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EDITORIAL COMMENT
Moving From PQRST to AI
Advancing Transparency, Reliability, and Clinical Translation
in ECG Deep Learning*
Christopher M. Haggerty, PHD,a,b Timothy J. Poterucha, MDc
W hile automated evaluations of the elec-
trocardiogram (ECG) have been around
for decades, the past 5 years have seen

a dramatic increase in research and development
with the application of artificial intelligence (AI),
particularly deep convolutional neural networks.
Such models have demonstrated strong performance
for a variety of tasks such as rhythm classification,1

detecting paroxysmal atrial fibrillation in sinus
rhythm,2,3 detecting underlying cardiac structural or
functional abnormalities4-6 and even risk of future
mortality.7 These studies have generated consider-
able hype around the potential for ECG-AI-assisted
precision medicine, taking advantage of the broad
use and low cost of the ECG to help address specific
diagnostic questions or perform opportunistic
screening.

As this technology matures, it is important to crit-
ically assess the current state of development to help
ensure that the systems produced are robust and
reliable to ensure clinical impact. This is, of course, a
multifaceted problem that includes considerations
for clarity and transparency in reporting, replicability
of findings across data sets, generalizability of per-
formance across diverse cohorts, and careful
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consideration of potential domain shifts between
model development and implementation.

In this issue of JACC: Advances, Avula et al8

present a systematic review of the literature on
clinically-directed ECG-AI models, with a focus on
standardization of methodologies, clarity in report-
ing, and potential for reproducibility across the
field. This review identified 53 models across 44
studies through July 1, 2022. Among the findings,
the authors found variability in deep learning
network architecture employed (eg, use of sequen-
tial convolutional layers vs residual connection
blocks vs long short-term memory units), the
descriptive details presented for the included co-
hort(s), and the performance metrics reported.
Some of the more striking findings relate to as-
sessments of model reproducibility. For example,
the evaluation of external cohort testing, which the
authors broadly defined as either derived from a
separate institution or from a temporally distinct
period from the primary development institution,
was performed for only 34% of models reviewed.
Furthermore, <23% of publications reported suffi-
cient information for model reproduction—
comprising details of model architecture, convolu-
tional layer composition, and other model hyper-
parameters and training data.

Based on these findings, the authors conclude that,
while the performance of ECG deep-learning models
has been excellent for a wide range of clinical tasks,
there is a need for definition of and adherence to a
standardized set of reporting guidelines. They sug-
gest that these standards should minimally include
details required for model reproduction and charac-
teristics of the development and testing cohorts
included. Notably, while some relevant standards
exist,9,10 these standards were not designed to ac-
count for deep learning models and have important
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shortcomings that Avula and colleagues, as well as
the authors of those tools themselves point out.11

Updates to these tools are reportedly forthcoming
and should help address these needs.

Overall, we applaud the authors for their effort in
carefully curating and evaluating details of the pub-
lished models to provide these insights. Some of the
findings merit more consideration and concern than
others. For example, the noted variability in network
architecture was interesting, but it is not clear that it
represents a problem. Instead, the consistently strong
performance of ECG-AI models suggests that the
approach is generally robust to varied network design
and hyperparameters. This variance may naturally
diminish as foundational code bases, such as
‘IntroECG’,12 become more widely used. Future work
will shed light on minimal requirements or optimal
values, but that optimization will likely have only
marginal impact on clinical value. On the other hand,
the evidence for generally poor testing of generaliz-
ability and support for reproducibility certainly are
cause for concern. Optimistically, some of these
trends may be transient and already undergoing
correction; that is, the backward-looking snapshot
provided by this kind of review (the study inclusion
period closed 15 months before publication) may not
reflect the standards currently enforced on new and
ongoing work in a rapidly evolving field. The included
histogram showing the increasing inclusion of
external testing over time is already some evidence of
this trend. However, given the importance of
ensuring reproducibility and generalizability of these
models, continued diligence in enforcing this stan-
dard is warranted.

Finally, considering that a primary motivation and
focus for this review was ensuring the reliability and
clinical relevance of these models, more explicit
considerations for model evaluation strategies that
translate to intended clinical use are warranted. In
many instances, there are inherently subtle differ-
ences between the characteristics of the patients in a
model development set and the patients for whom
the model is intended to be used in the “real world”.
For example, detecting left ventricular dysfunction
with explicit labeling requires patients who have
clinically undergone both an ECG and an echocar-
diogram; however, the optimal patients to benefit
from this model have not had an echocardiogram.
These differences have important consequences
for model performance as the base rates of disease
will vary, often dramatically, between those 2
populations. The series of studies completed by the
team at the Mayo clinic exemplified this point, as the
prevalence of decreased ejection fraction (#50%)
dropped from 20.5% in retrospective model devel-
opment to an observed prevalence of 1.8% in a
pragmatic randomized trial.4,13 Anticipating such
population shifts in evaluating model performance is
an important and often overlooked step in translating
models from retrospective development to clinical
implementation. Therefore, inclusion of such con-
siderations—even if based on assumptions with
limited data—in earlier stages of model evaluation,
not to mention regulatory and governance discus-
sions, should be strongly considered to anchor per-
formance expectations appropriately.

Where does the field go from here? First, there is
currently no ability to compare the accuracy of
different ECG models across studies. Standard sta-
tistical metrics, including receiver operator charac-
teristics and precision-recall curves, fundamentally
fail at this task without a shared test set. There is thus
an urgent need for publication of large, deidentified
ECG datasets with clinically relevant labels that will
allow standardized methods of model comparison, as
EchoNetDynamic and ChexNet have done for echo-
cardiography and chest x-rays.14,15 Second, in-silico
research can only carry us so far; more randomized
control trials are needed to evaluate if these tools can
have a clinical impact once they meet the heteroge-
neity and complexity of clinical care. Third, effective
partnerships with electronic health record and infor-
mation system management vendors are needed to
enable effective dissemination and implementation
of these ECG-based tools beyond research settings.
Only once these tasks are accomplished can the
impact of AI-enabled ECG analysis begin to meet the
hype.
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