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The current era of big data offers a wealth of new opportunities for clinicians to leverage artificial intelligence to

optimize care for pediatric and adult patients with a congenital heart disease. At present, there is a significant

underutilization of artificial intelligence in the clinical setting for the diagnosis, prognosis, and management of

congenital heart disease patients. This document is a call to action and will describe the current state of artificial

intelligence in congenital heart disease, review challenges, discuss opportunities, and focus on the top priorities of

artificial intelligence–based deployment in congenital heart disease. (JACC Adv 2022;1:100153) © 2022 The Authors.

Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
A rtificial intelligence (AI) technologies have
made a major impact in imaging in cardiol-
ogy and have many applications in health

care delivery such as computer-assisted diagnostics,
risk prediction and stratification, clinical decision
support, deep phenotyping, precision medicine,
and personalized prescription. Physicians can
leverage these to provide optimal care for the pa-
tients in the current era of big data.1-7 Congenital
heart disease (CHD) is an excellent domain for AI
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given the robust and diverse data sets extending
from complex disease diagnosis and management
to multimodality imaging. With evolving therapies
and surgeries, CHD patients are surviving longer,
creating a growing population of adult CHD pa-
tients.2 The use of AI could help augment and opti-
mize the management of these patients, improve
quality of care, extend life expectancy, save time
for the treating physician, and decrease health
care costs.
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HIGHLIGHTS

� Significant unmet opportunities exist for
artificial intelligence to advance
congenital heart disease research.

� Leveraging artificial intelligence in
congenital heart disease could reduce
repetitive tasks and augment clinical de-
cision-making.

� Future research in artificial intelligence
should include longitudinal congenital
heart disease data to map disease path-
ophysiology and prognosis across the
lifespan.

ABBR EV I A T I ON S

AND ACRONYMS

AI = artificial intelligence

CHD = congenital heart disease

CMR = cardiac magnetic

resonance imaging

CNN = convolutional neural

network

CT = computed tomography

DL = deep learning

EKG = electrocardiogram

ML = machine learning

RNN = recurrent neural

network
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However, there is a significant gap in the
application of AI for diagnosis, prognosis,
and management of CHD patients across
their lifespan. The use of AI in pediatric and
adult CHD has been limited by insufficient
CHD-specific labeled data sets available for
training of models, complex modeling needs
in this patient population due to heteroge-
nous clinical phenotypes and age-related
pathophysiological changes, and siloed data
in center-specific data warehouses.8 Addi-
tionally, at baseline, data for specific rare
forms of CHD are limited, requiring multi-
centered collaboration to accrue sufficient
data sets. Lastly, significant deficits in clin-
ical training, knowledge, experience, and comfort
with AI exist.9

Despite these challenges, medical intelligence
gained from the application of AI technologies and
tools to data sets inclusive of the conglomerated
CHD population could be instrumental in deter-
mining the optimal personalized management strat-
egy for specific lesions. While some AI techniques
currently used in adult cardiology may be transfer-
able to adult CHD,10 new techniques and collabora-
tion are warranted to address the technical
challenges specific to the complexity and rarity of
CHD data sets. Therefore, strategic initiatives to
promote AI-based research and clinical applications
to best serve the unique needs of CHD patients are
necessary. This document is a call to action and will
describe the current state of AI in CHD, review
challenges, discuss opportunities, and focus on the
top priorities of AI-based deployment in CHD.

BASIC CONCEPTS OF AI

AI refers to any technique that enables computers to
generate algorithms and find hidden insights to
mimic human intelligence. Human intelligence is
characterized by the ability to learn, reason, analyze,
and make decisions. Machine learning (ML) is a sub-
field of AI that generates computer algorithms
capable of improving task performance by learning or
adapting from data.8 There are 3 ML strategies
(Figure 1): 1) supervised; 2) unsupervised; and 3)
reinforcement learning. Supervised learning uses
labeled data sets to classify data or perform pre-
dictions.8 The goal of supervised learning is to learn a
function from labelled data sets and produce desired
outputs that best describes the relationship between
the two.6,8 Unsupervised learning discovers the un-
derlying structure or relationships among variables in
an unlabeled data set without dependent variables.6
Reinforcement learning is determining the optimal
behavior in an environment to earn the maximum
reward and is the science behind decision-making.

Deep learning (DL) is a subset of ML that mimics
the activity of the layers of neural networks in the
neocortex. It has been used extensively in the field
of medicine particularly for medical imaging using
convolutional neural networks (CNNs), a specific
type of deep neural network optimized for image
analysis. More recently, CNNs have been applied to
cardiovascular data sets for CHD.1,11,12 CNN models
for image analysis are trained using raw imaging
data sets and require substantial input data,
computational power, and manual labor to label
data. Transfer learning is an emerging approach that
reduces the computational power needed and al-
lows for faster training of the model. It uses pre-
trained CNN weights to extract features to apply to
the new CNN model to reduce the amount of
training data needed to build the model. Another
form of DL is recurrent neural networks (RNNs)
which use the outputs of some layers of neural
network as feedback to use as inputs to the previ-
ous layer. This allows for sequential data analysis. A
popular framework for learning sequential data is
called the long short-term memory network. This is
a type of RNN that is capable of learning long-term
relationships. Transformers, another type of DL
model that learns context and tracks relationships
in sequential data, are primarily used in the field of
natural language processing and computer vision.
RNNs based on long short-term memory or grated
recurrent units are capable of learning information
dependencies in long input sequences, but they are
not parallelizable because the hidden states are
computed sequentially. Instead of relying on
recurrent structures, transformers process the entire



FIGURE 1 Different Types of Machine Learning
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input using a self-attention mechanism, which is
easy to be computed in parallel. One potential
limitation of transformers is that the computation is
very memory-intensive. Transformers in AI are the
most recent advancement with implications for CHD
clinical work. A generative adversarial network
(GAN) is a DL model involving 2 neural networks
competing against each other to make more accu-
rate predictions. This type of network is unsuper-
vised and used in image generation.13

Recent advances in AI include federated learning
and swarm learning frame which can help with data
privacy. Federated learning is an ML technique that
trains an algorithm across multiple decentralized
servers holding local data samples without sharing
them.14 This type of learning allows the local devices
attain the power to learning collaboratively from a
shared model. After individual training of models on
isolated data sets housed locally, the devices send
their specific models to a centralized server where the
models are averaged to obtain a single combined
model. This process is repeated until a single high-
quality model is obtained. Swarm learning is a
decentralized, privacy-preserving ML framework that
does not rely on a central server.15 This type of
framework uses the computing power at the distrib-
uted data sources to run the ML algorithms that train
the model while maintaining data confidentiality.15

As such, these systems facilitate data sharing be-
tween medical centers. The next section describes the
ML and DL models used in CHD.
CURRENT AI-BASED PEDIATRIC AND ADULT

CHD APPLICATIONS AND OPPORTUNITIES

Over the last decade, there has been an exponential
rise in the number of publications centered on AI in
health care, highlighting the potential of this tech-
nology. Applications of AI for CHD are robust,
ranging from prenatal screening to risk stratification
in an aging adult CHD population. In the following
section, we review the progress in this field and
highlight opportunities to advance unmet needs in
areas of prenatal CHD screening, postnatal CHD
screening, cardiac imaging processing and interpre-
tation, preprocedural planning, outcome prediction,
and precision medicine (Central Illustration).
PRENATAL CHD SCREENING. Prenatal screening for
CHD can improve neonatal outcomes and offer op-
portunities for planning in utero therapies, postnatal
surgeries, or interventions.16-20 Although fetal echo-
cardiography in experienced hands has moderate
sensitivity and high specificity reported in the recent
meta-analyses, the accuracy of CHD detection is re-
ported as low as 28% in general obstetric practice.21,22

The acquisition of standard cardiac imaging planes is
critical in the prenatal diagnosis of CHD, and using AI
to automatically retrieve these standard imaging
planes from a stream of ultrasound imaging data has
the potential to improve CHD detection. The auto-
matically retrieved images may be of higher quality
than the manually obtained images. Baumgartner
et al23 used labeled mid-trimester ultrasound images
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from 2,694 volunteers and a CNN algorithm to achieve
real-time classification of standard-screening fetal
cardiac imaging planes (Table 1). Dong et al25 used a
CNN in 2,032 fetal 4-chamber views and 5,000 views of
other fetal structures to evaluate for automatic
detection of the 4-chamber view and automatic
assessment of image quality. Chen et al24 used a
composite RNN model in an ultrasound scan of 1,231
ultrasound videos of fetuses to automatically detect
standard planes including 4-chamber cardiac views. A
landmark article by Arnaout et al12 using CNN
described the ability to detect complex CHD in utero
from normal fetuses. These algorithms can help clini-
cians and operators who are less experienced in eval-
uating fetal echocardiograms to detect abnormalities
to improve the detection rates of CHD in the commu-
nity. This could also reduce work time required to
obtain normal standard views and allow the sonogra-
pher to use the retained time to focus on the evaluation
of abnormal cardiac pathology.47 Further refinements
in AI algorithms or development of fetal CHD-specific
learning algorithms could help achieve more granular
detections of unique CHD lesions. This has the po-
tential to risk stratify certain fetal populations. Ex-
amples of this include improved detection of patients
at risk of ductal dependent physiology (ie, coarctation
of the aorta) or at risk of intrauterine fetal demise.
POSTNATAL CHD SCREENING. Initial screening in
infants for CHD consists of a combination of cardiac
auscultation, pulse oximetry, chest radiography, and
electrocardiography. A computer-assisted ausculta-
tion software program allows the user to store and
transmit heart sounds to dedicated platforms for AI-
assisted analysis of murmurs.27,48-50 Gharehbaghi
et al27 described using combined support vector ma-
chine and hidden Markov models—supervised
learning models used for classification—to identify
innocent heart murmurs from a bicuspid aortic valve
with an accuracy of 86.4%, better than pediatric car-
diologists using conventional auscultation (Table 1).
This software has not been accepted for clinical use
because it was limited by small numbers and lack of
widespread clinical deployment.27 Furthermore, it
was also unclear how the data were split between
training and testing data sets.27 A subsequent study
by Gharehbaghi et al28 used a time growing neural
network (a type of DL) to differentiate normal heart
sounds from systolic murmurs from septal defects or
valvular regurgitations. The study population was
small, and the test data sets were not used to test the
suitability of this methodology as a general clinical
tool in the community. Gomez-Quintana et al30 used
ML on neonatal phonocardiograms to determine the
probability of patent ductus arteriosus or CHD in 265
newborns within the first 6 days of life (Table 1). The
heart sounds were preprocessed and segmented, then
followed by feature extraction. The features were fed
into a boosted decision tree classifier to estimate the
probability of patent ductus arteriosus or CHD from
normal heart sounds.30 Finally, the patients were
prioritized into the decision of getting echocardio-
grams to confirm the diagnosis.30 This study was the
first to identify patent ductus arteriosus using a
designed ML-based method and contrast it with an
experienced neonatologist’s auscultation skills as
well as the gold standard of echocardiogram. The
model area under the curve was 0.77 for the detection
of patent ductus arteriosus.30 The authors suggested
integrating pulse oximetry to the ML algorithms
could improve their framework of a more compre-
hensive assessment of the performance of AI-
augmented decision-making as a clinical decision
support tool; however, there has yet to be wide up-
take in clinical practice.30 Smart stethoscopes have
been developed to help with clinical auscultation for
detecting CHD heart sounds in remote areas where
resources and pediatric cardiology expertise are
limited.51 Quickly identifying abnormal heart sounds
may help triage these patients with appropriate
referral for CHD management.48 DL has been applied
to chest radiographs of CHD patients to aid in the
prediction of pulmonary-to-systemic flow ratio
(Table 1).29 DL has also been applied to electrocar-
diogram (EKG) readings to detect atrial septal de-
fects.31 This DL algorithm that comprised CNN and
long short-term memory models may be applicable to
other CHD lesions to further aid EKG-based AI di-
agnostics for the pediatric population.

Wearable technology has gained rapid acceptances
into the pediatric community for the analysis of heart
rate, blood pressure, oxygen saturation, and heart
rhythm. These technologies have the potential of life-
saving monitoring in the outpatient setting or remote
monitoring for children with CHD and arrhythmias.
ML interpretation and prediction using EKG input
data are being used for the detection of CHD
(Table 1).31 The described algorithms for pediatric
arrhythmia detection include those for smart-
watches52 and zio patch53,54 devices. More recently,
an ML algorithm built from pulse oximetry features
has been created to improve critical CHD detection
rates (Table 1).32 Future embedding of AI algorithms
into the wearable technologies will help to develop
connected intelligence, early warning systems, which
can be used for prompt risk stratification, targeted
early intervention, and personalized prescription.
These devices can be used as predictive devices
rather than diagnostics.



TABLE 1 Application of Artificial Intelligence in Congenital Heart Disease

First Author Year
Patient

Population
Category for

Analysis Models

Training/
Validation
Data Sets

Test
Data Set

Results
Metrics Limitations

Prenatal CHD
screening

Chen et al24 2017 900 fetuses Echocardiograms Composite RNN to
define standard
fetal cardiac
imaging planes

900 videos 331 videos AUC: 0.95 Limited to healthy
patients, not
tested on CHD.

Dong et al25 2022 3,910 fetuses
(14.1% with CHD)

Echocardiograms Random forest
algorithms (ML)
to differentiate
normal and
CHD hearts

25 features 10 features AUC: 0.94
Sensitivity: 0.85
Specificity: 0.88

Tabular data instead
of raw images.

No specific subtypes
of CHD defined.
Single center.

Arnaout et al12 2021 1,326 fetuses Echocardiograms CNN (classification) 107,823 images
from 1,326
echocardiograms

4,108 fetal
ultrasounds

AUC: 0.99
Sensitivity: 0.95
Specificity: 0.96

No published
algorithms. Not
clinically
deployed in
practice.

Truong et al26 2022 3,910 fetuses
(14.1% with CHD)

Echocardiograms Random forest
algorithms (ML)
to differentiate
normal and
CHD hearts

25 features 10 features AUC: 0.94
Sensitivity: 0.85
Specificity: 0.88

Tabular data instead
of raw images.

No specific subtypes
of CHD defined.
Single center.

Postnatal CHD
screening

Gharenhbaghi
et al27

2017 55 healthy children
vs 35 BAV

Heart sounds Support vector
machine and
Markov model

Unknown Unknown Sensitivity: 0.86
Specificity: 0.87

Small study and
clinical
deployment not
widespread.

Gharenhbaghi
et al28

2020 50 healthy children vs
35 septal defects
vs 30 valvular
regurgitation

Heart sounds Time growing
neural network
(a type of DL)

80 patients for
training, 30%
random sampling
as validation test

Unknown Sensitivity: 0.92 No test data sets and
not used
clinically.

Toba et al29 2020 1,031 cardiac
catheterizations
from 657 CHD
patients to predict
pulmonary-to-
systemic flow ratio

Chest x-rays Transfer learning
of CNN

931 100 AUC: 0.88
Sensitivity: 0.47
Specificity: 0.95

Lack of external
validation. Bias
as all CHD
patients who had
a cardiac
catheterization.
Limited number
of patients in the
training group.

Gomez-
Quintana
et al30

2021 265 term and late-
preterm neonates
(137 normal vs
89 PDA vs 39
CHD patients)

Heart sounds
(healthy vs PDA)

(healthy vs CHD)

ML 90% of data 10% of data AUC (PDA): 0.74
AUC (CHD): 0.78

Not clinically
deployed.

Limited data sets.

Mori et al31 2021 1,192 EKGs from 728
patients (828
normal and
364 ASD)

EKG CNN and LSTM Validation was 25%
of 1,000
learning data

192 EKG (155
healthy and
37 ASD)

AUC: 0.96
Sensitivity: 0.76
Specificity: 0.96

Volume of data was
small for DL. Bias
associated with
priming effect.
Insufficient data
to deploy into
clinical practice.

Lai et al32 2021 236 newborns Pulse oximetry ML (random
forest, logistic
regression,
multilayer
perception)

158 healthy and 27
CHD patients
(0-48 h), 50
healthy and 36
CHD patients
(>48 h)

50 healthy and
36 CHD

AUC: 0.91
Sensitivity: 95.8
Specificity: 86.4

Small data sets

Bos et al33 2021 2,059 patients; 967
with LQTS and
1,092 evaluated
for LQTS but
discharged without
a diagnosis

EKGs CNN classification Trained using 60%
and validated in
10% of the
patients

Tested on
remaining
30% of
patients

AUC was 0.900
(95% CI:
0.876-0.925)

Bias as patient
cohort sent with
suspicion of
possible LQTS
limiting
generalizability.
Lacks external
validation and
calibration from
a different
center.

Continued on the next page
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TABLE 1 Continued

First Author Year
Patient

Population
Category for

Analysis Models

Training/
Validation
Data Sets

Test
Data Set

Results
Metrics Limitations

Hong et al34 2022 Color Doppler
echocardiogram
images

CNN for
classification
and
segmentation

4,031 cases with
370,057 images

229 cases with
203,619
images of
which 105
cases with
ASD and
124 with
intact atrial
septum

Accuracy, recall,
precision,
specificity, and
F1 score of
0.8833, 0.8545,
0.8577, 0.9136,
and 0.8546,
respectively

Not generalizable to
spectrum of
CHD; single
center.

Cardiac imaging

Pereira et al35 2017 90 patients; 26
coarctation and 64
healthy

2D echocardiograms
of the parasternal
long axis, apical
4-chamber, and
suprasternal
notch views

SVM (support
vector machine
classifiers)

Trained on 80% Tested on 20% Total error rate
of 12.9% (11.5%
false negative
error and 13.6%
false positive)

Single-center study.
Limited to single
disease. No
external
validation.

Diller et al10 2019 132 patients with a
systemic RV and
67 normal controls
(73,425 TGA;
33,394 ccTGA; and
24,354 normal
apical 4-chamber
frames)

Echocardiograms CNN—classification
and
segmentation

159 40 Accuracy: 0.98 Model requires
external
validation.

Wegner et al36 2022 9,793 echocardiogram
images from 262
patients with CHD
(ToF, Ebstein, TGA)
and 62 controls
used to build a new
model. Prior model
was trained on
14,035
echocardiograms
from patients
without CHD for
automated view
classification.

Echocardiograms
from patients
with CHD or
structural heart
disease used to
validate existing
CNN trained on
structurally
normal hearts.
Additional model
built trained on
CHD
echocardiograms
to compare
performance.

CNN view
classification
model

80% for training
and validation

20% for
testing

Noncongenital model
overall accuracy
of 48.3% vs
66.7% in patients
without cardiac
disease for
correct view
classification in
patients with
CHD. New CHD
trained model
accuracy of
76.1% for view
classification.

Single-center study.
Not vendor
agnostic.
Relatively small
number of
patients with
cyanotic forms of
CHD (ie, 3
patients with
HLHS, 1 with
tricuspid atresia).

Karimi-
Bidhedi
et al13

2020 64 patients (20 ToF,
9 DORV, 9 TGA,
8 cardiomyopathy,
9 coronary artery
anomaly,
4 pulmonary
stenosis, 3 truncus,
2 aortic arch
anomaly)

MRI images Generative
Adversarial
Network (form
of unsupervised
learning) to
augment data
used to augment
training set.
CNN used to
segment MRI
images

26 patients randomly
assigned to
training data set
(split 80/20 for
training and
validation)

38 Patients
randomly
selected
for testing

Dice Similarity Index
metrics of 91%
and 86.8% for LV
at end-diastole
and end-systole,
respectively, and
87.4% and
80.6% for RV at
end-diastole and
end-systole,
respectively.
Externally
validated.

Single site. Small
patient numbers.

Tandon et al37 2021 87 cardiac MRI from
repaired ToF
patients

MRI images CNN—transfer
learning

57 30 Dice similarity
coefficient: 0.90

Small data sets

Continued on the next page
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CARDIOVASCULAR IMAGE PROCESSING AND

INTERPRETATION. Cardiac imaging such as echo-
cardiography, cardiac magnetic resonance imaging
(CMR), and computed tomography (CT) serve as the
core of diagnosis and disease surveillance but require
significant expertise and time for acquisition and
interpretation. DL has been applied to improve each
stage of multimodality imaging acquisition and
interpretation in adult cardiology (preprocessing,
quality optimization, view classification, segmenta-
tion, and diagnosis) with less advancement in pedi-
atrics.55-61 This is in large part due to the breadth and
subtleties of disease and fewer available training data
sets for complex CHD patients, which limits the per-
formance of DL models, increases the chances of
overfitting data, and limits the opportunities to
externally validate models. Because of this, most
published studies focus on specific diseases, making



TABLE 1 Continued

First Author Year
Patient

Population
Category for

Analysis Models

Training/
Validation
Data Sets

Test
Data Set

Results
Metrics Limitations

Wang et al38 2021 1,308 children (823
healthy, 209 VSDs,
276 ASDs)

Echocardiograms CNN view
classification for
5 views

90% training 10% testing Autoencoders trained
significantly
better on CHD
samples than
healthy samples;
cross-entropy
healthy: 0.2649
� 0.0369 vs
0.2597 � 0.0327
for CHD, and
mean squared
difference
healthy:
133.89 � 79.06
vs 118.86 � 61.52
for CHD. A lower
cross-entropy
indicates a closer
representation of
the underlying
distribution.

No external
validation.
Limited diseases.

Procedural
planning for
catheterization
and surgery

Ruiz-
Fernandez
et al39

2016 2,432 patients Basic clinical data,
healthy history,
surgical
intervention, and
postsurgical
intervention

Classification
model:

1. Multilayer
perceptron

2. Radial basis
function

3. Self-organizing
map

4. Decision tree

2,432 2,432 Accuracy: 0.99 Not clinically
deployed

Lu et al40 2020 550 echocardiogram
images; 275
before and after
atrial septal
occlusion surgery

2D echocardiogram
images

Variant of the U-Net
architecture
used to perform
atrial
segmentation
via CNN to
determine
surgical
outcomes of
atrial septal
defects before
and after septal
occlude

3:1 Training-to-
testing ratio

The U-net mean and
SD reported for
the Dice Similarity
Index, Jaccard
Index, and
Hausdorff
Distance were
0.9488
(�0.0209),
0.9033
(�0.0374), and
7.5625
(�4.4549),
respectively.

Single clinical site
and scanner
used. No
external
validation.

Outcome
prediction and
risk
stratification

Diller et al10 2019 10,019 adult CHD
patients

Clinical data, EKG,
cardiopulmonary
exercise test,
laboratory
markers

CNN to categorize
diagnostic
groups, disease
complexity, and
New York Heart
Association
Class

44,000 medical
reports

Unclear Accuracy 91% in
diagnosis, 96% in
disease
complexity, 90%
New York Heart
Association Class

Retrospective
single-center
data. Raw echo
and MRI data
using specifically
trained data
need validation
externally.

Atallah et al41 2020 288 patients (72 ToF
patients and 216
controls)

Clinical data and
noninvasive
testing

Random forest
Decision tree to risk

stratify into low,
moderate, high
risk for
ventricular
arrhythmia and
life-threatening
events

Unknown Unknown High-risk group
Sensitivity: 0.54

Specificity: 0.86

Small data set and
retrospective.
Unknown
numbers for
training and
testing data sets.

Continued on the next page
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TABLE 1 Continued

First Author Year
Patient

Population
Category for

Analysis Models

Training/
Validation
Data Sets

Test
Data Set

Results
Metrics Limitations

Jalali et al42 2020 549 single-ventricle
patients

Clinical data, surgery Logistic regression
Decision tree
Random forest
Gradient
boosting

1. Deep neural
network

25 out of 100
variables selected
for training

Unknown AUC (mortality/
cardiac
transplantation):
0.95

AUC (prolonged
length of stay):
0.94

Exclusion of very ill
patients from the
PHN SVR trial,
thus biased
toward higher
survival rates.
Retrospective
data set.

Bertsimas
et al43

2021 235,000 patients with
295,000
operations

Clinical data, general
preoperative
patient risk
factors to predict
mortality,
postoperative
MVST, and length
of hospital stay
(LOS)

2. Optimal
classification
trees

3. Random forests
4. Gradient

boosting

175,239 46,096 AUC (mortality):
0.86

AUC (prolonged
MVST): 0.85

AUC (prolonged
LOS): 0.82

Heterogeneous data
can lead to bias.

Precision
medicine

Meza et al44 2018 651 neonates with
critical left heart
obstruction

136 echocardiographic
measures to group
patients into 3
subtypes and
identify
differentiating
characteristics

Unsupervised
clustering
analysis

Divided into group 1,
215; group 2, 338;
and group 3, 98.

Median LV end
diastolic area was
1.35, 0.69,
2.47 cm2 in
groups 1, 2, and 3;
P < 0.001.
Overall mortality
was 27%, 41%,
and 12%,
respectively;
P < 0.001.

Bruse et al45 2017 60 patients CMR Automated
segmentation,
statistical shape
modeling and
unsupervised
hierarchical
clustering to
group patients
accordingly and
identify novel
subgroups

Cohort divided into
20 healthy
subjects, 20
patients who had
undergone
surgical aortic
arch
reconstruction,
and 20 patients
who had their
aorta pushed
back posteriorly
in the Lecompte
maneuver for
arterial switch
operation

Achieved automatic
division of input
shape data
according to
primary clinical
diagnosis with an
high F-score
(0.902 � 0.042)
and Matthews
correlation
coefficient
(0.851 � 0.064)
using the
correlation/
weighted
distance/linkage
combination.

Relatively small
cohort of
patients; not
generalizable to
other forms CHD

Bahado-Singh
et al46

2022 24 coarctation patients
and 16 controls

Blood spots Deep learning to
perform
genome-wide
DNA
methylation
analysis

Unknown Unknown AUC: 0.97
Sensitivity: 0.95
Specificity: 0.98

Unknown number of
training and
testing data sets

ASD ¼ atrial septal defect; AUC ¼ area under the curve; BAV ¼ bicuspid aortic valve; ccTGA ¼ corrected transposition of the great arteries; CHD ¼ congenital heart; CI ¼ confidence interval; CMR ¼ cardiac
magnetic resonance imaging; CNN ¼ convolutional neural network; DL ¼ deep learning; DORV ¼ double outlet right ventricle; EKG ¼ electrocardiogram; HLHS ¼ hypoplastic left heart syndrome;
LQTS ¼ long QT syndrome; LSTM ¼ long short term memory; LV ¼ left ventricle; ML ¼ machine learning; MRI ¼magnetic resonance imaging; MVST ¼ mechanical ventilatory support time; PDA ¼ patent
ductus arteriosus; PHN ¼ pulmonary hypertension; RNN ¼recurrent neural network; RV ¼ right ventricle; SD ¼ standard deviation; SVM ¼ support vector machine; TGA ¼ transposition of the great arteries;
ToF ¼ tetralogy of Fallot; VSD ¼ ventricular septal defect.
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it necessary to implement algorithms not generaliz-
able to the spectrum of CHD into clinical practice. For
example, Diller et al62 built a CNN algorithm capable
of discriminating echocardiograms in adult CHD pa-
tients with transposition of the great arteries after the
atrial switch, patients with congenital corrected
transposition of the great arteries, and healthy
controls (Table 1). Although this study had 98% ac-
curacy in identifying CHD, the CNN algorithm has not
been externally validated for clinical deployment.
Echocardiogram clips have been used to train DL
models for the automated diagnosis of atrial septal
defects, ventricular septal defects, and coarctation of
the aorta.35,38 Furthermore, DL has been used for the
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segmentation of cardiac structures by ultrasound,
CMR, or CT, an essential step to measure anatomic
structures and make functional assessments that are
integral to disease diagnosis and surveillance. A
number of groups have developed strategies to
enable DL segmentation algorithms to successfully
contour CHD cases using CMR images (Table 1),13,37

echocardiography,63 and cardiac CT.64 Tandon
et al37 showed that a CNN algorithm for CMR, devel-
oped for structurally normal hearts, was able to be
adapted to use in a repaired tetralogy of Fallot (ToF)
heart with a relatively small number of training data
sets (Table 1). They proposed that similar work can be
extended to other forms of CHD.

Automating an otherwise manual step could
improve the precision of measurements and effi-
ciency of interpretation. With the implementation of
AI, one can reduce the amount of time required in
acquiring images, processing images, and reducing
variability in interpretation of the images. Computer
vision can be leveraged to streamline imaging evalu-
ation and interpretation. By using AI algorithms such
as deep neural networks, clinicians can analyze large-
volume, nonnumerical data structures such as image
processing and apply them to multi-imaging evalua-
tion. This has already been successful in cases of
noncongenital cardiac diseases, but there has been
limited application in the evaluation of congenital
cardiac pathology.65 Through the development of
CHD-specific learning algorithms, AI could shorten
the image-acquisition time, improve image process-
ing, derive interpretation, and facilitate a prompt and
precise diagnosis. Future opportunities for AI-
enabled echocardiograms from image acquisitions to
image interpretation can be developed. In particular,
AI algorithms that work with limited labeled data
using novel self-supervised and semisupervised ap-
proaches will be helpful in CHD.

Implementation of AI in CMR evaluation could
significantly benefit the pediatric CHD community.
Further development of DL algorithms for CMR
reconstruction has the potential to reduce CMR scan
time and minimize the effects of motion artifact on
imaging quality.13,65-68 This could have the benefit of
minimizing the need of anesthesia for CMR evalua-
tion of young or uncooperative pediatric patients.
Furthermore, this could be an opportunity to accel-
erate fetal CMR research and development. Overall,
DL algorithms have the potential to reduce post-
processing time for both the technician obtaining the
images and the physician interpreting the study.

PREPROCEDURAL AND PRESURGICAL PLANNING.

Preprocedural planning in catheterization and CHD
surgeries requires cardiac imaging integration. GANs
(a type of neural network that learns to generate new
data from training data sets) have been used suc-
cessfully to predict the optimal size, shape, and
positioning of the transannular patch to optimize
outcomes from cardiac CT images of ToF patients.69

In a pilot study, cycle adversarial networks were
able to align preprocedural CTs with intraprocedural
transesophageal echocardiographic images to
improve surgical navigation for patients with CHD.40

Ruiz-Fernandez et al39 optimized AI-based algorithms
to improve risk estimation for CHD surgery (Table 1).
Deploying AI to automatically segment the pulmo-
nary veins and the left atrium prior to total anoma-
lous pulmonary venous return repair can be crucial
for presurgical planning.64 Integrating AI into virtual
reality in the repair of atrioventricular septal defect
using 3D echocardiographic imaging may help with
surgical repairs.70 These simulated environments for
various types of interventions or predictions are po-
tential areas that AI can assist to improve procedural
success and outcomes in CHD patients.

PREDICTIVE ANALYTICS AND RISK STRATIFICATION

FOR OUTCOME PREDICTIONS. Individualized risk
stratification and prognostication in CHD patients
often remain challenging and stand to benefit from
AI. ML models exist to stratify patients with repaired
ToF into low, moderate, or high risk for ventricular
arrhythmias using clinical data (Table 1).41 Additional
models can predict sudden cardiac arrest, ventricular
tachycardia, and death using CMR data.71 Models for
CHD also exist to predict in-hospital mortality,43,72

postoperative complications,73 postsurgical
bleeding,74 prolonged mechanical ventilatory sup-
port,43 and hospital length of stay.43 Raw imaging
data sets have been used to predict hemodynamics
such as chest film-based estimation of pulmonary-to-
systemic flow ratios in CHD (Table 1)29 and CT-based
prediction of pulmonary pressure after Glenn opera-
tions.75 ML and DL models have been used to predict
and calculate individual patient risk for mortality or
cardiac transplantation with high accuracy using the
Pediatric Heart Network Single Ventricle Recon-
struction trial data set (Table 1),42 which might help
inform clinical and organizational decision-making.

Risk stratification systems are central to guiding
therapy and managing adult CHD patients.76 Tradi-
tional risk stratification systems in adult CHD have
been based on limited data from a single or a limited
number of institutions and are usually based on
parametric or semiparametric models. The main lim-
itation of these systems is that their models, which
have inherent statistical assumptions, have not been
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validated in real clinical settings. The main promise
of AI in the setting of risk stratification in adult CHD is
2-fold. First, due to the more efficient method of data-
analysis including raw data directly, AI could facili-
tate the incorporation of larger or temporal data sets
without overburdening available human resources.
Second, due to the nonlinearity of AI models, AI al-
gorithms could fit the underlying data more closely,
thus improving the predictive ability.2,77 Novel
methods for integrating data from remote sites are
being developed in AI (ie, federated learning and
swarm learning), and this might benefit translational
studies in the field.2

The feasibility of AI-derived automated risk strat-
ification has been demonstrated. Based on raw med-
ical record data from over 10,000 adult CHD patients,
DL algorithms using natural language processing can
determine the underlying complexity of disease and
predict the need for closer medical attention as well
as the risk of mortality in this population.10 Further-
more, a study from the German National Register for
CHD has shown that AI-based direct risk stratification
can be achieved using raw cardiac CMR from patients
with ToF. This study is also one of few to assess the
external validity of the algorithms by geographically
separating training and testing data sets.71 Lastly,
RNNs represent a promising tool for the analysis of
longitudinal medical data in adult CHD patients
afflicted by a chronic life-long disease. This innova-
tive method is especially suited to capture long-range
nonlinear dependencies such as hospitalizations and
future heart failure events. Using the Quebec adult
congenital heart disease database, the feasibility of
this technique to predict future outcomes and model
disease trajectories has been demonstrated.78 The
aforementioned 3 studies, unlike conventional sta-
tistical models, demonstrated that the use of AI al-
gorithms on such large-scale multimodal data sets
was critical in risk stratification. While these early
data indicate that AI-based models can answer
different types of questions compared to conven-
tional statistical models for the development of risk
stratification tools,43 AI-based models have not been
proven to be clearly superior, and conflicting data
exist.79 With adequate investments and emerging
new technologies, novel AI tools are likely to allow for
trajectory prediction and inform the optimal timing of
interventions.

Advanced analytics leveraging AI show promise to
improve patient care. Given the complexity of CHD
data, it is difficult to select or design a proper feature
representation a priori for specific tasks. By contrast,
DL is a representation learning method that directly
processes raw input data and automatically learns
feature representations in an end-to-end, hierarchical
manner. In this way, DL can discover complicated
hidden data structures and learn complex trans-
formation functions from CHD data. It also eliminates
the need of manual feature engineering that is
required in conventional ML techniques. Given the
increasing volumes of medical data in the form of
text, medical images, and other medical signals, DL
models can be developed using the data to provide
accurate, clinically relevant predictions in real time.
Integrating multiple sources of medical data for a
multimodal approach has also enabled prediction of
mortality in patients in the intensive care unit.80

These multimodal models take advantage of com-
plex inputs such as electronic health record with a
wide variety of data such as medical diagnoses, vital
signs, prescriptions, and laboratory results to make
predictions similar to human clinicians making de-
cisions based on diverse information in clinical
practice. Therefore, this multimodal AI approach is a
unique opportunity to expand to CHD data sources,
which are known to be quite varied.
PRECISION MEDICINE. AI in precision medicine in-
volves taking multiple large data points in CHD pa-
tients to arrive at a more-accurate diagnosis and
specific CHD phenotypes. Big data analytics will help
drive the individualized therapy and interventions
required for CHD patients. One considerable advan-
tage of AI is its ability to serve as a tool to aggregate
and synthesize the many layers of medical data to
offer personalized analytics. This includes clinical
information, environmental factors, imaging data,
and social determinants. Genomic medicine derived
from AI will allow for better characterization of the
underlying pathophysiology of CHD. Studies have
shown the feasibility of CHD screening using serum
metabolite panels.81 Furthermore, DNA methylation
can be used to predict aortic coarctation in neonates
(Table 1).46 A clustering analysis from unsupervised
learning might uncover new subtypes of patients that
could benefit from a similar treatment or manage-
ment. Cainelli et al82 applied clustering analysis to
children with CHD who had underwent a cardiac
surgery to discover 2 distinct profiles: those with a
high burden of psychopathology and those with
similarities to patients with attention deficit hyper-
activity disorders.

Digital twin technology simulates a vision of a
comprehensive virtual tool that integrates dynamic
clinical data of a patient over time using a mecha-
nistic and statistical model.83 The technology serves
as a real-time counterpart for a patient and uses
mobile health-monitoring data, “omics”, clinical re-
ports, clinical and experimental recordings, and
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medical images to provide better clinical decision-
making and predictions.84-86 Real-world data can be
continuously fed into models to arrive at better pre-
diction outcomes rather than relying on registries or
randomized control trials. AI will assist in precision
medicine by taking multiple large data points for CHD
patients to arrive at more accurate and specific di-
agnoses of CHD phenotypes. Genomic medicine
derived from AI will allow for better characterization
of the underlying pathophysiology of CHD. Big data
analytics will help drive the individualized therapy
and interventions required for CHD patients.

CHALLENGES IN IMPLEMENTING AI IN CHD

AND PROPOSED SOLUTIONS

Challenges exist in implementing AI in CHD. The first
essential step to bringing the potential of AI to reality
is to identify significant barriers to integration. Sub-
stantial issues related to AI development and inte-
gration include the lack of adequate education about
AI for clinicians, low volume of data, heterogeneity of
data, data imbalance, “explainability” of AI models
with interpretability of data, need for collaboration
between clinicians and data scientists, and legal bar-
riers. In the following sections, we identify the chal-
lenges and propose solutions.

LACK OF AI EDUCATION FOR CLINICIANS. The lack
of adequate AI education for clinicians poses signifi-
cant challenges in the clinicians’ understanding of AI
and subsequent adoption within clinical practice. As
with any new modality in medicine, training and
understanding of the language used in that modality
must be met in order for clinicians to implement this
new modality in clinical practice. Without adequate
education in AI, it is difficult for clinicians to work
with data scientists to create a meaningful clinical
project that would be useful for CHD. One proposed
solution is introducing AI education in the medical
education curriculum and integrating it into the cat-
egorical pediatric cardiology fellowship so that the
next generation of clinicians will have adequate un-
derstanding of AI.

LOW VOLUME OF DATA. Unlike conventional ML
models, DL typically requires large data sets for
model training. The complexity of CHD and hetero-
geneity within lesions pose a challenge to collect
sufficient data sets that are representative of the
breadth of the disease for reliable AI model develop-
ment. Overfitting algorithms to single-center data
sets due to insufficient data and lack of external
validation remains a large barrier to gaining physician
buy-in, acceleration of research initiatives, and wide
implementation of developed algorithms into the
clinical environment. Networks for data collection in
CHD have been developed, including, but not limited
to, ACTION (Advanced Cardiac Therapies Improving
Outcomes Network),87 FON (Fontan Outcomes
Network),88 and PROTEA (PartneRships in cOngen-
iTal hEart disease).89 Nonetheless, even these highly
curated retrospective data sets are often unable to
handle the noisy artifact-laden data generated during
patient care. When data are clean and available, such
as robust echocardiography data sets, it often re-
quires manual labeling or input for training algo-
rithms, which entails a significant time burden. To
overcome a small sample size in CHD, Diller et al90

used a strategy by generating 100,000 synthetic im-
ages based on CMR data from 303 patients with ToF
deemed anatomically plausible by human observers
and achieved similar results in comparison to the
original patient data. Synthetic data generation,
while potentially useful, may lend to modeling bias.
Another proposed solution is using GANs or other
methods such as sampling for augmenting data from
small data sets or some data-insufficient applications.
Lastly, some researchers have used transfer learning
to overcome data size limits by leveraging
model parameters trained on larger data sets. This
may be a viable solution in addition to multi-
center collaboration.
HETEROGENEITY IN DATA AND CURATION. Patients
with CHD have a wealth of data sets from wearable
devices, intensive care unit stays, and imaging data
from multimodality studies. Systems for recording
an accurate alignment of events in time might differ
by institutional standards. While the abundance of
data provides a favorable foundation for algorithmic
development, these heterogenous data sets often
reside in disparate repositories and formats,
creating barriers to access and multicenter collabo-
ration. For example, in CMR, there are different
commercialized CMR machine vendors, protocols
between hospitals, and varied storage systems.
Moreover, a mismatch in data due to a change of
environment or disease stage between training and
operational data can result in erroneous predictions.
This issue has been compounded by the rise of
wearable technology with different manufacturers
and proprietary data formats. Even in the presence
of homogeneity in vendor data sets, hospital in-
frastructures are poorly equipped for large-scale
algorithm development. As a result, multicenter
uniform standards and vendor-agnostic model
development are necessary to mitigate the hetero-
geneity of the scanned data.91,92

Creating a CHD consortia, standardizing data with
multicenter data collection, and using federated
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learning are proposed solutions to overcome hetero-
geneous data sets.5,8 In many circumstances, in-
vestigators will have to rely on minimal common data
sets, focused on data that are homogeneous across
most or all centers, to base the core of the analysis on
these data, while using data that are more subject to
variability only for secondary analyses. Moving for-
ward, it will be important to increase the standardi-
zation of study protocols, data collection, and the
homogenization of the definition of clinical findings
and symptoms, ideally collected with standardized
forms. For example, the use of digital imaging and
communications in medicine has facilitated the
standardization of imaging in medicine, as standard
formats for EKG raw signals have facilitated multi-
center AI research using EKG.93,94 Similarly, the in-
vestigators will need to identify ways to make
electronic health record interoperable, something
that will facilitate the collection of clinical data from
multiple centers.
DATA IMBALANCES AND BIAS. Data sets in CHD,
particularly medical imaging information, are subject
to imbalances in representation that can be perpetu-
ated by AI development. For example, CMR data sets
contain primarily abnormal subjects with very few
normal cases, and the opposite is true for echocardi-
ography. Small and single-center data sets can lead to
skewed and overfitted training data sets to specific
populations, limiting applicability to real-life sce-
narios such as patients of different races or socio-
economic classes.95,96 Underrepresentation in
available data sets may limit access to AI-driven so-
lutions, compounding health care inequity in the
CHD population.97,98

To address the issue of data imbalance, the CHD
community will need to create prospective data sets
of normal children in research setting to have a point
of comparison for when the algorithm requires
normal controls for echocardiograms, EKGs, CTs, or
other cardiac testing. ML solutions will also need to
be tested rigorously in different settings and pop-
ulations so equity and the potential for bias can be
continuously monitored after implementation.
EVIDENCE AND “EXPLAINABILITY”—TRUST. The
high stakes of managing CHD warrant evidence and
“explainability” of research, particularly to overcome
the reluctance among clinicians unfamiliar with AI to
adopt the technology in clinical practice. The majority
of clinicians are experienced with traditional and
transparent health care research models. In contrast,
in AI model development, algorithms may be pro-
grammed to arrive at the output without clear in-
structions; the infamous “black box” problem. The
inability of the AI system to explain how it arrives at
the prediction is a serious technical challenge that
prevents trust from clinician users. Furthermore, re-
ports of publicly available AI tools potentially causing
harm to patients display the potential downfalls of
AI-based solutions used without appropriate valida-
tion. As such, clinicians and the public will likely
mandate a degree of “explainability” before AI inte-
gration. It is also unlikely that clinicians will trust the
AI model if it does not give correct predictions.

To address the “explainability” issue, computer
scientists are currently working on methods to iden-
tify the key explanatory variables, in order to decode
the “black box.” Those efforts will help to ease the
concerns of knowing exactly how the computer
identifies specific conditions or predicts outcomes.
However, some degree of uncertainty in how the AI-
based solution works will have to be accepted. This
is akin to the number of medications used in clinical
practice for decades which have no clear or known
mechanism of action but are used routinely. To this
end, as long as the AI-based solutions prove to be safe
and effective to detect conditions or predict out-
comes, clinicians, patients, and the public in general
will become more tolerant to the relative uncertainty
to understand how the machine works.
NEED FOR COLLABORATION BETWEEN CLINICIANS

AND DATA SCIENTISTS. A major challenge in inte-
grating AI with medicine has been the disconnect
between clinical investigators and computer scien-
tists in terms of what is important for patients, the
definition of problems, and ways to solve them using
AI. To address this, engineers and computer scientists
will need to become more familiar with clinical
practice and to see firsthand the potential AI-based
solutions that would benefit clinicians and patients.
At the same time, clinicians and scientists without
prior experience in computer sciences will need to
embrace new information and skills to better under-
stand the way ML is developed. Over time, people
from both sides will also need to appreciate that the
terminologies that are often named differently actu-
ally refer to the same concept. For example, what
clinical investigators call variables, computer scien-
tists call features, and what clinical investigators call
outcomes, engineers call labels. Building bridges in
education between both fields is imperative to
accelerate the development of clinically useful tools.
LIABILITY AND LEGAL CONCERNS. Members of the
hospital legal system are often unfamiliar with how to
address accountability and liability should health
care professionals utilize AI in practice. Incorrect
predictions made by AI algorithms can result in se-
vere, lifelong consequences for patients, requiring a
high degree of caution, oversight, and quality control.



TABLE 2 Barriers to Artificial Intelligence Implementation in Congenital Heart Disease and Proposed Strategies to Overcome Them

1. Insufficient data access, storage, and sharing strategies for CHD patient data. Data limitations are due to lack of accurately labelled data. Methods
such as transfer learning, self-supervised learning, and predictive learning to increase these data may help overcome these barriers to increase
opportunities for external validation

2. Lack of AI in medicine awareness from stake holders in health care (ie, clinicians, patients, and hospital administrators). Clinicians need more
education about data and AI, and patients need more education to understand the need for and benefits of collaboration on real-world data and
not just registries and randomized control trials. Developing institutional educational series and profession society webinars (American College of
Cardiology Innovation and Adult Congenital and Pediatric Cardiology sections) may help address these challenges.

3. Absence of forums to facilitate communication between clinicians and data scientists. Providing computer and data scientists with more knowledge
regarding the proposed deficits in health care to target the development of meaningful AI solutions. Increasing clinician-to-data scientist synergy
for mutual understanding of the dual perspectives of both domains.

4. Difficulty harnessing collaboration. Recruitment of multidisciplinary team members, particularly AI champions, to drive AI implementation.

5. Current CHD research is unidimensional. Leveraging multimodal AI for cardiology to incorporate the full spectrum of data: genomics, imaging,
demographic, ICU, wearable, and so on to accelerate precision medicine.

6. Concern that AI methods are not transparent enough for the medical community. Utilizing explainable AI to minimize the “black box” perception of
AI and requiring studies provide documentation that they completed the recommended Minimum Information About Clinical Artificial Intelligence
Modeling Checklist.

7. Critique that AI projects are not created in the context of clinical applicability. Utilizing design thinking to select proper AI methodology relevant to
the clinical context.

8. Poor acceptance of AI in the research community and concern that AI requires too much time to establish sufficiently large data sets. Using
innovative AI methods to leverage the power of small data sets. Executing more realistic projects that are easier to accomplish, with demonstrable
value and return on investment (ROI) may help get “buy-in” from the administrative and clinical leadership.

AI ¼ artificial intelligence; CHD ¼ congenital heart disease; ICU ¼ intensive care unit.
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Ambiguity in terms of intellectual property and who
ultimately owns the data (ie, patients, the hospital, or
developers) may also complicate the milieu. As with
any innovation, legal corollaries regarding the use of
patient-generated data for partnerships with industry
to develop AI-based systems must be determined.
Currently the American Medical Association and the
Food and Drug Administration are independently
working on defining major ethical and legal dilemmas
brought by AI in medicine. It is expected that national
scientific societies, federal agencies, and other orga-
nizations will come up with clearer guidelines
addressing those potential legal and ethical dilemmas
in the near future.

CALL TO ACTION IN CHD

A call to action to broaden the expansion of AI in CHD
requires multicenter collaboration, curation and cre-
ation of data sets, building institutional AI infra-
structure, and implementing AI best practice and AI
education and training.

MULTICENTER COLLABORATION. Multicenter collabo-
ration is necessary to accrue large data sets to train AI
algorithms. Multicenter registries have been started.
These deidentified data sets can be housed in the
cloud so that there is a common repository of these
CHD lesions for multiple centers to access to produce
meaningful AI solutions. As such, expansion of
training data sets with rare CHD cases can be ach-
ieved. This would allow for dissemination of exper-
tise in diagnosis and management of CHD lesions.99

The feasibility of progressive GANs has been
demonstrated in CMR.90 Collaboration between AI
clinicians, computer scientists, and administrations
are important for each center to participate in multi-
center collaborations.

CREATION AND CURATION OF DATA SETS. Creating
and curating data sets to provide high-quality data to
train ML algorithms will result in acceptable general-
izability when external validations are performed.
Data sets will need to be labeled with specific CHD le-
sions for supervised learning. Unsupervised learning
may result in clusters of information that we have not
seen in the data sets although the noise ratio maybe
quite high. Data sets that are from real world and
multimodal will create opportunities for AI in CHD.
The advantage of ML in terms of data integration is
that it solves problems when there are large amounts
of features that are available, and it allows for inte-
gration of diverse types of data. Future states of un-
supervised learning, semisupervised learning, and
transfer learning may help with reducing the need for
curation of data.100 Data sharing will be less of an issue
with federated and swarm learning in the future.

BUILDING INSTITUTIONAL AI INFRASTRUCTURE.

Building institutional AI infrastructure requires
stakeholders who are interested in AI implementation
in pediatric and adult cardiology, hospital IT systems
to support data and AI algorithms, and integration of
AI process into the clinical workflow (Table 2).
AI champions must work with data scientists and
hospital leadership with vested interest in AI projects
designed for CHD. A regulatory process must be
established to allow for AI projects with the hospital
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IT support to test and retest AI algorithms so that it is
clinically valid. Once the validity of the AI algorithm
has been achieved, these AI algorithms may be
embedded into clinical workflow to enhance clini-
cian’s efficiency and workflow.

IMPLEMENTING AI BEST PRACTICES. AI best prac-
tices starts first with high-quality data to ensure that
the model derived from these data sets can be applied
to test data sets with good performance. Second, the
model’s performance should be reproducible so that
it can be easily replicated and applied to the subgroup
analysis and external validation data sets. Third, the
model must have good generalizability and oversight
from clinicians so that there are no unintended con-
sequences to the patients or the health care system.
Lastly, the model when applied to patients or a clin-
ical problem must be clinically relevant and consis-
tent with clinical judgement or guidelines.

EDUCATION AND TRAINING. Clinician education and
training in different modalities of AI is important to
facilitate communication with data scientists. Clini-
cians and data scientists must work together on AI
projects to answer the clinical questions that will
impact patient care. Without the clinicians’ input in
what is clinically meaningful, the models generated
may not be helpful. Clinicians will also need to ensure
the accuracy and functionality of AI-powered results
through testing within the clinic. Data scientists will
need to learn to develop AI models relevant to
addressing clinical questions; in this regard, it would
benefit data scientists to collaborate with clinicians so
that the former can better understand the workflow of
clinical practice and how AI-based solutions can be
integrated into the workflow.

CHD AREAS FOR IMPLEMENTING AI: TOP PRIORITIES.

Key areas to focus in future AI research and deploy-
ment in CHD include: 1) targeting rare diseases (cor-
onary artery anomalies); 2) acquired diseases that
disproportionately affect patients with limited access
to pediatric cardiologists for disease diagnosis
(rheumatic heart disease); 3) congenital heart anom-
alies with high morbidity and mortality (failing Fon-
tan or ToF patients at risk of sudden cardiac death);
and 4) precision medicine for decision-making in
difficult diseases (borderline left heart). Randomized
control trials are difficult to perform in CHD because
of the disease complexity, disease rarity, and clinical
heterogeneity of different lesions. Together, these
decrease the precision of the treatment options for
patients as most CHD treatment recommendations
are based on expert consensus. Collaborative AI
research focused on aggregating data and sharing
insights into rare diseases that could help clinicians
with better decision-making.

Some areas of urgent need for AI research have
been explored and contain ample opportunities for
future collaboration and extension. For example,
Meza et al44 used unsupervised ML to identify pat-
terns in echocardiographic data that could be clini-
cally relevant to diagnosis and prognosis of patients
with borderline left ventricle. In this study, parame-
ters like mitral valve characteristics and pulmonary
vein anomalies that are often used in clinical practice
to help guide management in the borderline left
ventricular condition were not found to be significant
in distinguishing patients from 3 different groups
(multilevel left ventricular hypoplasia, hypoplastic
left heart syndrome, and critical aortic stenosis).
Diller et al71 developed an automatic DL imaging al-
gorithm that predicted death/aborted cardiac arrest
and documented ventricular tachycardia in ToF pa-
tients. Other applications such as the prediction
of the feasibility of and risk associated with surgical
or catheter-mediated interventions42,43,69,72,101 and
individualized prediction of drug effects or in-
terventions in complex hemodynamic settings show
promise for future CHD extension.86

With the advent of increased computing power,
clinicians can leverage AI for precision medicine with
better clinical decision-making, and patients can
receive real-time information about their personal
health metrics. With increased cognitive computing
with natural language processing, reinforcement
learning, and DL, AI will have better future prediction
models and drug therapeutics in patients with CHD.
Digital twin will provide cardiologists the best ther-
apy without relying on published reports or registries
in the future.

CONCLUSIONS

The unique strength of AI models is the uncanny
ability to learn from data with increased exposure.
Leveraging AI to accelerate and strengthen CHD
research and clinical applications is now possible
largely due to the escalating volume and complexity
of data available and advent of increased computing
power. Clinicians and patients could soon benefit
from clinical decision-support tools that assist with
personalizing patients’ diagnosis, prognosis, and
treatments and provide real-time information on
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personal health metrics. Although there are chal-
lenges in the implementation of AI in CHD, opportu-
nities exist in many areas of CHD for clinicians to
explore. With the arrival of newer AI-powered algo-
rithms capable of handling big data, such as DL using
CNN and RNN, federated learning, and digital twin, a
vast amount of research opportunities exist to
collaborate and study CHD across a lifespan to build
future prediction models and develop drug thera-
peutics in patients with CHD.
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