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ABSTRACT
Proportional data arise frequently in a wide variety of fields of study.
Suchdata often exhibit extra variation such as over/under dispersion,
sparseness and zero inflation. For example, the hepatitis data present
both sparseness and zero inflation with 19 contributing non-zero
denominators of 5 or less andwith 36 having zero seropositive out of
83 annual age groups. Thewhitefly data consists of 640 observations
with 339 zeros (53%), which demonstrates extra zero inflation. The
catheter management data involve excessive zeros with over 60%
zeros averagely for outcomes of 193 urinary tract infections, 194 out-
comes of catheter blockages and 193 outcomes of catheter displace-
ments. However, the existing models cannot always address such
features appropriately. In this paper, a new two-parameter probabil-
ity distribution called Lindley–binomial (LB) distribution is proposed
to analyze the proportional datawith such features. The probabilistic
properties of the distribution such as moment, moment generating
function are derived. The Fisher scoring algorithm and EM algorithm
are presented for the computation of estimates of parameters in
the proposed LB regression model. The issues on goodness of fit for
the LB model are discussed. A limited simulation study is also per-
formed to evaluate the performance of derived EM algorithms for
the estimation of parameters in the model with/without covariates.
The proposed model is illustrated through three aforementioned
proportional datasets.
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1. Introduction

Discrete data in the form of proportions have been used to construe occurrences in many
potential fields, including biology, clinical trials, engineering, insurance, public health,
engineering, ecology, econometrics, etc. Generally, the binomial models are often used
to analyze such kind of discrete data. However, in many practical situations, these data
often exhibit extra-variation (over/under dispersion). Other issues arisen from such kind
of data include the excessive zeros and sparse observations. When those issues are not
properly addressed, the analysis using usual binomial models may not provide a good fit
to the proportional data [13] and fail to explain the kinds of variation to the actual data.
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Therefore, the statisticians have widely addressed the phenomenon of large variation in the
proportional data, and the most popular model used for over-dispersed proportional data
is the beta-binomial (BB) model, which was proposed originally by Williams [33]. After-
ward, Crowder [5,6] analyzed the proportions using the beta-binomial ANOVA. Paul [25]
applied the beta-binomial model to the analysis of the proportions of affected foetuses.
Recently, Menssen and Schaarschmidt [21] obtained the prediction intervals for overdis-
persed binomial data. Najera-Zuloaga et al. [24] analyzed health-related quality of life
data using the beta-binomial regression model approaches. Furthermore, Deng and Paul
[7] proposed score tests for zero inflation and overdispersion based on the zero-inflated
beta-binomial models. Luo and Paul [18] considered the estimation for zero-inflated beta-
binomial regressionmodel with missing response data. Ascari andMigliorati [2] proposed
a new beta-binomial model for overdispersed binomial data with outliers and an excess
of zeros. Generally, the BB model can account for overdispersion, allowing the binomial
probability to vary in terms of a beta distribution. In particular, the BB model enriches
(and encompasses) the binomial model with an additional precision/dispersion param-
eter, which admits an interesting interpretation in terms of intraclass correlation as well
[26,27].

However, it is no model that works well for the various proportional data at all time.
For example, the features such as sparseness and zero-inflation presented in proportional
data cannot be appropriately addressed using the existing models. There are such features
in the hepatitis, whitefly and catheter management data sets. The hepatitis data set was
given by Keiding [15] and exhibits the sparseness with 19 out of 83 annual age groups
contributing non-zero denominators of 5 or less out of 83 groups. Also, there are 36 zero
seropositives out of 83 annual age groups in this data set. Therefore, this dataset indicates
not only extreme sparseness but also excessive zeros. The whitefly data are obtained from
the experiment that is about the efficacy of the pesticide on whiteflies. van Iersel et al.
[32] studied the purpose of controlling silver leaf whiteflies by using a subirrigation sys-
tem. They conducted this study to determine the effectiveness of controlling silver leaf
whiteflies on poinsettia with imidacloprid, which was delivered by a subirrigation system.
The number of surviving whiteflies combining with the total number of whiteflies in each
experiment formed as the proportional data.Whitefly data set consists of 640 observations
with 339 zeros (53%). Compared with other observations (each of the other observations
has an average of 3.5%), obviously there exist excessive zeros in the whitefly data. The data
on catheter management study are collected in the randomized clinical trial, in which the
indwelling urinary catheter users were taught the awareness and self-monitoring skills.
Each patient was asked up to six times about three binary outcomes and the total number
of times asked varies from 1 to 6. Therefore, the outcomes can be considered as the times
of urinary tract infections (UTIs), catheter blockages, and catheter displacements during
total six asking times and thus three sets of proportional data with binomial denominator
six (6) were obtained. Further, there are 83 (43.0%), 127 (65.5%), and 140 (72.5%) zeros
in the 193 outcomes of urinary tract infections (UTIs), 194 outcomes of catheter block-
ages, and 193 outcomes of catheter displacements, respectively. Thus there are very high
volumes of zeros in catheter management data set. The results for analyzing these three
datasets using the binomial and zero-inflated binomial models have shown that the fits of
these models to hepatitis, whitefly and catheter management data are not very appropri-
ate. Therefore, instead of the existing models, an alternative model should be considered
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to fit the proportional data with extra variation, which the existing models may not be
able to handle appropriately. Suchmodel can be obtained by compound binomial distribu-
tion with a nonnegative distribution. The target distribution is Lindley distribution, which
was first introduced by Lindley [17]. This distribution is quite popular for modelling life-
time data and has a wide applicability in survival and reliability because of its closed forms
for the survival and hazard functions and also its good flexibility of fit. Furthermore, many
researchers have proposed and studied new classes of distributionswhich compoundwith a
family of Lindley distributions. For example, Sankaran [28] proposed a compound Poisson
distribution, which is known as the Poisson–Lindley distribution, by mixing the Poisson
distribution with Lindley distribution. He gave some examples of real data sets that the
Poisson–Lindley distribution provided a good fit. Zamani and Ismail [35] proposed the
negative binomial–Lindley distribution, by mixing the distributions of negative binomial
and Lindley, and found that this two-parameter negative binomial–Lindley distribution
is particularly suitable in explaining count data with excess zeros, based on the applica-
tion to accident and insurance claims data. Then Calderin–Ojeda and Gó mez–Déniz [4]
extended the negative binomial Lindley distribution fromunivariate tomultivariate, which
provides a tractable model with attractive properties that makes it suitable for application
in any field where overdispersion is observed in count data. Bhati et al. [3] introduced a
new generalized Poisson–Lindley distribution, which is compounding Poisson distribu-
tion with two-parameter Lindley distribution. They proved that this new distribution is
a good alternative to Poisson distribution and Poisson–Lindley distribution for the right-
tailed data set. Tajuddin et al. [30] proposed a four-parameter negative binomial–Lindley
distribution to model over- and under-dispersed count data with excess zeros. There are
many other applications with compound Lindley distributions, which indicate the Lindley
distribution is definitely popular and useful.

Nevertheless, to our knowledge, there is no research that focuses on the model, which is
derived by compounding the binomial model with a member of Lindley distribution fam-
ily. The purpose of this paper is to propose such distribution for proportional data, which
is called as Lindley–binomial (LB) distribution by compounding the binomial distribu-
tion with a Lindley distribution. The distribution that we actually used for compounding
with binomial distribution is a two-parameter Lindley distribution, which is also used for
compounding with other distributions by many researchers. Therefore, the proposed dis-
tribution in this paper is a new generalized two-parameter Lindley–binomial distribution
and is a good alternative to BB distribution. This distribution allows to enrich the variance
structure so as to account for multiple causes of overdispersion. The great variety of possi-
ble shapes of the LB distribution with right/left-tailed behaviors directly demonstrate the
flexibility of the corresponding model and address the presence of outliers, sparseness as
well as excessive zero observations without requiring ad hoc extra components accounting
for them. This is possible because the two-parameter Lindley distribution is the mixture of
two gamma distributions and thus the LB model dedicates one of its mixture components
to a particular group of observations (e.g. zero values and/or outliers) automatically and
provides interesting information about the possible sources of extra variation.

The remainder of this paper is organized as follows. In Section 2, we propose a Lindley
binomial distribution, which is inspired by good statistical properties of Poisson Lindley
distributions.We then derive the probabilistic properties such as probabilitymass function,
mean, variance and moment generating function for Lindley binomial distribution. The
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likelihood-based statistical inference about parameters of interest is studied in Section 3.
Moreover, the Fisher scoring algorithm and EM algorithm are given to compute the esti-
mates of parameters for the proposed Lindley binomial regression model. Meanwhile,
Pearson chi-squared residuals and deviance residuals are presented to assess the goodness
of fit for the proposed and existing models. In Section 4, simulation studies are performed
to evaluate the performance of proposed EM algorithm for the computation of estimates
of parameters in the proposed LB model with/without covariates. Hepatitis data, whitefly
data and Catheter management study data are analyzed as an application of the proposed
methodology in Section 5 with the concluding remarks in Section 6.

2. Lindley–binomial distribution and its properties

In this section, to define the Lindley binomial distribution, we briefly review the two-
parameter Lindley distribution. As first given by Shanker [29], a random variableX follows
a two-parameter Lindley distribution, denoted as X ∼ L2(α, θ) if the probability density
function f (x;α, θ) of X has the following form:

f (x;α, θ) = θ2

θ + α
(1 + αx) e−θx; x > 0, θ > 0 and α + θ > 0 (1)

The pdf of this two-parameter Lindley distribution can be also shown as amixture of expo-
nential distribution (θ) (or gamma distribution �(1; θ)) and gamma distribution �(2; θ)

as follows:

f (x;α, θ) = π f1(x; θ) + (1 − π)f2(x; θ) (2)

with a different mixture proportion π = θ
α+θ

, f1(x; θ) = θ e−θx and f2(x; θ) = θ2xe−θx. It
can easily be seen that at α = 1, the two-parameter Lindley distribution reduces to the one
parameter Lindley distribution, which was first proposed by Lindley [17]. Furthermore,
this distribution reduces to exponential distribution with mean θ−1 and gamma distribu-
tion with mean 2θ−1 for α = 0 and α = ∞, respectively. Therefore, for two-parameter
Lindley distribution, the parameter α can account for the mixture proportions if this
distribution is considered as the mixture of two gamma distributions.

2.1. The definition of Lindley–binomial distribution

Now in what follows, based on the binomial distribution and two-parameter Lindley
distribution, we give the definition for Lindley–binomial distribution as follows.

Definition 2.1: A random variable Y is said to follow a two-parameter Lindley–binomial
distribution if it obeys the following stochastic representation:

Y|� ∼ Binomial (m, e−�)

and

� ∼ L2(α, θ)

where y = 0, 1, . . . ,m, θ > 0 and α + θ > 0. This two-parameter Lindley–binomial dis-
tribution will be represented as LB2(m,α, θ).
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From Definition 2.1, Lindley–binomial distribution is induced by compounding the
binomial distribution with two-parameter Lindley distribution and the probability mass
function with corresponding properties are presented in Proposition 2.1. The derivation
of Proposition 2.1 is given in Supplemental Material.

Proposition 2.1: Let Y be a random variable which follows a two-parameter Lindley bino-
mial distribution LB2(m,α, θ). Then the probability mass function of Y has the following
form:

P(Y = y) =
(
m
y

)
θ2

θ + α

m−y∑
k=0

(
m − y
k

)
(−1)k

θ + y + k + α

(θ + y + k)2
,

where y = 0, 1, 2, . . . ,m; θ > 0 and θ + α > 0.

Note that for α = 0(π = 1), Lindley binomial distribution becomes a beta-binomial
distribution BB(m, θ , 1) with the pmf as

P(Y = y) =
(
m
y

)
B(y + θ ,m − y + 1)

B(θ , 1)
y = 0, 1, . . . ,m

where B(β1,β2) is the beta function defined as

B(β1,β2) =
∫ 1

0
xβ1−1(1 − x)β2−1 dx.

In this sense, Lindley binomial distribution can be considered as the partial generalization
of beta binomial distribution.

2.2. The probabilistic properties of Lindley–binomial distribution

In this section, we present the probabilistic properties of Lindley binomial distribution.
At first, we may see the shapes of this probability mass functions for various values of
parameters.

The probability mass function of LB2(m,α, θ) distribution with different values of
parameters are given in Figure 1 and Figure S1 of the supplemental file. These figures
are plotted to explore the effect of one parameter to the probability value given that other
parameter is fixed. Based on Figure 1, the pmf of LB2(m,α, θ) distribution has the low-
est mass at zero and the probability is significantly small at zero when θ is large such as
θ = 10 or 100. Moreover, LB2(m,α, θ) distribution has the ability in fitting data with large
frequency at the right endpoint. However, when θ is quite small, the pmf of LB2(m,α, θ) is
right-tailed and has the highest mass at zero. Thus this proposed distribution is an alterna-
tive model to adequately fit the proportional data with the large frequency at left endpoint
or at right endpoint. Also when the value of α is fixed, the maximum point of pmf changes
from zero to the binomial denominator m as the value of θ changes from small to large.
From Figure S1 in the supplemental file, when the value of θ is fixed, the shapes of pmf
almost keep same even the value of α changes from small to large, which means θ is a
shape parameter in LB2(α, θ) distribution.

Next, we discuss the probabilistic properties. We first give the following proposition.
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Figure 1. Pmf plots of LB2 for different θ values with fixed α values.

Proposition 2.2: Let Y be a random variable which follows a two-parameter Lindley
binomial distribution LB2(m,α, θ). Then the rth factorial moment of Y is given by

μ(r)
.= E[Y(Y − 1) · · · (Y − r + 1)] = m!

(m − r)!
θ2(θ + α + r)

(θ + α)(θ + r)2
.

Now from Proposition 2, we have the expectation and variance of Lindley binomial
random variable Y as follows:

E(Y) = mθ2(θ + α + 1)
(θ + α)(θ + 1)2

and

var(Y) = mθ2(θ + α + 1)
(θ + α)(θ + 1)2

(
1 − mθ2(θ + α + 1)

(θ + α)(θ + 1)2

)
+ m(m − 1)

θ2(θ + α + 2)
(θ + α)(θ + 2)2

.

Further, the moment generating function of Y can be derived using the law of total
expectation:

MY(t) =
m∑
k=0

(
m
k

)
θ2(θ + α + k)

(θ + α)(θ + k)2
(et − 1)k
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Figure 2. The plots for the index of dispersion�with different values of α and θ .

and the probability generating function and characteristic function of Y can be obtained
in the same way.

Since the proposed Lindley binomial distribution will be used to fit the extra dispersed
proportional data, the index of dispersion for this distribution should be addressed. The
index of dispersion, which is also called variance-to-mean ratio, is a very useful tool to
indicate whether a set of observations is clustered or dispersed compared to a standard
statistical model. The index of dispersion for the LB2(m,α, θ) distribution comes out to be

� = var(Y)

E(Y)
= 1 + (m − 1)

(θ + α + 2)(θ + 1)2

(θ + α + 1)(θ + 2)2
− m

θ2(θ + α + 1)
(θ + α)(θ + 1)2

(3)

The index of dispersion � given in (3) cannot be directly used for finding out whether
LB2 can adequately fit under-dispersed data, over-dispersed data or both of them. Thus,
values of � are plotted as a function of parameters α and θ in Figure 2 to show the ability
of the LB2 distribution in fitting the data with either over-dispersion or under-dispersion.
Based on the plot in the left panel of Figure 2, it is obvious that the index of dispersion
for the LB2 distribution can be either greater than one or less than one depending on the
choice of the parameters. The plot in the right panel of Figure 2 indicates that as the value
of θ increases, the value of � decreases and approaches to zero. Therefore, from these
plots one could conclude that the LB2 distribution can adequately fit over-dispersed data
or under-dispersed data by choosing different values of parameters θ and α.

3. Likelihood based inferences for Lindley–binomial regressionmodel

In Section 2, Lindley binomial distribution is defined based on the two-parameter Lindley
distribution L2(α, θ) given in (1). However, the probability mass function has a little com-
plicated form and thus results in the complexity of statistical inference for Lindley binomial
model. To simplify the procedure of inferences, by reparameterizing to Lindley binomial
distribution based on the mixture model (2) and setting π = θ/(θ + α), φ = 1/θ , we can
have a following expression for the probability mass function of Lindley–binomial random
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variable Y :

p(y;m,π ,φ) � P(Y = y) =
(
m
y

)m−y∑
k=0

(
m − y
k

)
(−1)k

1 + (y + k)πφ

[1 + (y + k)φ]2
(4)

where y = 0, 1, 2, . . . ,m; 0 < π < 1 and φ > 0. For convenience, we denote above form
of Lindley binomial distribution as LB(m,π ,φ). Furthermore, in terms of new parameters
π and φ, we have the expressions for the factorial moment, mean, variance and moment
generating function for Lindley binomial random variable Y as follows:

μ(r) = m
(m − r)

1 + rπφ

(1 + rφ)2
, E(Y) = m

1 + πφ

(1 + φ)2

var(Y) = m
1 + πφ

(1 + φ)2

(
1 − 1 + πφ

(1 + φ)2

)
+ m(m − 1)

[
1 + 2πφ

(1 + 2φ)2
− (1 + πφ)2

(1 + φ)4

]

and

MY(t) =
m∑
k=0

(
m
k

)
1 + kπφ

(1 + kφ)2
(et − 1)k.

Now, let Y1, . . . ,Yn be random variables and Yi, i = 1, . . . , n follow Lindley binomial
distribution LB(mi,πi,φi), where mi, i = 1, . . . , n are known binomial denominators,
(πi,φi), i = 1, . . . , n are unknown parameters. Suppose that yi is the realization of ran-
dom variable Yi, then the observed data and associated binomial denominators would
be represented by yobs = {y1, . . . , yn} and mobs = {m1, . . . ,mn}. Based on the probabil-
ity mass function of Y given by (4), the likelihood function for the parameters (π ,φ) =
(π1, . . . ,πn,φ1, . . . ,φn) can be obtained as

L(π ,β|yobs,mobs) =
n∏

i=1

⎡
⎣(mi

yi

)mi−xi∑
j=0

(
mi − yi

j

)
(−1)j

1 + (yi + j)πiφi[
1 + (yi + j)φi

]2
⎤
⎦

and thus the log-likelihood function is


(π ,φ|yobs,mobs) =
n∑

i=1

⎧⎨
⎩ln

(
mi

yi

)
+ ln

⎡
⎣mi−yi∑

j=0

(
mi − yi

j

)
(−1)j

1 + (yi + j)πiφi[
1 + (yi + j)φi

]2
⎤
⎦
⎫⎬
⎭
(5)

3.1. MLEs of parameters for LB regressionmodel

Based on the discussion above, we now derive the maximum likelihood estimates of
parameters for LB regression model.

3.1.1. The formulation of LB regressionmodel
Let Y1, . . . ,Yn be independent random variables from the Lindley binomial distribution
and Yi follows the Lindley binomial distribution LB(mi,πi,φi), where for i = 1, . . . , n,mi
are the known binomial denominators, πi and φi are the unknown parameters. Further,
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let wi and xi be the covariates associated with the proportional parameters πi and scale
parameter φi, respectively. Now suppose yi is the realization of the random variable Yi,
then the observed data and associated binomial denominators would be represented by
yobs = {y1, . . . , yn} and mobs = {m1, . . . ,mn}. To investigate the relationship between the
parameters in LB model and covariates, the following regression model can be used to
establish the association of parameters πi and φi with covariateswi and xi (i = 1, 2, . . . , n):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yi ∼ LB (mi,πi,φi) , i = 1, 2, . . . .n

log
(

πi

1 − πi

)
= w�

i α

logφi = x�
i β

(6)

where wi = (1,w1i, . . . ,wpi)
� and xi = (1, x1i, . . . , xqi)� are not necessarily identical

covariate vectors associated with the subject i; (i = 1, . . . , n), and α = (α0,α1, . . . ,αp)
�

and β = (β0,β1, . . . ,βq)
� are the vectors of the regression coefficients associated with πi

and φi(i = 1, 2, . . . , n), respectively. Therefore, based on (5) and (6), the log-likelihood
function for the regression coefficients θ = (α,β) has the following form:


(θ |yobs,mobs)

= 
(α,β|yobs,mobs) =
n∑

i=1

⎧⎨
⎩ ln

(
mi

yi

)

+ ln

⎡
⎣mi−yi∑

j=0

(
mi − yi

j

)
(−1)j

1 + exp{w�
i α} + (yi + j) exp{w�

i α + x�
i β}

(1 + exp{w�
i α}) [1 + (yi + j) exp{x�

i β}]2
⎤
⎦
⎫⎬
⎭ (7)

The primary purpose of the following sections is to estimate the parameter vectorsα andβ .

3.1.2. MLEs of parameters via Fisher scoring algorithm
In this section, the Fisher scoring algorithm is derived to calculate theMLEs of the param-
eters α and β . Now, based on Equation (7), the first partial derivatives of log-likelihood
with respect to α and β are

∂
(α,β|yobs,mobs)

∂α�

=
n∑

i=1

⎡
⎢⎣
∑mi−yi

j=0
(mi−yi

j
)
(−1)j (yi+j) exp{w�

i α+x�
i β}

(1+exp{w�
i α})2[1+(yi+j) exp{x�

i β}]∑mi−yi
j=0

(mi−xi
j
)
(−1)j 1+exp{w�

i α}+(yi+j) exp{w�
i α+x�

i β}
(1+exp{w�

i α})[1+(yi+j) exp{x�
i β}]2

⎤
⎥⎦w�

i (8)

and
∂
(π ,φ|yobs,mobs)

∂β�

=
n∑
i=1

⎡
⎢⎢⎣
∑mi−yi

j=0
(mi−yi

j
)
(−1)j −(yi+j) exp{x�

i β}(exp{x�
i β}+2+(yi+j) exp{w�

i α+x�
i β})

(1+exp{w�
i α})[1+(yi+j) exp{x�

i β}]3∑mi−yi
j=0

(mi−yi
j
)
(−1)j 1+exp{w�

i α}+(yi+j) exp{w�
i α+x�

i β}
(1+exp{w�

i α})[1+(yi+j) exp{x�
i β}]2

⎤
⎥⎥⎦ x�

i (9)
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The maximum likelihood estimates α̂ and β̂ are the solutions of Equations (8) and (9)
equaling to zero.

However, there are no closed forms for these estimators and these non-linear equations
do not seem to be solved directly. Their computations should be performed numerically
using nonlinear optimization algorithms. Generally, Fisher scoring algorithm is a com-
monly used method to calculate maximum likelihood estimation and has a good stability
even in multiparameter cases. The expected Fisher information matrix should always be
positively definite, when themodel is not over-parameterized Lauritzen [16]. Therefore, in
what follows, we discuss Fisher scoring algorithm for computing the MLEs of parameters.
The Newton–Raphson algorithm can be derived in similar way. To apply Fisher scoring
algorithm, the Hessian matrix should be obtained first as follows:

∇2
(α,β|yobs,mobs) =

⎛
⎜⎜⎝

∂2
(α,β|yobs,mobs)

∂α�∂α

∂2
(α,β|yobs,mobs)

∂α�∂β
∂2
(α,β|yobs,mobs)

∂β�∂α

∂2
(α,β|yobs,mobs)

∂β�∂β

⎞
⎟⎟⎠ (10)

Then the Fisher information matrix J(α,β) = −E∇2
(α,β|yobs,mobs) is

J(α,β) = J(α,β) =
(

Jαα Jαβ

Jβα Jββ

)

Now let (α(0),β(0)) be the initial values of the MLEs (α̂, β̂). If (α(t),β(t)) denote the tth
approximation of (α̂, β̂), then the (t + 1)th approximation can be computed by

(
α(t+1)

β(t+1)

)
=
(

α(t)

β(t)

)
+
(
J(t)αα J(t)αβ

J(t)βα J(t)ββ

)−1

⎛
⎜⎜⎜⎝

∂
(α(t),β(t)|yobs,mobs)

∂α

∂
(α(t),β(t)|yobs,mobs)

∂β

⎞
⎟⎟⎟⎠

and the MLEs of (α,β) could be (α(t0),β(t0)) as ||α(t0) − (α(t0−1)|| + ||β(t0) − β(t0−1)|| is
less than a threshold value. It should be pointed out that Fisher information matrix in LB
model is intractable. However, it could be replaced with the observed information matrix
in above Fisher scoring algorithm.

3.1.3. MLEs of parameters via the EM algorithm embeddedwith Fisher scoring
algorithms at eachM-step
In this section, we will develop the EM algorithm embedded with Fisher scoring algo-
rithms at each M-step for MLEs of parameters in the proposed LB regression model. Note
that the Fisher scoring algorithm possesses quadratic convergence and is sensitive to initial
values. When the initial value (α(0),β(0)) of Fisher scoring algorithm is sufficiently near
(α̂, β̂), it converges very fast. However when the chosen initial value of (α(0),β(0)) is far
from the true value of (α,β), it might not converge. Furthermore, as wementioned before,
Fisher scoring algorithm does not work because Fisher information matrix is intractable
from the likelihood function for the observed sample in LB model. Therefore in terms
of the mixture property of two-parameter Lindley distribution, the EM algorithm can be



1802 D. DENG AND X. ZHANG

developed to compute the estimates of parameters for Lindley binomial model. In fact, the
EM algorithm for maximum likelihood estimation uses the data likelihood as the objec-
tive function for choosing parameters. Sometimes this algorithm may not work well in all
cases and the penalized methods may be used to modify the objective function. The typi-
cal penalizedmethods include the ridge penalty, the Bayes-inspired penalty and the logistic
regression penalty (Hoerl and Kennard [14]; Hastie, Tibshirani and Friedman [11]; Mor-
ris [23]; Moreno and Lele [22]). Since the ridge penalty term only includes no-intercept
parameters in the model and the logistic regression penalty involves the absolute values of
parameters, we select the Bayes-inspired penalty for the estimation of parameters in the
proposed EM algorithm. The modified objective function has the following form:

log L(α,β|yobs,mobs) − τ

2
(α�α + β�β)

where τ is a tuning parameter trading off the likelihood and penalty terms.
Therefore we will derive the EM algorithm for computing the MLEs of parameters in

the proposed Lindley binomial model with Bayes-inspired penalty. As we know, the EM
algorithm is a popular tool for estimating maximum likelihood estimation in joint statisti-
cal models by iterating between E-step and M-step. The E-step represents the expectation
of the log-likelihood. The M-step computes parameters maximizing the expected log-
likelihood found on the E-step. Then the unobserved latent variable is determined by these
estimated parameters in the next E-step.

To establish the EM algorithm for the computation of MLEs for the parameters in
LB regression model, we first set up the stochastic representation for the two-parameter
Lindley distribution. Based on the reparameterization for the LB model, the pdf of
two-parameter Lindley random variable � has the form:

f�(λ) = π
1
φ
e−λ/φ + (1 − π)

λ

φ2 e
−λ/φ = π f1(λ;φ) + (1 − π)f2(λ;φ) (11)

where f1(λ;φ) and f2(λ;φ) are the pdfs of gamma(1,φ) random variable U and
gamma(2,φ) random variable V, respectively. Based on (11), the random variable � can
be stochastically represented as

� = UZV1−Z .

where Z follows the Bernoulli distribution with success probability π , that is P(Z = 1) =
1 − P(Z = 0) = π . This latent variable Z specifies to which mixture component each
observation belongs. Therefore for a given �, there is an associated latent variable Z and
the distribution function of � can be rewritten as

f�(λ; z,φ) = [f1(λ;φ)]z[f2(λ;φ)]1−z.

Let p(z;π) represent the probabilitymass function ofZ. Then the joint probability function
is

f�,Z(λ, z;π ,φ) = f�(λ; z,φ)p(z;π) = {π f1(λ;φ)}z{(1 − π)f2(λ;φ)}1−z (12)

From the above expression, the full conditional distribution of Z is given by

Z|π ,φ, λ ∼ Bernoulli(π∗)



JOURNAL OF APPLIED STATISTICS 1803

where from Evin et al. [9],

π∗ = π f1(λ;φ)

π f1(λ;φ) + (1 − π)f2(λ;φ)
= πφ

πφ + (1 − π)λ
.

For observed sample yi with i = 1, 2, . . . n from LB(mi,πi,φi) distribution, based on (12)
we introduce independent latent variables Zi and �i:

Zi ∼ Bernoulli(πi), �i ∼ L2
(
1 − πi

πiφi
,
1
φi

)
(i = 1, ..., n) (13)

We denote the latent/missing data by Ymis = {zi, λi}ni=1 and the complete data by Ycom =
{Yobs,Ymis} = Ymis, where zi, λi are the realizations of Zi and �i, respectively. Thus the
complete-data likelihood function is given by

L(π ,φ|Ycom) =
n∏

i=1
f�i(zi, λi;φi)p(zi;πi) =

n∏
i=1

{π f1(λi;φi)}zi{(1 − πi)f2(λi;φi)}1−zi

=
n∏

i=1

[
πi

1
φi

e−λi/φi

]zi [
(1 − πi)

λi

φ2
i
e−λi/φi

]1−zi

and the complete-data log-likelihood function is proportional to


(π ,φ|Ycom) ∝
n∑
i=1

[
zi logπi + (1 − zi) log(1 − πi) + (zi − 2) logφi − λi

φi

]
. (14)

Hence, based on the regression model (6) and (14), the complete-data log-likelihood for
regression parameters α and β is proportional to


(α,β|Ycom) ∝
n∑

i=1

[
ziw�

i α − log(1 + ew
�
i β) + (zi − 2)xiβ − λi

ex
�
i β

]
(15)

and the log-likelihood function with penalty has the form as


τ (α,β|Ycom)

∝
n∑

i=1

[
ziw�

i α − log(1 + ew
�
i α) + (zi − 2)xiβ − λi

ex
�
i β

]
− τ

2
(α�α + β�β) (16)

Now, the first and negative second partial derivatives of the complete-data penalized log-
likelihood function (16) are given by

∂
p(α,β|Ycom)

∂α
= w�(z − π) − τα,

∂
p(α,β|Ycom)

∂β
= x�(z − 21 + λ/φ) − τβ ,

−E

(
∂2
p(α,β|Ycom)

∂α∂α�

)
= w� diag[π(1 − π)]w + τ Ip+1 � J(τ )

com(α),

−E

(
∂2
p(α,β|Ycom)

∂β∂β�

)
= x� diag[φ−1E(λ)]x + τ Iq+1 � J(τ )

com(β)
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where 1 = (1, . . . , 1)�,w= (w1, . . . ,wn)
�, x= (x1, . . . , xn)�, z = (z1, . . . , zn)�,π = (π1,

. . . ,πn)
�,λ/φ = (λ1/φ1, . . . , λn/φn)

�, diag[π(1 − π)] = diag[π1(1 − π1), . . . ,πn(1 −
πn)], diag[φ−1E(λ)] = diag[φ−1

1 E(λ1), . . . ,φ−1
n E(λn)], Ip+1 and Iq+1 are the (p + 1) ×

(p + 1) and (q + 1) × (q + 1) identity matrices, respectively. Note that J(τ )
com(α) is actually

the complete-data Fisher information matrix associated only with the parameter vector α

and the covariate matrix w, since it depends on neither the observed responses nor the
latent/missing data. However, J(τ )

com(β) is associated not only with the parameter vector β

and the covariate matrix x but also with the latent variables λ = (λ1, . . . , λn).
Now, the M-step is to separately calculate the MLEs of α and β via two Fisher scoring

algorithms as follows:

α(t+1) = α(t) + [J(τ )
com(α(t))]−1[w�(z − π(α(t))) − τα(t)] (17)

β(t+1) = β(t) + [J(τ )
com(β(t))]−1[x�(z − 21 − λ/φ(β(t))) − τβ(t)]. (18)

The E-step is to replace the latent variables z,λ in (17) and (18) by their conditional
expectations:

E(z|yobs,α,β) = (cZ(y1,m1,π1(α),φ1(β)), . . . , cZ(yn,mn,πn(α),φn(β)))� (19)

and

E(λ|yobs,α,β) = (c�(y1,m1,π1(α),φ1(β)), . . . , c�(yn,mn,πn(α),φn(β)))� (20)

where cZ(yi,mi,πi,φi) and c�(yi,mi,πi,φi) (i = 1, 2, . . . , n) have the following expres-
sions:

cZ(yi,mi,πi,φi) � E(Zi|yi,mi,πi,φi) =
∑mi−yi

k=0
(mi−yi

k
)
(−1)k πi

1+(yi+k)φi∑mi−yi
k=0

(mi−yi
k
)
(−1)k 1+(yi+k)πiφi

[1+(yi+k)φi]2
(21)

and

c�(yi,mi,πi,φi) � E(�i|yi,mi,πi,φi) =
∑mi−yi

k=0
(mi−yi

k
)
(−1)k 2φi−πiφi+(yi+k)πiφ

2
i

[1+(yi+k)φi]3∑mi−yi
k=0

(mi−yi
k
)
(−1)k 1+(yi+k)πiφi

[1+(yi+k)φi]2
(22)

whereπi = πi(α) = exp(w�
i α)/(1 + exp(w�

i α) andφi = φi(β) = exp(x�
i β). The deriva-

tion of (21) and (22) is given in Supplemental Material.
Now, let α̂ and β̂ are the estimates of the parameters α,β , respectively. Then the asymp-

totic covariance matrices for α̂ and β̂ can be obtained as ˆcov(α̂) = J−1
com(α̂), ˆcov(β̂) =

J−1
com(β̂) and thus the corresponding confidence intervals for the components of α and β

can be constructed by using the Wald-type method. For the value of τ , the EM algorithm
can be carried out for each generated data set in simulation and τ can be chosen via
maximizing the likelihood for the simulated data.

Remark: For the LB model without covariate, the MLEs of parameters π and φ can be
easily obtained from aforementioned Fisher scoring algorithm and EM algorithm based
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on the reduced model ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yi ∼ LB (mi,πi,φi) , i = 1, 2, . . . .n

log
(

πi

1 − πi

)
= α0

logφi = β0

and setting π̂ = eα̂0/(1 + eα̂0) and φ̂ = eβ̂o . The details for these algorithms are omitted.

3.2. The issues for hypothesis testing and goodness-of-fit testing in LBmodel

In this section, we first discuss the hypothesis testing for Lindley binomial model. Since
Lindley binomial distribution is derived via compounding the binomial model with the
two parameter Lindley binomial distribution, which is the mixture of gamma distribution
�(1, θ) and gamma distribution �(2, θ), one may like to know if Lindley binomial model
is obtained via compounding the binomial distribution with a single gamma distribution.
Therefore, the hypotheses we are interested in are

H(1)
0 : π = 0 versus H(1)

1 : π �= 0 (23)

and

H(2)
0 : π = 1 versus H(2)

1 : π �= 1. (24)

The hypothesis (23) is to test if the LB model is derived via the binomial model com-
pounding with the gamma distribution �(2, θ)) and (24) is to test if the model follows
the specific beta binomial model BetaBin(m, θ , 1). Now, based on the likelihood method
of model (4), the LRT statistics for testing the hypotheses (23) and (24) have the following
forms, respectively:

T1 = 2l(π̂ , φ̂) − 2l(0, φ̂1)

T2 = 2l(π̂ , φ̂) − 2l(1, φ̂2)

where (π̂ , φ̂) are the unconstrained MLEs of (π ,φ), which can be obtained via the Fisher
scoring algorithm or EM algorithm given in Sections 3.1.1 and 3.1.2 for the LB regres-
sion model with π̂ = exp(w�α)/(1 + exp(w�α)) and φ̂ = exp(x�β̂). φ̂1, and φ̂2 are the
MLEs of φ under the null hypotheses H(1)

0 and H(2)
0 , respectively, which can be derived in

analogous algorithms as the unconstrained MLEs of (π ,φ).
UnderH(1)

0 andH(2)
0 , the LRT statistics T1 and T2 approximately follow the chi-squared

distribution with one degree of freedom and the corresponding p-value can be computed
as

p1 = Pr(T1 > t1|H(1)
0 ) = Pr{χ2(1) > t1}

and

p2 = Pr(T2 > t1|H(2)
0 ) = Pr{χ2(1) > t2}

where t1 and t2 are the observed values ofT1 and T2, respectively. Further, the LRTmethod
can also be used to test the general null hypothesis H0 : π = π0.



1806 D. DENG AND X. ZHANG

Table 1. Pearson residuals for commonly used models for proportional data.

Model Pearson residual

BIN(m,π) rPi = yi − miπ̂√
miπ̂(1 − π̂)

BB(m,α,β) rPi = yi − miπ̂BB√
miπ̂BB(1 − π̂∗)[1 + (m − 1)ρ̂BB]

, πBB = α

α + β
, ρBB = 1

1 + α + β

ZIB(m,ω,π) rPi = yi − mi(1 − ω̂)π̂√
mi(1 − ω̂)[π̂(1 − π̂) + m2

i ω̂π̂2]

LB(m,π ,φ) rPi = yi − miπ̂LB√
miπ̂LB(1 − π̂LB) + mi(mi − 1)[ π̂LB

2 (1 + ρ̂LB)2 − ρ̂2
LB − π̂2

LB]
,

πLB = 1 + πφ

(1 + φ)2
, ρLB = 1

(1 + 2φ)

Next we consider to assess the goodness of fit (GOF) for the LBmodel. There are numer-
ous methods for testing the GOF of a model for proportional data. The most standard
tests are residual deviance and Pearson’s χ2-test. We first discuss the Pearson residual for
assessing the GOF in the commonly usedmodels with proportional data. Thesemodels are
binomial BIN(m,π), beta binomial BB(m,α,β), zero-inflated binomial ZIB(m,ω,π) and
Lindley binomial LB(m,π ,φ) models. The Pearson residual, defined as the raw residual
normalized by the estimated standard deviation of the response variable, can be expressed
as

rPi = yi − μ̂i√
V̂(yi)

,

where μ̂i is the fitted value for yi and V̂(yi) is the estimated value of variance for yi.
The following table presents the Pearson residuals for aforementioned proportional

models.
Note that all considered models are assumed to involve no covariates. For the case that

the covariates are involved in the models, the corresponding parameters would depend on
the covariates. Further, based on Pearson residuals given in Table 1, Pearson chi-squared
statistic for GOF test is defined as

X2
1 =

n∑
i=1

rPi
2.

Under a correctly specifiedmodel,X2
1 follows an approximate chi-square distributionχ2

n−p,
where n is the sample size, and p is the number of parameters.

Next we consider the deviance residuals for the proportional models. The general
deviance statistic, which is defined as twice the difference between the log-likelihood for
the saturated and fitted models, can be expressed as follows:

D(y, μ̂) = 2
n∑

i=1

{
log[p(yi|θ̂s)] − log[p(yi|θ̂ )]

}
,

where p(yi|θ̂s) is the log-likelihood function for the saturatedmodel and θ̂s is the parameter
estimates for the saturated model, in which there are as many estimated parameters as
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Table 2. Deviance residuals for commonly used models for proportional data.

Model Deviance residual

BIN(m,π) rDi = sign(yi − miπ̂)

{
2yi log

yi
miπ̂

+ 2(mi − yi) log
mi − yi

mi(1 − π̂)

}1/2

BB(m,α,β) rDi = sign(yi − miπ̂BB)

⎧⎨
⎩

yi−1∑
j=0

2 log
yi

mi(π̂BB + jθ̂BB)
+

mi−yi−1∑
j=0

2 log
mi − yi

mi(1 − π̂BB + jθ̂BB)
+

mi−1∑
j=1

2 log(1 + jθ̂BB)

⎫⎬
⎭

1/2

,

πBB = α

α + β
, θBB = 1

α + β

ZIB(m,ω,π) rDi = sign(yi − mi(1 − ω̂)π̂)

{
2 log

1

(ω̂ + (1 − ω̂)(1 − π̂)mi )
I(yi = 0) + .

[2yi log
yi

miπ̂
+ 2(mi − yi) log

mi − yi
mi(1 − π̂)

− 2 log(1 − ω̂)]I(yi > 0)
}1/2

LB(m,π ,φ) rDi = sign(yi − miπ̂LB)

⎧⎨
⎩2yi log yi

mi
+ 2(mi − yi) log

mi − yi
mi

−2 log

⎛
⎝mi−yi∑

j=1

(
mi − yi

j

)
(−1)j

1 + (yi + j)π̂ φ̂

(1 + (yi + j)φ̂)2

⎞
⎠
⎫⎬
⎭

1/2

,

πLB = 1 + πφ

(1 + φ)2

data points [1,19]. By definition, a saturated model leads to a perfect fit to the data and
has the highest log-likelihood among all models. log[p(yi|θ̂ )] represents the log-likelihood
function of the fitted model and θ̂ denotes the parameter estimate for the fitted model.
Deviance residual represents the contribution of individual observation to the deviance
D(y, μ̂), which is defined as the signed square root of the corresponding component for
D(y, μ̂) and can be written as

rDi = sign(yi − μ̂i)
√
di,

where di = 2{log[p(yi|θ̂s)] − log[p(yi|θ̂ )]}. Also, we list the deviance residuals for the
commonly used proportional models in the following table.

Same as the Pearson Chi-squared statistic, the deviance statistic D2 =∑n
i=1 (rDi )

2 fol-
lows an approximate chi-squared distribution χ2

n−p under the correctly specified models.
Therefore the goodness of fit in the proposed LB model can be assessed using Pearson
chi-squared statistic and deviance statistic.

Moreover, for the proportional datawith equal number of binomial denominators, other
chi-squared statistic can be used to test the goodness of fit for the aforementioned models.
This statistic has the following form:

X2
2 =

m∑
y=0

(Oy − Ey)2

Ey
,

where m is the value of binomial denominator for each experiment; Oy is the number of
observationswith y successes in all experiments;Ey is the expected numberwith y successes
from the fitted model, which can be calculated as Ey = np̂y where n is the total number of
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observations and p̂y is the expected probability that y successes are observed inmBernoulli
trials. Furthermore, p̂y can be obtained as

p̂y = P̂(Y = y) = p(y|θ̂ ), y = 0, 1, . . . ,m

and p(y|θ̂ )(y = 0, 1, . . . ,m) is the expected probability calculated from the fitted model.
Moreover, X2

2 follows the approximate chi-squared distribution χ2
m−p under the correctly

specified models, where p is the number of parameters in the fitted model.
On the other hand, the likelihood ratio or maximum likelihood statistical significance

test G is increasingly being used in situations where chi-squared test X2
2 is previously

recommended [20]. The formula for G has the following form:

G = 2
m∑
y=0

Oy log
(
Oy

Ey

)

where Oy and Ey are the same as that in chi-squared X2
2. Note that this G-test statistic is

twice Kullback–Leibler divergence of the theoretical distribution from the empirical distri-
bution. We may call it as Kullback–Leibler divergence statistic for the goodness of fit test.
Also, the test statistic G has the same approximate chi-squared distribution as X2

2.
For diagnosing the models with proportional data, we can compare the residuals and

calculate the values of Pearson chi-squared statistic X2
1, deviance statistic D

2 and statistic
X2
2, Kullback–Leibler divergence statisticG (with equal number of binomial denominators)

among all proportional models and thus find the best fitted model. Meanwhile, Akaike
information criterion (AIC) and Bayesian Information Criterion (BIC) can serve as the
diagnosis tools for the selection of proportional models.

4. Simulation study

In this section, we carry out a limited simulation study to evaluate the performance of the
proposed statistical methods in Section 3 for the LB model. We first examine the accuracy
of EM algorithm for computing the MLEs for different parameter settings in the proposed
LB models without covariates via simulation studies. Then we investigate its accuracy for
the computation of regression parameters in the LB model with covariates.

4.1. Accuracy ofMLEs for LBmodel without covariates

To evaluate the accuracy of EM algorithm for computing the MLEs of parameters π

and φ in the Lindley binomial model without covariates, we consider 12 scenarios with
π = 0.25, 0.5; φ = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and the binomial denominatorm = 6, 12. The
sample size is chosen as n = 50, 75, 100, 200, 300, 400, 500.

First, the procedure for generating the random number {yi}ni=1
iid∼ LB(m,π ,φ) is given

as follows:

(a) Use LindleyR to generate λ1, . . . , λn
iid∼ L2((1 − π)/πφ, 1/φ);
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(b) Generate

y1 ∼ Binomial(m, exp{−λ1}), . . . , yn ∼ Binomial(m, exp{−λn}).

Then, yi ∼ LB(m,π ,φ) for i = 1, 2, . . . , n.

From each generated sample the MLEs of parameters π and φ are calculated via
EM algorithm (17)–(20) and the corresponding standard errors are obtained by using
the asymptotic variances ˆvar(π̂) = π̂(1 − π̂)/(n + τ π̂(1 − π̂)) and ˆvar(φ̂) = φ̂2/(2n −
nπ̂ + τ φ̂2). Nextwith repeating timesG = 1000 for the parametersπ andφ, the 1000 sam-
ples are independently generated and the corresponding 1000 EMMLEs and 1000 standard
errors for parameters π and φ1 are obtained. Further, in Table 3 and Table S1 of the supple-
mental file, MLE is the average of the 1000 estimates via the EM algorithm (17)–(20); MSE
is the average of 1000 standard errors. As seen in Table 3 and Table S1 of the supplemental
file, in most of scenarios the biases are small and the MLEs are very close to the corre-
sponding true values of parameters in most cases, although the biases of EM estimates for
some scenarios are a little large with sample size n = 50, 75 and 100. However, by compar-
ing the MLE and MSE, there is no significantly difference between the true values and the
estimated values of parameters, which demonstrates that the proposed EM algorithm has
very good performance.

4.2. Accuracy ofMLEs for LBmodel with covariates

In this section, we perform the limited simulation study to investigate the performance
of proposed EM algorithm for the estimation of regression parameters. We consider the
following model:

Yi ∼ LB(mi,π ,φi) and logφi = Xiβ

where the mixture parameter π is assumed to be fixed, β is the vector of regression param-
eters and Xi is the vector of covariates (i = 1, 2, . . . , n). In the simulation, the sample size
n = 100, 200, 300, 400, 500, the values of parameter vector (π ,β0,β1,β2) are chosen to be
(0.25,−0.7, 1.3,−1.0), (0.50,−0.7, 1.3,−1.0), (0.75,−0.7, 1.3,−1.0); (0.25, 0.4, 0.6,−1.1),
(0.50, 0.4, 0.6,−1.1), (0.75, 0.4, 0.6,−1.1); (0.25,−0.5,−0.9, 1.2), (0.50,−0.5,−0.9, 1.2),
(0.75,−0.5,−0.9, 1.2) hereβ0 is the intercept parameter. Two covariate variables are gener-
ated from uniform U[0, 1] and Bernoulli(0.5). The binomial denominators are randomly
generated from the integers 5–12. From the simulation study, Tables 4, S2 and S3 of the
supplemental file are obtained.

From Table 4, Tables S2 and S3 of the supplemental file, one can see that the simulation
results for LB regression model are consistent with that for LB model without covariate.
The estimates for the parameters in LB regressionmodel obtained via the EMalgorithm are
accurate although the biases are a little large for the scenarios thatπ = 0.75 and n = 50, 75.

5. Real-data application

In this section, we apply the proposed Lindley binomial model to analyze three propor-
tional data sets with extreme sparseness and excessive zeros
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Table 3. The estimates of parameters in Lindley binomial model with π = 0.50,φ = 0.2, 0.4, 0.6,
0.8, 1.0, 1.2.

π = 0.50 m = 6 m = 12

φ n Bias(π̂ ) MSE(π̂ ) Bias(φ̂) MSE(φ̂) Bias(π̂ ) MSE(π̂ ) Bias(φ̂) MSE(φ̂)

0.2 50 −0.0338 0.0395 0.0098 0.0254 −0.0156 0.0456 0.0105 0.0254
75 −0.0130 0.0358 0.0126 0.0211 −0.0108 0.0434 0.0066 0.0202
100 −0.0434 0.0369 0.0028 0.0170 −0.0433 0.0411 0.0004 0.0166
200 −0.0242 0.0296 0.0032 0.0120 −0.0033 0.0316 0.0038 0.0120
300 −0.0040 0.0252 0.0047 0.0099 −0.0122 0.0270 0.0005 0.0095
400 0.0013 0.0225 0.0046 0.0085 −0.0030 0.0238 0.0019 0.0083
500 0.0035 0.0207 0.0046 0.0076 0.0067 0.0213 0.0025 0.0075

0.4 50 0.0000 0.0448 0.0260 0.0520 −0.0143 0.0504 0.0160 0.0499
75 0.0157 0.0390 0.0295 0.0428 0.0048 0.0447 0.0196 0.0411
100 −0.0277 0.0412 0.0080 0.0340 −0.0189 0.0433 0.0061 0.0337
200 −0.0142 0.0310 0.0076 0.0240 −0.0044 0.0325 0.0079 0.0239
300 −0.0036 0.0263 0.0064 0.0195 0.0069 0.0273 0.0088 0.0195
400 0.0056 0.0235 0.0083 0.0169 0.0050 0.0240 0.0054 0.0167
500 −0.0007 0.0213 0.0040 0.0149 0.0120 0.0216 0.0063 0.0150

0.6 50 −0.0102 0.0449 0.0363 0.0774 0.0060 0.0507 0.0448 0.0781
75 0.0228 0.0405 0.0537 0.0652 0.0183 0.0443 0.0327 0.0625
100 −0.0298 0.0416 0.0058 0.0503 −0.0222 0.0441 0.0072 0.0502
200 0.0010 0.0318 0.0182 0.0364 0.0048 0.0330 0.0143 0.0360
300 −0.0102 0.0269 0.0044 0.0288 −0.0008 0.0275 0.0072 0.0289
400 0.0022 0.0236 0.0112 0.0253 −0.0032 0.0240 0.0028 0.0248
500 0.0048 0.0214 0.0079 0.0224 0.0037 0.0217 0.0054 0.0223

0.8 50 0.0092 0.0454 0.0776 0.1077 0.0162 0.0495 0.0621 0.1050
75 0.0236 0.0405 0.0746 0.0874 0.0322 0.0445 0.0603 0.0853
100 −0.0266 0.0438 0.0038 0.0663 −0.0171 0.0451 0.0082 0.0667
200 −0.0061 0.0324 0.0128 0.0478 −0.0026 0.0330 0.0105 0.0474
300 −0.0060 0.0272 0.0100 0.0386 0.0012 0.0274 0.0112 0.0387
400 −0.0076 0.0238 0.0011 0.0329 −0.0003 0.0241 0.0059 0.0331
500 −0.0035 0.0215 0.0082 0.0297 −0.0005 0.0217 0.0047 0.0296

1.0 50 0.0213 0.0442 0.1016 0.1361 0.0222 0.0500 0.1008 0.1345
75 0.0277 0.0401 0.1052 0.1109 0.0138 0.0442 0.0722 0.1059
100 −0.0529 0.0442 −0.0184 0.0801 −0.0285 0.0455 −0.0041 0.0818
200 −0.0298 0.0326 −0.0057 0.0577 −0.0137 0.0332 0.0005 0.0582
300 −0.0096 0.0273 0.0039 0.0477 0.0034 0.0275 0.0161 0.0484
400 −0.0020 0.0237 0.0149 0.0419 −0.0007 0.0242 0.0058 0.0413
500 −0.0068 0.0215 0.0050 0.0369 0.0021 0.0217 0.0056 0.0370

1.2 50 0.0371 0.0436 0.1550 0.1687 0.0089 0.0480 0.1096 0.1602
75 0.0391 0.0398 0.1404 0.1352 0.0267 0.0435 0.1072 0.1300
100 −0.0629 0.0436 −0.0324 0.0950 −0.0521 0.0453 −0.0346 0.0947
200 −0.0190 0.0326 0.0031 0.0700 −0.0181 0.0335 −0.0048 0.0692
300 −0.0059 0.0273 0.0073 0.0574 −0.0094 0.0277 0.0036 0.0570
400 −0.0045 0.0239 0.0055 0.0496 −0.0083 0.0241 0.0047 0.0494
500 −0.0027 0.0215 0.0095 0.0445 −0.0023 0.0217 0.0065 0.0443

5.1. Incidence of hepatitis A in Bulgaria

The data set used in this section is the incidence of hepatitis A in Bulgaria by age. This
data set was given by Keiding [15] and exhibits the sparseness with 19 out of 83 annual
age groups contributing non-zero denominators of 5 or less out of 83 groups. Farrington
[10] presented an analysis of this data set fitting to generalized linear models. They used
the number of seronegatives as response variable with binomial errors. For the illustration
of our proposed LB model, we consider the number of seropositives as binomial response
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Table 4. The estimates of parameters in Lindley binomial model with π = 0.25, 0.50, 0.75 and β =
(0.4, 0.6,−1.1).

π n Bias(π̂ ) MSE(π̂ ) Bias(β̂0) MSE(β̂0) Bias(β̂1) MSE(β̂1) Bias(β̂2) MSE(β̂2)

0.25 50 0.0314 0.0380 0.0819 0.2506 −0.0078 0.3892 −0.0510 0.2235
75 0.0382 0.0360 0.0663 0.2026 −0.0041 0.3142 −0.0203 0.1812
100 −0.0095 0.0353 −0.0003 0.1701 −0.0009 0.2647 −0.0008 0.1527
200 −0.0037 0.0281 0.0047 0.1201 −0.0078 0.1862 0.0011 0.1074
300 −0.0019 0.0237 0.0008 0.0979 0.0023 0.1517 0.0016 0.0876
400 0.0002 0.0209 0.0037 0.0847 0.0032 0.1312 −0.0051 0.0758
500 −0.0023 0.0188 −0.0059 0.0756 0.0065 0.1172 0.0042 0.0677

0.50 50 −0.0277 0.0445 0.0018 0.2677 0.0158 0.4155 −0.0224 0.2386
75 0.0057 0.0393 0.0221 0.2181 −0.0156 0.3394 −0.0208 0.1953
100 −0.0531 0.0434 −0.0364 0.1798 −0.0195 0.2790 0.0243 0.1625
200 −0.0017 0.0324 0.0054 0.1295 −0.0085 0.2007 0.0097 0.1164
300 −0.0096 0.0273 −0.0008 0.1053 −0.0066 0.1631 0.0067 0.0945
400 −0.0065 0.0238 −0.0035 0.0915 −0.0093 0.1416 0.0078 0.0819
500 0.0045 0.0214 0.0097 0.0820 −0.0067 0.1270 −0.0015 0.0735

0.75 50 −0.1814 0.0441 −0.1397 0.2762 −0.0212 0.4307 0.0075 0.2469
75 −0.1329 0.0389 −0.1101 0.2280 −0.0066 0.3540 0.0110 0.2030
100 −0.0804 0.0348 −0.0652 0.1991 0.0061 0.3091 0.0014 0.1779
200 −0.0344 0.0253 −0.0271 0.1419 −0.0076 0.2202 0.0095 0.1269
300 −0.0147 0.0213 −0.0057 0.1162 0.0039 0.1800 −0.0037 0.1039
400 −0.0093 0.0185 −0.0081 0.1006 0.0062 0.1561 0.0075 0.0901
500 −0.0015 0.0166 0.0062 0.0902 −0.0037 0.1399 0.0046 0.0807

Table 5. Results of model fitting for the Hepatitis in Bulgaria dataset.

Model Binomial BB LB ZIB

Parameters p̂ = 0.2976 α̂ = 0.3767, π̂ = 0.0384, ω̂ = 0.3730
β̂ = 1.3617 φ̂ = 1.1375 π̂ = 0.4009

Log-likelihood −240.4100 −155.8891 −154.9336 −191.8077
AIC 482.8200 315.7783 313.8672 387.6154
BIC 489.6577 320.6159 318.7048 392.4531
X21 308.2910 78.4064 90.8661 105.9551
D2 360.9004 191.8597 189.9486 263.6969

variable, for which, there are 36 zero seropositives out of 83 annual age groups. There-
fore, this data set exhibits not only extreme sparseness but also excessive zeros. For the
purpose of comparison, we perform the statistical analysis for this data set using the Lind-
ley binomial (LB) model as well as the simple binomial model, beta-binomial (BB) model
and zero-inflated binomial (ZIB) model and compare the proposed LB model with these
existing proportional models via the GOF test statistics given in Section 3.2.

Table 5 presents the values of log-likelihood, AIC, BIC, Pearson chi-squared statistic X2
1

and deviance statisticD2 with the values of estimated parameters for the model fitting with
the aforementioned four models.

The estimates of parameters in BB model are computed using ‘bb.mle’ package in R
programming environment. However, it should be pointed out that the estimated values
of parameters heavily depend on the initial values of parameters in ‘bb.mle’ package for
beta binomial model. Based on the results in Table 5, although the Pearson chi-squares
statistic for BB model is smallest among the four models, the LB model gives the largest
log-likelihood−154.9336, and smallest AIC 313.8672, smallest BIC 318.7048 and smallest
deviance statistic 189.9486. Therefore, the proposed Lindley–binomial model shows the
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Table 6. Results for the analysis of Hepatitis data using LB and ZIB
regression models.

Model ZIB regression model LB regression model

Estimates ω̂ = 0.0556, π̂ = 0.0000,
γ̂0 = 3.4493, γ̂1 = −1.3813 β̂0 = −3.5392, β̂1 = 1.0651

log-likelihood −122.0351 −118.6235
AIC 250.0702 243.5162
BIC 261.7456 254.9224
X21 68.4555 30.2292
D2 124.1516 117.3285

advantage for fitting the proportional data with sparseness and excessive zeros. Next, we
consider assessing the mixture parameter π in LB model for this dataset. The likelihood
ratio test (LRT) can be used to test if this parameter equals zero or one. For hepati-
tis data, the value of LRT is 2[
LB(π̂ , φ̂) − 
LB(0, φ̃)] = 2(−154.9336 − (−155.4260)) =
0.9848, which strongly support the null hypothesis H0 : π = 0. This also shows that the
data may come from the distribution which compounds the binomial with the single
gamma(2, 1/φ) distribution. Furthermore, since the estimate of mixture parameter π in
LB is 0.0384 and φ̂ = 1.1375, the estimated values of corresponding original parameters
are α̂ = (1 − π̂)/π̂ φ̂ = 22.0166 and θ̂ = 1/φ̂ = 0.8791. On the other hand, via LRT, we
have 2[
ZIB(π̂ ,φ) − 
BIN(p̂)] = 2(−191.8077 − (−240.4100)) = 97.2046, which strongly
support the existence of zero-inflation in hepatitis data. From the above results, one can
see the LB model can also be used to account for the zero-inflation in proportional data,
which can be demonstrated in top two panels of Figure S1 in the supplemental file.

Now we further use the regression models to demonstrate the superiority of our pro-
posed model. Since the data involve excessive zeros, we only compare the LB regression
model with ZIB regression model. The LB regression model considered here has the form
as

Yi ∼ LB (mi,π ,φi) and logφi = β0 + log(agei)β1

and the ZIB regression model has the form as

Yi ∼ ZIB(mi,ω,πi) and log
πi

1 − πi
= γ0 + log(agei)γ1.

Here, themixture parameterπ in LBmodel and the zero-inflated parameterω are assumed
to be fixed for different subjects. The analysis of the data using these two regressionmodels
is given in Table 6, from which LB model obviously demonstrates the superiority to ZIB
model.

Therefore based on the results given in Tables 5 and 6, we may conclude that the LB
model has a better performance than binomial, BB and ZIB models for fitting hepatitis
data.

5.2. Whitefly data

Thiswhitefly data set is the result of the experiment that is about the efficacy of the pesticide
onwhiteflies given by [32]. In the whitefly data, the purpose of controlling silver leaf white-
flies was studied by using a subirrigation system. The study was designed to determine the
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effectiveness of controlling silver leaf whiteflies on poinsettia with imidacloprid, which was
delivered by a subirrigation system. Imidacloprid is a resilient and powerful chemical that
has low toxicity to mammals and is used to control silver leaf whiteflies on poinsettia. At
the first week of this experiment, researchers placed m adult whiteflies (here m is consid-
ered as the binomial denominators with range 6–15, mean = 9.5 and SD = 1.7) in clip-on
leaf cages attached to one leaf per plant and then recorded the number of surviving white-
flies 2 days later, which is considered as the response variable. To measure reproductive
inhibition, the fly cages were removed after obtaining the survival count but the position
of each cage wasmarked. In the coming week,m adult whiteflies were placed in clip-on leaf
cages attached to one leaf on the same plant and the number of surviving whiteflies were
recorded. Therefore the number of surviving whiteflies combining with the total number
of whiteflies in each experiment formed as the proportional data. There are 640 observa-
tions in the final data set with 339 zeros(53%). Compared with other observations (each of
the other observations has an average of 3.5%), obviously there exist excessive zeros in the
whitefly data. Therefore, this data set is an appropriate data set to be used to test the ability
of the proposed LB model fitting data with zero inflation.

To consider the effects of covariates, we apply our proposed LB regression model and
ZIB regression model to analyze the whitefly data. To compare our proposed model with
ZIB mode, we consider the following covariates:

x = (1, plant, block, trt(i.e. treatment), week, trt × block, trt × week)�

The ZIB regression model and LB regression model are as follows:

LB model: Yi ∼ LB (mi,π ,φi) and logφi = x�βLB

and

ZIB model: Yi ∼ ZIB(mi,ω,πi) and log
πi

1 − πi
= x�βZIB.

Here, the mixture parameter π in LB model and the zero-inflated parameter ω in ZIB
model are assumed to be fixed for different subjects. The computational procedures of EM
algorithm presented in Section 3.1.3 are used to calculate the MLEs of the regression coef-
ficients. The calculation results based on LB regression model and ZIB regression model
are summarized in Table 7. One can see that all indices of model diagnosis demonstrate
that the proposed LB regression model outperforms the ZIB regression model.

5.3. Cathetermanagement study

Thedata on cathetermanagement studywas used as an example in [12]. The purpose of this
randomized clinical trial was to teach indwelling urinary catheter users the awareness and
self-monitoring skills. It was conducted in New York state, and 202 subjects were recruited
and randomized to the intervention and control groups. The primary outcomes of interest
are whether the subjects experienced urinary tract infections (UTIs), catheter blockages,
and catheter displacements during the last 2 months, as well as the corresponding counts
of these experiences. Thus each patient was asked up to six times about three binary out-
comes. Due to the death or dropout, some patients were asked for less than six times. So
the total number of times asked varies from 1 to 6. However, the outcomes with the asking
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Table 7. Results for the analysis of whitefly data using of ZIB and LB regression models.

ZIB regression model LB regression model

Logit(π ) ω Log(φ) π

Intercept −1.3323 (0.2336) 0.4998 (0.0198) 1.1307 (0.2954) 0.9902 (0.0039)
Plant −0.0833 (0.0206) – 0.1353 (0.0261) –
Block 0.2389 (0.0881) – 0.0420 (0.1101) –
trt 0.5449 (0.0588) – −0.2109 (0.0763) –
Week −0.0295 (0.0020) – 0.0298(0.0027) –
trt× block −0.0700 (0.0218) – −0.0127(0.0284) –
trt×week 0.0234 (0.0050) – −0.0304(0.0067) –
Log-likelihood −1361.6009 −1066.4729
AIC 2734.2017 2146.9458
BIC 2752.2036 2178.1761
Pearsonχ2 980.4065 746.8631
Deviance 2189.6592 1599.4033

time less than six are discarded. Therefore, the outcomes can be considered as the times of
urinary tract infections (UTIs), catheter blockages, and catheter displacements during total
six asking times and thus three sets of proportional data with binomial denominator six
(6) were obtained. Further, there are 83 (43.0%), 127 (65.5%) and 140 (72.5%) zeros in the
193 outcomes of urinary tract infections (UTIs), 194 outcomes of catheter blockages, and
193 outcomes of catheter displacements, respectively. These high volumes of zeros suggest
that there may be the zero-inflation issue and zero-inflated binomial model can be used to
fit such data. Ye et al. [34] combined the repeated binary outcomes and appliedWald, LRT,
score and a new statistic to test zero inflation for binomial responses. All testing results
show that there are structural zeros in the three outcomes. For the purpose of illustration,
we analyze these three proportional data sets by using our proposed LB model and com-
pare it with ZIB and BB models. Table 8, Tables S4 and S5 of the supplemental file present
the results from the analysis of three proportional datasets based on the ZIB, BB and LB
models without covariates. In the analysis of these proportional data, the binomial denom-
inators for all outcomes of urinary tract infections (UTIs), catheter blockages, and catheter
displacements are same. Instead of Pearson chi-squared test X2

1 and deviance test D2, the
chi-squared test X2

2 and Kullback–Leibler divergence G are used to assess the GOF for all
three models.

From the results given in Table 8, Tables S4, S5 and Figure S2 of the supplemental file,
one can see that in terms of likelihood, AIC, BIC, chi-squared X2

2 and Kullback–Leibler
divergence G, Lindley binomial model has the best performance among three models for
fitting of outcomes of urinary tract infections (UTIs), catheter blockages and beta binomial
model shows the superiority to other two models for fitting of outcomes from catheter
displacements. These results also show that although there exist zero-inflations in three
proportional data sets, the zero-inflated binomial model may not fit the data very well and
the existence of zero inflation in the data does not means there exist the structural zeros.

6. Concluding remarks

In this paper, a newmodel for proportional data, called ‘Lindley binomial model’ has been
proposed. The model is defined by compounding the binomial distribution with Lindley
distribution. It can also be regarded as an extension of binomial model and can be used
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Table 8. Results of model fitting for catheter blockages in Example 2.

Expected values of distributions
Number of periods
with positive responses

Observed
values ZIB LB BB

0 127 127.0001 128.6495 127.9433
1 36 24.4049 30.4732 30.1008
2 16 24.6308 15.1612 15.8942
3 4 13.2581 8.9067 9.5671
4 5 4.0143 5.5072 5.8159
5 3 0.6482 3.3777 3.2703
6 3 0.0436 1.9245 1.4084
Log-likelihood −233.8865 −215.7144 −217.5755
MLEs of parameters ω̂ = 0.6027 π̂ = 0.0663 α̂ = 0.2761

π̂ = 0.2876 φ̂ = 2.1000 β̂ = 2.0419
AIC 471.7726 435.4288 437.1510
BIC 478.3083 441.9645 443.6867
Chi-squared test X22 224.1656 4.4629 6.3388
Kullback–Leibler divergence G 41.3739 5.0277 6.7498

to fit the proportional data with extra variation such as the over/under dispersion, sparse-
ness and zero inflation and thus is more flexible model for analyzing the proportional data.
Specially, this model may be more appropriate to the binomial data with big probability
at zero or at the binomial denominator. The Fisher scoring algorithm and EM algorithms
are derived for the computation of the estimates of parameters in the proposed regres-
sion model. The simulation results demonstrate that the proposed EM algorithm has an
excellent performance for the computation of MLEs of parameters in the proposed Lind-
ley–binomial model with/without covariates. Hepatitis data, whitefly data and catheter
management study data are used to demonstrate the proposedmodel and inferential meth-
ods in the proposed Lindley–binomial model. The results show the Lindley–binomial
model has the advantage for the analysis of proportional data with sparseness and excessive
zeros.

However, there is no model that can fit all kinds of proportional data. For example, the
proportional data may display large frequencies of both zeros and right endpoints. Our
proposed LB model can only address the single endpoint inflation (zero inflation or right-
endpoint inflation). Therefore the proposed model has the limitation for the application.
Deng and Zhang [8] and Tian et al. [31] proposed the endpoint inflated binomial model
with the statistical properties to fit such data.Wemay consider the different way to account
for the endpoint inflation. In fact, we are thinking about to extend the proposed Lindley
binomial model by compounding the binomial model to an analogue of Lindley models.
In current research, we actually compound the binomial distribution with the mixture of
two gamma distributions with same rate parameter θ . Our idea for this new distribution
is to compound the binomial distribution with mixture of two gamma distributions with
different rate parameters like gamma distribution (1, θ1) and gamma distribution (2, θ2).
If this is working for the bimodal data, it will be another alternative to fit the proportional
data. We will be doing such research in the future.
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