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EDITORIAL COMMENT
Harnessing Artificial Intelligence for
Intravascular Imaging
Is it Percutaneous Coronary Intervention Ready?*
Partho P. Sengupta, MD, DM,a Chirag Bavishi, MD, MPHb
S ince its introduction in the 1980s, intravascular
ultrasound (IVUS) has significantly contributed
to the quantitative analysis of coronary artery

stenotic lesions and the advancement of percuta-
neous coronary interventions (PCIs). Despite its
crucial role, however, the global adoption of preinter-
vention IVUS is limited due to the procedural com-
plexities that require added time and substantial
expertise necessary for optimal image interpretation.
The advent of artificial intelligence (AI) may over-
come challenges in the IVUS interpretation process
through innovative techniques for image processing,
feature extraction, plaque identification, and auto-
mated quantitation.

A prime component of AI is machine learning (ML),
a repertoire of techniques facilitating AI to learn and
evolve. Within the ML spectrum lies deep learning, a
paradigm mimicking the intricate networks of the
human brain, now being applied increasingly in car-
diovascular imaging to enhance automation and
precision. In this issue of JACC: Advances, the study
led by Matsumura et al1 examined the accuracy of
deep learning in automating the segmentation of
coronary artery vessel and lumen dimensions,
including balloon sizing, using high-definition
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60 MHz IVUS images. The team employed the U-Net
convolutional neural network (CNN) algorithm,
training their model against the gold standard of
expert analysis. A total of 8,076 IVUS images formed
the backbone of the model’s training and validation,
while a secondary set of 437 IVUS images served as
the test bed for independent evaluation. The ML
model exhibited high alignment with expert seg-
mentation in the primary data set, posting correlation
coefficients of 0.992 and 0.993 for lumen and vessel
areas, respectively. This trend remained consistent in
the independent data set, with correlation co-
efficients of 0.991 and 0.967 for lumen and vessel
areas, respectively.

The primary end point analyzed the congruence of
balloon size selection between the ML model and
expert analysis, yielding agreement rates of 70.6%
(based on vessel diameter alone) and 92.4% (by
including lumen diameter) in the independent data
set. Notably, agreement rates rose when vessel
borders were visible, indicating that visibility signif-
icantly influenced balloon sizing errors. Using a
lumen area difference of <0.5 mm2, the agreement
rate stood at 85.5%, while this rate surged to 97% for
the acute stent area. The levels of agreement and
mean differences for both lumen and vessel areas
remained similar between the ML model and the
expert and 2 interventional cardiologists.

CNNs offer superior performance in analyzing vi-
sual data, utilizing a hierarchical approach to effi-
ciently learn complex patterns, reducing reliance on
hand engineering, and achieving memory efficiency
through weight sharing.2 The present study used a
CNN-based architecture to enhance the interpretation
of IVUS images and help choose balloon sizing during
IVUS-guided PCIs. Although the performance of CNN-
based segmentation was good, there were shortcom-
ings in performance level largely due to suboptimal
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images obscuring vessel visibility. For any AI tech-
nique, the quality and scope of the data determine
the applicability and accuracy of the algorithm,
regardless of the approach. Pertaining specifically to
IVUS images, several variables, such as the vessel wall
architecture, calcification, plaque burden, aneurysms
or ectasia, and dissection, can affect image quality
and, consequently, its interpretation. These variables
also impact human understanding. However, for hu-
man operators, in this case, interventional cardiolo-
gists, their clinical training, knowledge base,
experience, and expertise can help surmount these
challenges, an area where current AI platforms fall
short. In the present study, the balloon size selection
agreement achieved a high of 95.3% even when the
vessel borders were well visualized. Balloon dilata-
tion post-PCI is an essential procedural step to opti-
mize the stent; however, catastrophic complications
such as coronary artery perforation may occur in
incorrect balloon size selection. In a 16-year study of
24,465 patients undergoing PCI at 2 medical centers
in Italy, it was observed that in 50% of cases of Ellis
Grade III coronary perforation, the device causing the
perforation was an intracoronary balloon.3 The
perforation occurred during predilation before stent
implantation in 39.3% and during postdilation
following stent deployment in 60.7% of the patients.
Considering the lack of 100% accuracy of AI in inter-
preting vessel characteristics, implementing auto-
mated AI as a decision tool during IVUS, at the
present stage, will still require human-in-loop for
oversight. Eventually, computer vision and cognitive
computing advancements may overcome some of
these limitations.4

The present study adds to the growing literature
showing high level of agreement between deep
learning-based models and manual expert analysis
for IVUS interpretation during PCI. In a study by
Shinohara et al,5 compared to manual segmentation,
U-Net CNN-based algorithms showed a strong corre-
lation of 0.97 for vessels with significantly narrowed
lumen (<4 mm2) and 0.98 for those with severe
calcification using high-definition 60 MHz IVUS im-
ages. However, in this study, the algorithm had dif-
ficulty in accurately identifying stents. In the study
by Nishi et al,6 DeepLab3-based CNN algorithm
showed a high agreement with expert analysis for
lumen, vessel, and stent areas (correlation co-
efficients of 0.98, 0.96, and 0.96, respectively) using
40 to 45 MHz IVUS images. Deep learning algorithms
have also been developed for evaluating plaque
characterization, calcification, and stent characteris-
tics from IVUS images.7,8

AI techniques hold immense promise. However,
their adoption in busy interventional practice,
particularly for imaging-based interventions such as
IVUS, is beset with many challenges. The evolution of
robust clinical evidence will require a standardization
of image acquisition protocols and a dire necessity for
randomized and pragmatic clinical trials—all under-
pinned by reliable multicenter clinical databases and
federated learning designs. Moreover, implementing
AI in the complex architectures of ever-evolving
clinical environments is a herculean task, necessi-
tating consistent updates and vigilant oversight for
maintaining efficacy. The advent of large-scale ar-
chitectures such as generative pretrained trans-
formers open a new horizon for a democratized AI
landscape.9 These models, which may soon
process multimodal feeds like language, image, and
video, could seamlessly integrate IVUS image-based
models with existing patients’ electronic medical re-
cords and outcomes, enhancing procedure planning
and interventional strategy selection. Nonetheless,
the fidelity, ethical implications, and privacy con-
cerns surrounding these architectures have instigated
considerable debates.10 Despite these uncertainties,
there is little doubt that health care is reaching a
pivotal juncture, offering unprecedented opportu-
nities for harmonious integration of imaging,
intelligence, and automation for personalized
interventions.
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