γ2 =
(γ20, γ21, γ22, . . . , γ2p)′, ζ1 = (ζ10, ζ11, ζ12, . . . , ζ1p)′, ζ2 = (ζ20, ζ21, ζ22, . . . , ζ2p)′, assum-
ing different left censoring Ci, based on n observations is given by

L(α1,α2, γ1, γ2, ζ1, ζ2) =
n∏

i=1
p(1−δ1i)
1i

[
(1 − p1i)

f0(t1i)
S0(C1i)

]δ1i

×
n∏

i=1
p(1−δ2i)
2i

[
(1 − p2i)

f0(t2i)
S0(C2i)

]δ2i

(12)

where δ1i = 1(T1i > C1i) or δ1i = 0(T1i ≤ C1i) and δ2i = 1(T2i > C2i) or δ2i = 0(T2i ≤
C2i). For some applications, we could have the same fixed left censoring values in (12), that
is, C1 and C2 in place of C1i and C2i.
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For a hierarchical Bayesian analysis of the model, we assume Gamma(a, b) prior dis-
tributions for the parameters α1 and α2 and Normal N(c, d2) prior distributions for the
regression parameters γ10, γ11, γ12, . . ., γ1p; γ20, γ21, γ22, . . . , γ2p; ζ10, ζ11, ζ12, . . . , ζ1p and
ζ20, ζ21, ζ22, . . . , ζ2p with a, b, c and d as known hyperparameters in the first stage of the
hierarchical Bayesian analysis. In the second stage of the hierarchical Bayesian analysis, we
assume the same gamma prior for the parameter τ = 1/σ 2 assumed in ‘model 1’. Let us
denote this model, as ‘model 2’. We use MCMC (Markov Chain Monte Carlo) simulation
methods to get posterior summaries of interest for the parameters of themodels introduced
in Sections (2.1) and (2.2) (see, e.g., [10,28–30]).

3. Application to a stellar astronomy dataset

3.1. Classical approach assuming standard polynomial regressionmodels

In this application, we assume a data set related to astronomy introduced by Santos et al.
[60], who study the light elements lithium (Li), beryllium (Be) and boron (B) as indicators
of internal stellar structure and kinematics. Because these elements are destroyed at rela-
tively low temperatures, they give us an idea of how thematerial inside stars mixes with the
hotter interior. Their analysis, together or separately, can provide us with important infor-
mation about mixing and depletion processes. Many studies of light elements in solar-type
stars have been based on the abundance of Li as Li features are easier to measure from
high-resolution optical spectra.

On the other hand, using terrestrial telescopes to measure the abundance of Be and B is
not a simple task, and only with instruments in space it is possible to obtain the abundances
of this element. Despite this difficult, it is important to complement Li studies with analyzes
of Be and (if possible) B in solar-type stars. Their abundances can help us probe different
regions (depths)within a solar-type star. In special, the authors analyzed the Be abundances
for a large sample of field solar-type stars with temperatures in the range 4800–6300K
studying the depletion of Be for dwarfs and sub-giants of different temperatures. In this
study, we concentrate in the two responses Li and Be (data set introduced in Appendix 1
at the end of the manuscript).

The data set presents some left-censored observations. We first assume a preliminary
data analysis of the data assuming the responses abundance of beryllium (Be) and lithium
(Li) as two independent random variables in presence of two covariates Type (Type = 1
indicates planet-hosting stars and Type = 2 is the control sample) and Teff (in degrees
Kelvin) is the stellar surface temperature not considering the presence of the censored data
(n = 55 uncensored observations for the response Be and n = 36 uncensored observations
for the response Li). Figure 1 shows the scatterplots of the responses abundance of beryl-
lium (Be) and lithium (Li) in the logarithm scale versus Type and Teff in the logarithm
scale.

From the plots of Figure 1, we observe that the responses abundance of beryllium
(Be) are smaller with the control sample (Type = 2) when compared to planet-hosting
stars and increases with larger stellar surface temperature Teff in the logarithm scale.
We also observe that the responses lithium (Li) show no visible effect of the covari-
ate (Type=2) and increases with larger stellar surface temperature Teff in the logarithm
scale. Also, it is observed the presence of possible curvature for the relation of both
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Figure 1. Scatterplots of log(Be) (upper panels) and log(Li) (lower panels) versus Type and log(Teff ).

responses Be and Li in logarithm scale versus log(Teff ). Assuming linear regression mod-
els with standard normal errors with constant variance for the responses abundance
of beryllium (Be) and lithium (Li) in logarithm scale in the presence of the covari-
ates type, log(Teff ), [log(Teff )]2 and interaction type x log(Teff ), Table 2 shows the least
square estimators (LSE) for the regression parameters (use of the Minitab software) of
the regression models. The needed assumptions for the polynomial regression mod-
els (normality and constant variances for the residuals) were verified from residual
plots.

Table 1 shows that from a classical linear regressionmodel approach all covariates (type,
log(Teff ), interaction of type with log(Teff ) and quadratic effect of log(Teff )) do not have
significant effects on the response log(Be) since the p-values > 0.05. Also we observe
that assuming a significance level equals to 0.10 the covariates type and interaction type
x log(Teff ) have significant effects on the response log(Li) since p-value < 0.10 in these
cases.
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Table 1. LSE for the parameters of the linear regression models.

Source Coef SE T-Value P-value

Response: log(Be)
Constant −673 434 −1.55 0.127
Type −0.27 7.18 −0.04 0.970
log(Teff ) 154 100 1.54 0.129
Type x log(Teff ) 0.019 0.829 0.02 0.982
log(Teff )2 −8.83 5.76 −1.53 0.132
Response: log(Li)
Constant 750 1694 0.44 0.661
Type 64.1 35.4 1.81 0.079
log(Teff ) −193 387 −0.50 0.621
log(Teff )2 12.3 22.1 0.56 0.581
type x log(Teff ) −7.35 4.07 −1.81 0.081

3.2. A hierarchical Bayesian analysis assuming the bivariate data in the original
scale and left-censoring

In this section, we assume dependent responses abundance of beryllium (Be) and lithium
(Li) in the presence of the two covariates Type (Type = 1 indicates planet-hosting stars
and Type = 2 is the control sample) and Teff (in degrees Kelvin), the stellar surface tem-
perature, considering all data set presented in Appendix 1, that is, n = 66 observations,
including the non-censored and the left-censored data in the original scale. We assume
Weibull distributions Wei(α1,β1) and Wei(α2,β2), for the two responses Be and Li with
regression models (3) for the scale parameters in presence of the covariates Type and Teff
and a random factor W which captures the possible dependence between Be and Li under
a hierarchical Bayesian analysis. That is, we assume the regression models given by

β1i = exp(γ10 + γ11typei + γ12(log(Teff )i) + wi)

β2i = exp(γ20 + γ21typei + γ22(log(Teff )i)

+ γ23([log(Teff )i]2) + γ24(typei × log(Teff )i) + wi) (13)

where i = 1, 2,. . . , 66; wi is a random factor which captures extra-Weibull variability and
possible dependence between both dependent variables assumed to be independent ran-
dom variables with a normal N(0, σ 2) distribution. The inclusion of the factors type,
log(Teff ), [log(Teff )]2 and interaction type x log(Teff ) in the regression models for β1 and
β2 (13) was based from the obtained results in Section 3.1.

For a Bayesian analysis, we assume uniform prior distributions U(0, 10) for the param-
eters α1 and α2; uniform prior distribution U(0, 200) for the parameter τ = 1/σ 2; normal
prior distributions N(0,1) for the parameters γ11, γ12, γ21, γ22, γ23 and γ24; and normal
prior distributions N(0, 100) for the parameters γ10 and γ20. That is, we are assuming
approximately non-informative prior distributions for all parameters. We further assume
prior independence among the parameters. Inferences for the parameters of the regression
models (13) are obtained under a hierarchical Bayesian approach using existing MCMC
methods like the Gibbs and the Metropolis–Hastings algorithms.

In the simulation of samples of the joint posterior distribution, π(θ/data) where θ is
the vector of all parameters, we use Gibbs or Metropolis–Hastings algorithms [10,28],
where it is needed to sample each parameter from the posterior conditional distributions
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Table 2. Posterior summaries for the Weibull regression model (dependent
responses).

95% Cred. Int.

Parameter Mean Std. Dev. Lower Upper

α1 5.0520 0.6863 3.8570 6.4890
α2 0.9994 0.1469 0.7151 1.2891
γ10 −14.8500 3.9011 −22.0000 −6.9921
γ11 −0.0779 0.0603 −0.1951 0.0528
γ12 1.8470 0.4477 0.9419 2.6710
γ20 −27.0201 7.6620 −41.2400 −11.8702
γ21 −0.2619 0.8979 −2.0400 1.5290
γ22 −1.1260 0.9657 −3.0880 0.6052
γ23 0.5083 0.1312 0.2538 0.7608
γ24 0.0457 0.1105 −0.1761 0.2579
τ = 1/σ 2 149.2001 37.2900 66.3201 198.7001

π(θr/θ(r), data), where θ(r) denotes the vector of all parameters except θr and r is asso-
ciated to each one of the parameters of the model. In this study, we use the OpenBugs
software [65] in the simulation of samples of the joint posterior distribution of interest
which simplifies the computational work, since this software only requires the definition
of the likelihood function for θ and the prior distribution π(θ).

The convergence of the Gibbs sampling algorithm was monitored by usual time series
plots for the simulated samples. A burn-in sample of size 111,000 was deleted to elimi-
nate the effects of the initial values in the iterative simulation process and a final Gibbs
sample of size 1000 (taken every 100th simulated Gibbs sample) was used to get the poste-
rior summaries of interest. The convergence of the simulation algorithm was verified from
trace plots of the simulated Gibbs samples. Table 2 shows the posterior means, posterior
standard-deviations and 95% credible intervals for all parameters of the regressionmodels.

Table 2 shows that the stellar surface temperature Teff (in degrees Kelvin) in logarith-
mic scale, that is, log(Teff ) has a significant effect on the response abundance of beryllium
(Be) since zero is not included in the 95% credible interval for γ12; the square of the stellar
surface temperature Teff (in degrees Kelvin) in logarithmic scale (quadratic effect), that is,
[log(Teff )i]2, has a significant effect on the response abundance of lithium (Li) since zero
is not included in the 95% credible interval for γ23. All other covariates do not show sig-
nificative effects on the responses Be and Li since zero is included in the credible intervals
for the corresponding regression parameters. Figure 2 shows the half-normal plots for the
residuals of the fitted proposed Weibull regression model from where we can see there is
no serious violation of the proposed model.

3.3. A hierarchical Bayesian analysis for theWeibull–Tobbit model assuming the
bivariate data in the original scale and left-censoring

As an alternative model, in this section we also assume the dependent responses abun-
dance of beryllium (Be) and lithium (Li) in the original scale with Weibull distributions
Wei(α1,β1) and Wei(α2,β2), respectively, in the presence of the two covariates Type
(Type = 1 indicates planet-hosting stars and Type = 2 is the control sample) and Teff (in
degrees Kelvin), the stellar surface temperature, considering now theWeibull–Tobit model
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Figure 2. Half-normal plot for residuals of the fitted proposed Weibull regression model for the
responses Be (left panel) and Li (right panel).

introduced in Section 3 given by the following regression models:

β1i = exp(γ10 + γ11typei + γ12(log(Teff )i) + wi)

β2i = exp(γ20 + γ21typei + γ22(log(Teff )i)

+ γ23([log(Teff )i]2) + γ24(typei × log(Teff )i) + wi) (14)

and

logit(p1i) = log
(

p1i
1 − p1i

)
= ζ10 + ζ11typei + ζ12(log(Teff )i)

logit(p2i) = log
(

p2i
1 − p2i

)
= ζ20 + ζ21typei + ζ22(log(Teff )i

+ ζ23([log(Teff )i]2) + ζ24(typei × log(Teff )i)) (15)

where i = 1, 2, . . . , n (sample size);wi is a random factor which captures the extra-Weibull
variability and dependence between both dependent variables assumed to be independent
random variables with a normal N(0, σ 2) distribution.

For a Bayesian analysis, we assume gamma prior distributions G(1,1) for the parame-
ters α1 and α2; a uniform prior distribution U(0,100) for the parameter τ = 1/σ 2; normal
prior distributions N(0,0.01) for the parameters γ11, γ12, γ21, γ22, γ23 and γ24; and nor-
mal prior distributions N(0,1) for the parameters γ10 and γ20; normal prior distributions
N(0,0.01) for the parameters ζ11, ζ12, ζ21, ζ22, ζ23 and ζ24; and normal prior distributions
N(0,1) for the parameters ζ10 and ζ20. We further assume prior independence among the
parameters. Inferences for the parameters of the regressionmodels above are also obtained
under a hierarchical Bayesian approach using existing MCMCmethods. It is important to
point out that this model (Weibull–Tobit model) has some computational disadvantages
when compared to the standardWeibull model in the presence of left-censored data, since
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the convergence of the MCMC algorithm was only obtained with more informative prior
distributions, with small variances.

A burn-in sample of size 111,000 was deleted to eliminate the effects of the initial values
in the iterative simulation process and a final Gibbs sample of size 1000 (taking every 50th
simulated Gibbs sample) was used to get the posterior summaries of interest. The con-
vergence of the simulation algorithm was verified from trace plots of the simulated Gibbs
samples. Table 3 shows the posterior means, posterior standard deviations and 95% credi-
ble intervals for all parameters of the regression models. Figure 3 shows the residual plots
of the fitted Weibull–Tobit proposed model.

Table 3. Posterior summaries for the Weibull–Tobit model (model 2).

95% Cred. Int.

Parameter Mean Std. Dev. Lower Upper

α1 8.907 2.028 5.740 13.430
α2 2.344 0.356 1.669 3.048
γ10 0.099 0.242 −0.321 0.615
γ11 −0.077 0.058 −0.197 0.027
γ12 0.125 0.027 0.071 0.170
γ20 −0.323 0.835 −1.757 1.473
γ21 −0.020 0.086 −0.184 0.152
γ22 −0.008 0.082 −0.176 0.139
γ23 0.036 0.013 0.008 0.059
τ = 1/σ 2 14.470 2.972 9.352 20.720
ζ10 −0.862 0.709 −2.223 0.522
ζ11 −0.027 0.099 −0.217 0.169
ζ12 −0.076 0.082 −0.237 0.082
ζ20 0.233 0.982 −1.676 2.229
ζ21 0.019 0.091 −0.157 0.197
ζ22 0.006 0.102 −0.196 0.217
ζ23 −0.001 0.017 −0.041 0.025

Figure 3. Half-normal plot for residuals of the fitted proposed Weibull–Tobit regression model for the
responses Be (left panel) and Li (right panel).
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Table 3 shows that the stellar surface temperature Teff (in degrees Kelvin) in logarith-
mic scale, that is, log(Teff ), has a significant effect on the response abundance of beryllium
(Be) since zero is not included in the 95% credible interval for γ12; the square of the stellar
surface temperature Teff (in degrees Kelvin) in logarithmic scale (quadratic effect), that is,
[log(Teff )i]2, has a significant effect on the response abundance of lithium (Li) since zero is
not included in the 95% credible interval for γ23. All other covariates do not show significa-
tive effects on the responses Be and Li since zero is included in the credible intervals for the
corresponding regression parameters. That is, we have the same conclusions as assuming
model 1 (see Table 2).

From the obtained inference results using both assumed models, we have the same
inference conclusions, that is, log(Teff ), has a significant effect on the response abundance
of beryllium (Be) and [log(Teff )i]2 has a significant effect on the response abundance of
lithium (Li). Despite the same conclusions in terms of inferences about the significant
covariates affecting the responses of interest, it is observed from the half normal plots of
the residuals presented in Figures 2 and 3, a better fit of the bivariate Weibull distribu-
tion (half-normal plots in Figure 2) when compared to the bivariate Weibull–Tobit model
(half-normal plots in Figure 3), since there are violations of the proposedmodel in Figure 3.
Other possibility is to use more sophisticated discrimination criteria to compare the mod-
els assuming independent or dependent responses. A model discrimination extensively
used in Bayesian data analysis is the use of the Deviance Information Criterion (DIC) pro-
posed by Spiegelhalter et al. [64]. A Deviance Information Criterion (DIC) is a Bayesian
measure of model fit that is penalised for complexity similar to the to the Akaike Informa-
tion Criterion (AIC) extensively used in frequentist data analysis, but many authors have
pointed out that the use of DIC could be not satisfactory to discriminate models in the
presence of random effects or missing data [6,9]. In this way, to select the best model, we
consider the posterior Bayes factor [3], and use the generatedGibbs samples for the param-
eters of each model to obtain Monte Carlo estimates of the Bayes factor for the different
versions of the model. These results are obtained from the OpenBugs software (Monte
Carlo estimates for the expected values for the likelihood function assuming each proposed
model).

We use the Monte Carlo estimation of the expected value of the likelihood function (or
the log-likelihood function) for each model. That would correspond to the values Vi given
in an Appendix 2 at the end of the manuscript. Once the values of Vi are obtained for each
model, i = 1,2, the quantity B12 = V1/V2 may also be obtained and the selection of the best
model is performed using the criterion described in Appendix 2. Assuming the Weibull
model in the presence of left-censored data we obtain V1 = e−219.2 assuming indepen-
dent responses and V2 = e−218.9 assuming dependent responses, that is, B12 = 0.740818
which is an indication that model 2 (dependent responses) is better fitted by the data.
Assuming the Tobit–Weibull model, we get V3 = e−194.2, that is, we have an indication
that the Tobit–Weibull model with dependent responses is the best fitted model by the
data, although we needed to use more informative prior distributions for the parameters
of this model, when compared to model 1, to get convergence for the MCMC simu-
lation algorithm using the OpenBUGS software. Other negative point for the assumed
Weibull–Tobit model is the large number of parameters assuming logistic regressionmod-
els for the unknown probabilities pi associated to be the left censored data assuming the
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mixture model. In terms of parcimony, the use of the standard Weibull model in the pres-
ence of left-censored data is reasonable in the data analysis (similar inferences results
obtained using the two models indicating the same significant covariates affecting the
bivariate responses). It is important to point out that the posterior Bayes factors usually
indicates the model with more parameters as it is the case of the assumed Weibull–Tobit
model.

4. Concluding remarks

The main goal of this paper was to introduce a hierarchical Bayesian analysis of bivariate
lifetime data in the presence of left-censored data and covariates based onmarginalWeibull
distributions. The dependence structure between the two responses was considered by the
introduction of a frailty or latent variable. The hierarchical Bayesian analysis was assumed
considering the standardWeibull likelihood and theWeibull–Tobit likelihood in the pres-
ence of left-censored data and covariates. An illustration of the proposedmethodology was
considered assuming a stellar astronomy bivariate data set introduced in Appendix 1.

In the application with the astronomy data, we observed that the obtained Bayesian
inference results implied in similar results considering both proposed models, in terms
of discovering the significative effects of the covariates Type (Type = 1 indicates planet-
hosting stars and Type = 2 is the control sample) and Teff (in degrees Kelvin) is the
stellar surface temperature on both astronomy responses abundance of beryllium (Be)
and lithium (Li) and with similar computational costs to simulate samples for the joint
posterior distributions of interest using the free OpenBugs software, although the model
2 (Weibull–Tobit model) presented some convergence problems of the MCMC iterative
approach to generate samples for the joint posterior distribution of interest. In this case,
the convergence of the simulation algorithmwas only obtained assumingmore closed prior
distributions for the parameters of the model using the OpenBugs software.

In the application considered in this study as an illustration of the proposed method-
ology, with astronomy data we observed using the standard posterior Bayes factor in
the discrimination of the two proposed models (Weibull likelihood in the presence of
left-censored data with covariates and Tobit–Weibull likelihood in the presence of left-
censored data and covariates) that the models with the introduction of a random effect
which captures the dependence structure between the responses led to better fit of the
data, in comparison for the use ofWeibull models assuming independent responses. From
the study carried out, we can conclude that model 1 (bivariate Weibull model obtained
by introducing a latent variable in the regression structure for the scale parameter) is a
better model when compared to the proposed bivariate Weibull–Tobit model despite the
result of the posterior Bayes factor which indicated the bivariate Weibull–Tobit model as
the best model in the analysis of the astronomy data set. Considering model 1 (bivari-
ate Weibull model), a sensitivity analysis considering different prior structures was made,
leading to good convergence of the MCMC algorithm in all cases and similar posterior
summaries. Considering model 2 (bivariate-Weibull distribution), the convergence of the
MCMC algorithm was only obtained assuming special classes of informative prior distri-
butions using the OpenBugs software. Other applications and possibly, some simulation
studies, should be considered in future studies to better compare the adequability and
performance of the two proposed models (models 1 and 2) in each application.



1786 D. PERALTA ET AL.

The great advantage of the proposed hierarchical Bayesian methodology in the analysis
of bivariate data is the simple form of the likelihood given by product of the likelihood
functions and the dependence structure given by a non-observed latent factor or frailty
which also could be generalized to other structures. It is interesting to observe that using
existing bivariate parametric distributions or parametric distributions derived from copula
functions, the likelihood function usually has more computational cost. The likelihood
function assuming a continuous model (see, e.g., Lawless, 1982, page 479) is given by

L =
∏
i∈C1

f (ti1, ti2)
∏
i∈C2

(
−∂S(t1i, t2i)

∂t1i

) ∏
i∈C3

(
−∂S(t1i, t2i)

∂t2i

) ∏
i∈C4

S(ti1, ti2) (16)

where f (ti1, ti2) is the joint probability function forT1i andT2i; S(ti1, ti2) is the joint survival
function; ∂S(t1i, t2i)/∂t1i and ∂S(t1i, t2i)/∂t2i are the partial derivatives of S(ti1, ti2) with
respect to t1i and t2i, respectively.

Other point, especially in applications, in favor of our approach: the use of parametric
bivariate probability models derived from copula functions, usually depends on the choice
of a particular copula function among hundreds of existing copula functions, since each
copula represents different dependence structure for the data set. It is interesting to point
out that despite the problems presented assuming the Weibull–Tobit model (lack of con-
vergence with the MCMC algorithms if we do not assume informative prior distributions
for the parameters of the model, presence of many parameters, lack of identifiability for
the estimation of the parameter p if we do not consider covariates with a logistic structure)
in the analysis of the stellar data, the Weibull–Tobit model could give better interpreta-
tions of interest to researchers. Usually, mixture models as considered in the Tobit model
given by (7), have some advantages in the interpretations, in the same way as obtained
with the use of cure fraction models where it is possible to get estimator for susceptible
and non-susceptible individuals that can die from some diseases [2,18,46].

In addition, other existing parametric lifetime distributions as exponential, gamma,
log-normal or generalizations of the Weibull distribution could be considered to model
the univariate distributions for the two responses of the bivariate data in presence of
left-censored data. Finally, it is important to point out that the use of existing Bayesian
simulation software like the OpenBugs software implies in great simplification to obtain
the Bayesian inferences of interest. Another advantage of the Bayesian methodology: it is
possible to use expert opinion in the elicitation of prior distributions that can lead to more
accurate inference results.
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Appendices

Appendix 1 – Stellar Dataset

The columns of the dataset in Table 1 are: star name; Type = 1 indicates planet-hosting stars and
Type = 2 is the control sample; Teff (in degrees Kelvin) is the stellar surface temperature; log N(Be),
log of the abundance of beryllium scaled to the Sun’s abundance (i.e. the Sun has log N(Be) = 0.0);
log N(Li), log of the abundance of lithium scaled to the Sun’s abundance. The indicator variables
of left-censoring are given by δj = 1 if T is a complete observation and δj = 0 if T is a left censored
observation, j = 1 (Be) and j = 2 (Li).
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Table A1. Stellar astronomy data set.

Row Star Type Teff δ1 log[N(Be)] δ2 log[N(Li)]

1 HD-6434 1 5835 1 1.08 0 0.80
2 HD-9826 1 6212 1 1.05 1 2.55
3 HD-10647 1 6143 1 1.19 1 2.80
4 HD-10697 1 5641 1 1.31 1 1.96
5 HD-12661 1 5702 1 1.13 0 0.98
6 HD-13445 1 5613 0 0.40 0 −0.12
7 HD-16141 1 5801 1 1.17 1 1.11
8 HD-17051 1 6252 1 1.03 1 2.66
9 HD-19994 1 6109 1 0.93 1 1.99
10 HD-22049 1 5073 1 0.77 0 0.25
11 HD-27442 1 4825 0 0.30 0 −0.47
12 HD-38529 1 5674 0 −0.10 0 0.61
13 HD-46375 1 5268 0 0.80 0 −0.02
14 HD-52265 1 6103 1 1.25 1 2.88
15 HD-75289 1 6143 1 1.36 1 2.85
16 HD-82943 1 6016 1 1.27 1 2.51
17 HD-92799 1 5821 1 1.19 1 1.34
18 HD-95128 1 5924 1 1.23 1 1.83
19 HD-108147 1 6248 1 0.99 1 2.33
20 HD-114762 1 5884 1 0.82 1 2.20
21 HD-117176 1 5560 1 0.86 1 1.88
22 HD-121504 1 6075 1 1.33 1 2.65
23 HD-130322 1 5392 1 0.95 0 0.13
24 HD-134987 1 5776 1 1.22 0 0.74
25 HD-143761 1 5853 1 1.11 1 1.46
26 HD-145675 1 5311 0 0.65 0 0.03
27 HD-169830 1 6299 0 −0.40 0 1.16
28 HD-179949 1 6260 1 1.08 1 2.65
29 HD-187123 1 5845 1 1.08 1 1.21
30 HD-192263 1 4947 0 0.90 0 −0.39
31 HD-195019 1 5842 1 1.15 1 1.47
32 HD-202206 1 5752 1 1.04 1 1.04
33 HD-209458 1 6117 1 1.24 1 2.70
34 HD-210277 1 5532 1 0.91 0 0.30
35 HD-217014 1 5804 1 1.02 1 1.30
36 HD-217107 1 5646 1 0.96 0 0.40
37 HD-222582 1 5843 1 1.14 0 0.59
38 HD-870 2 5447 1 0.80 0 0.20
39 HD-1461 2 5768 1 1.14 0 0.51
40 HD-1581 2 5956 1 1.15 1 2.37
41 HD-3823 2 5948 1 1.02 1 2.41
42 HD-4391 2 5878 1 0.75 0 1.09
43 HD-7570 2 6140 1 1.17 1 2.91
44 HD-10700 2 5344 1 0.83 0 0.41
45 HD-14412 2 5368 1 0.80 0 0.44
46 HD-20010 2 6275 1 1.01 1 2.13
47 HD-20766 2 5733 0 −0.09 0 0.97
48 HD-20794 2 5444 1 0.91 0 0.52
49 HD-20807 2 5843 1 0.36 0 1.07
50 HD-23249 2 5074 0 0.15 1 1.24
51 HD-23484 2 5176 0 0.70 0 0.40
52 HD-26965A 2 5126 1 0.76 0 0.17
53 HD-30495 2 5768 1 1.16 1 2.44
54 HD-36435 2 5479 1 0.99 1 1.67
55 HD-38858 2 5752 1 1.02 1 1.64
56 HD-43162 2 5633 1 1.08 1 2.34
57 HD-43834 2 5594 1 0.94 1 2.30
58 HD-69830 2 5410 1 0.79 0 0.47
59 HD-72673 2 5242 1 0.70 0 0.48
60 HD-74576 2 5000 1 0.70 1 1.72
61 HD-76151 2 5803 1 1.02 1 1.88
62 HD-85117 2 6167 1 1.11 1 2.64
63 HD-189567 2 5765 1 1.06 0 0.82
64 HD-192310 2 5069 0 0.60 0 0.20
65 HD-211415 2 5890 1 1.12 1 1.92
66 HD-222335 2 5260 1 0.66 0 0.31
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Appendix 2 – Posterior Bayes Factor (BF)

The posterior Bayes factor is as a discrimination criterion between two models i and j given by
Bij = Vi/Vj where Vk is the posterior mean of the likelihood function under model k given by

Vk =
∫

L(D | θk)P(θk | D) dθk

where L(D | θk) is the likelihood function under model k and P(θk | D) is the joint posterior dis-
tribution of the vector of parameters θk. If Bij = Vi/Vj > 1, then the Bayes factor criterion favors
model i.
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