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Abstract

Meningiomas, the most prevalent primary benign intracranial tumors, often exhibit compli-

cated levels of adhesion to adjacent normal tissues, significantly influencing resection and

causing postoperative complications. Surgery remains the primary therapeutic approach, and

when combined with adjuvant radiotherapy, it effectively controls residual tumors and reduces

tumor recurrence when complete removal may cause a neurologic deficit. Previous studies

have indicated that slip interface imaging (SII) techniques based on MR elastography (MRE)

have promise as a method for sensitively determining the presence of tumor-brain adhesion.

In this study, we developed and tested an improved algorithm for assessing tumor-brain adhe-

sion, based on recognition of patterns in MRE-derived normalized octahedral shear strain

(NOSS) images. The primary goal was to quantify the tumor interfaces at higher risk for adhe-

sion, offering a precise and objective method to assess meningioma adhesions in 52 meningi-

oma patients. We also investigated the predictive value of MRE-assessed tumor adhesion in

meningioma recurrence. Our findings highlight the effectiveness of the improved SII technique

in distinguishing the adhesion degrees, particularly complete adhesion. Statistical analysis

revealed significant differences in adhesion percentages between complete and partial adher-

ent tumors (p = 0.005), and complete and non-adherent tumors (p<0.001). The improved tech-

nique demonstrated superior discriminatory ability in identifying tumor adhesion patterns

compared to the previously described algorithm, with an AUC of 0.86 vs. 0.72 for distinguish-

ing complete adhesion from others (p = 0.037), and an AUC of 0.72 vs. 0.67 for non-adherent

and others. Aggressive tumors exhibiting atypical features showed significantly higher adhe-

sion percentages in recurrence group compared to non-recurrence group (p = 0.042). This

study validates the efficacy of the improved SII technique in quantifying meningioma adhe-

sions and demonstrates its potential to affect clinical decision-making. The reliability of the

technique, coupled with potential to help predict meningioma recurrence, particularly in

aggressive tumor subsets, highlights its promise in guiding treatment strategies.
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Introduction

Meningiomas are the most common primary benign intracranial tumor, arising from the

arachnoid cap cells. According to the WHO classification, meningiomas are histologically clas-

sified into three grades (I, II, and III) [1]. Approximately 80–85% of meningiomas are WHO

grade I with benign features, 15–20% of meningiomas are WHO grade II with atypical fea-

tures, and WHO grade III (anaplastic/malignant) make up 1–3% [2]. Although meningiomas

are typically benign, the progressive enlargement of the tumors can compress adjacent neural

tissue and result in neurological dysfunction or even life-threatening complications [3].

Surgery is a common therapeutic approach, yet the recurrence rates for meningiomas, par-

ticularly WHO grade II and III, remain high even after definitive treatment [4–7]. The recur-

rence rates for WHO grade II tumors range from 29% to 59%, while WHO grade III tumors

show recurrence rates between 60% to 94% [8]. Nearly 95% of recurrent meningiomas grow in

the same location and are of the same or higher tumor grade than the original tumor. Surgery

combined with adjuvant radiotherapy was found an effective strategy after gross total resection

in WHO grade II atypical meningiomas, it potentially decreases local recurrence [9–11]. More-

over, some researchers have identified a subset of WHO grade I that exhibits more aggressive

atypical characteristics and significantly increased risk of tumor recurrence [8]. The impact of

these atypical features on the risk of meningioma recurrence is not yet fully understood, and

optimal treatment strategies remain uncertain. Identifying factors preoperatively that affect

postoperative complications could assist in guiding clinical decisions, assessing treatment effi-

cacy, and enhancing the overall surgical success rate of meningioma management [12].

Clinical experience has shown that the presence of adhesions between meningiomas and

adjacent vital normal tissues, especially arteries and perforators, can significantly affect the

extent of tumor resection and the likelihood of subsequent postoperative complications [13–

15]. Adhesions lead to increased surgical intricacy, prolonged operative duration, extended

recovery periods, and an elevated risk of neurological deficits [12]. This is especially critical as

surgery and radiation have symbiotic effects on tumor control: surgery will reduce the overall

treatment volume of radiation to reduce its risks, and radiation can treat adherent areas that, if

removed, may result in permanent morbidity for the patient. In the context of predicting sur-

gical outcomes and tumor recurrence in meningiomas, MRI emerges as a potent diagnostic

tool, providing insights from tumor morphology, pathology, metabolism, and molecular char-

acteristics [16–21]. While preoperative MRI has identified key prognostic markers like tumor

size, location, shape, and adjacent bone invasion, the intricate interplay between tumor adhe-

siveness and meningioma recurrence remains largely elusive to conventional imaging

techniques.

Ultrasound studies have investigated the integration of ultrasound elastography and MRI

for brain tumor assessment, alongside advancements in intraoperative techniques [22, 23].

Moreover, machine learning classifiers have been employed to characterize meningioma con-

sistency by combining radiomic features from MRI and ultrasound elastography, with poten-

tial applications for intraoperative strain ultrasound elastography [24, 25]. However, the

assessment of adhesion via ultrasound, while valuable, is primarily intra-operative and faces

limitations including shallow penetration depth, susceptibility to air or gas disruption, opera-

tor dependency, and image quality issues, which may impact reliability and interpretation [22,

23, 26, 27]. Preoperative assessment of tumor adhesion has employed various imaging modali-

ties including CT and MRI [28, 29]. While digital subtraction angiography (DSA) shows

promise for evaluating tumor adhesion, its invasive nature poses limitations [30]. Brain surface

motion imaging, an MRI-based method, has developed as a noninvasive technique for predict-

ing tumor-brain adhesion without contrast agents; however, variations are observed in the
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amplitude of cardiac cycle–dependent motion in MRI-detectable cerebrospinal fluid (CSF)

flow across different intracranial locations, with minimal flow detected toward the vertex,

which constrains its utility [31]. Furthermore, standard MRI may encounter challenges in

visualizing specific tumor characteristics, potentially compromising accurate assessment of

tumor adhesion [32].

MR elastography (MRE) [33] is an MR-based imaging technique capable of quantitatively

measuring the mechanical properties of biological tissues in tumor assessment. With meningi-

omas, previous studies have demonstrated using MRE-derived information to sensitively

assess the presence of adhesion between tumors and surrounding tissues. This is achieved

through the evaluation of tumor movement relative to the brain parenchyma under the MRE-

induced external dynamic vibrations. This MRE-based slip interface imaging (SII) technique

directly assesses the relative motion between the tumor and surrounding brain parenchyma by

measuring normalized octahedral shear strain (NOSS) [34, 35]. While qualitative evaluations

of tumor adhesion have shown strong correlation with surgical outcomes, quantification of

tumor adhesion remains a significant challenge [34]. Previous studies have quantified tumor

adhesion by analyzing the NOSS characteristics across the tumor boundary (entropy of

ΔNOSSbdy), using normal lines to that boundary as a reference [34]. However, our experience

has shown that the accuracy of this approach can be affected by irregular tumor shape.

In this study we developed and tested an improved algorithm for SII, based on the recogni-

tion of NOSS image patterns. This slip interface recognition (SIR) algorithm is designed to

measure the percentage of tumor margin that is adherent, providing a quantitative assessment

of tumor adhesion. We compared the improved SIR method to the previously developed adhe-

sion metric (entropy of ΔNOSSbdy), as well as to conventional MRI evaluations that are based

on the presence of a CSF cleft. Additionally, we investigated the potential predictive value of

MRE-based tumor adhesion in tumor recurrence, specifically within the subset of patients

exhibiting atypical features of meningiomas.

Materials and methods

Patients

This prospective study was approved by the Mayo Clinic Institutional Review Board (IRB)

under ID: 12–006661, titled "Magnetic Resonance Elastography of Meningiomas". All patients

provided written informed consent prior to participation. From October 2013 to October

2021, a total of 57 patients with presumed meningiomas, confirmed by pathology at the time

of surgery, underwent pre-operative brain MRI/MRE. Of these, 5 patients were excluded from

the analysis due to: small tumor size (n = 2, maximum tumor diameter < 2.5 cm), lost to

1-year clinical and radiological follow-up (n = 2), and MRE technical failure (n = 1, low wave

amplitude). Ultimately, 52 patients with meningiomas were included in the study for the fol-

lowing analysis. Some of the patient participants (45 of 52) are a subset from our previously

published work [34].

Pre-operative MRI/MRE acquisition

All patients were scanned on 3.0 T GE MRI scanners. MRE/SII data were acquired using a sin-

gle-shot, flow-compensated, spin-echo (SE), echo-planner-imaging (EPI) MRE pulse sequence

with a standard 8-channel receive-only head coil [35]. For MRE, low-amplitude mechanical

vibrations at 60 Hz were introduced into the brain using a soft, pillow-like passive driver

placed underneath the subject’s head, which was connected to an active driver (Resoundant,

Inc., Rochester, MN). The resulting three-dimensional motion of the brain was encoded into

the phase of the MR signal using the following imaging parameters: TR = 3600–4000 ms,
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TE = 58.7–64.3 ms, field of view (FOV) = 24 cm, acquisition matrix = 80 × 80 then recon-

structed to 128 × 128 for NOSS processing, 48 continuous axial slices with a thickness of 3

mm, 2xASSET acceleration, 8 phase offsets sampled over one period of the 60 Hz motion, and

6 MRE motion encoding directions with ±x, ±y, and ±z. Additionally, a 3D T1-weighted

(T1W) image was acquired using either an inversion recovery-prepared spoiled gradient echo

(IR-SPGR) pulse sequence or a magnetization-prepared rapid gradient echo (MP-RAGE)

pulse sequence. The T1W image was obtained with a sagittal orientation with a superior-infe-

rior frequency-encoding direction. The specifications for the IR-SPGR were: TR/TE = 7.0/2.8

ms, flip angle = 11˚, inversion time = 400 ms, FOV = 27 cm, acquisition matrix = 256 × 256,

196 slices with a spacing of 1.2 mm, and 1.75x array spatial sensitivity encoding technique

acceleration. The MP-RAGE included: TR/TE = 7.4/3.0 ms, flip angle = 8˚, inversion

time = 900 ms, FOV = 26 cm; acquisition matrix = 256 × 256, and 166 slices with a spacing of

1.2 mm. Other MR imaging protocols included axial T2-weighted fast spin-echo, fast imaging

employing steady-state acquisition (FIESTA), and T2-weighted fluid-attenuated inversion

recovery (FLAIR), with the following acquisition parameters: T2-weighted fast spin echo (TR/

TE = 3000–6000/102 ms, echo train length = 12, acquisition matrix = 256 × 256, FOV = 22 cm,

and slice thickness = 4 mm), FIESTA (TR/TE = 7.6 ms/minimum full echo time, flip

angle = 50˚, acquisition matrix = 256 × 256, FOV = 12 cm, slice thickness, 1 mm), T2-weighted

FLAIR (TR/TE = 11000/147 ms, inversion time = 2250 ms, acquisition matrix = 256 × 192,

FOV = 22 cm, and slice thickness = 4 mm).

Surgical grading of meningioma-brain adhesion

The surgical assessment of tumor adhesion to the adjacent brain tissue was conducted by an

experienced neurosurgeon (J.J.V.G., with 17 years of experience) in a blinded manner to the

SII results, following the methodology previously described [35]. The degree of tumor adhe-

sion was categorized into three groups: complete adhesion, partial adhesion, and no adhesion,

with specific definitions as follows:

a. Complete adhesion: In cases where the tumor could not be easily separated from the adja-

cent brain tissue, dissection had to be performed subpially in more than 2/3 of the total

tumor-cortex interface.

b. Partial adhesion: For instances where a clear surgical plane was partially lost, and the pial

membrane was adherent to the tumor in more than 1/3 but less than 2/3 of the interface.

c. No adhesion: In situations where a clear surgical plane was identified in more than 2/3 of

the surface between the tumor capsule and the brain surface, indicating absence of

adhesion.

MR Imaging-based of tumor-brain CSF cleft

A neuroradiologist (J.H., with 34 years of neuroradiology experience) assessed the ability of

standard MR imaging to predict tumor adherence, blinded to surgical outcomes. A peritu-

moral CSF cleft was defined as a thin layer with high signal intensity on T2-weighted and/or

FIESTA images and low signal intensity on T2-weighted FLAIR images at the tumor-brain

interfaces [36]. The grading of CSF clefts was based on their extent across the tumor surface

and classified into three categories:

a. Complete cleft: A cleft is present, and it involves greater than 2/3 of the tumor-brain inter-

face, suggesting no adhesion.

PLOS ONE Improved meningioma adhesion quantification using MRE-based SII

PLOS ONE | https://doi.org/10.1371/journal.pone.0305247 June 25, 2024 4 / 18

https://doi.org/10.1371/journal.pone.0305247


b. Partial cleft: A cleft is present and involves between 1/3 and 2/3 of the tumor-brain inter-

face, suggesting partial adhesion.

c. No cleft: No evidence of a CSF cleft between the tumor and normal brain, or presence of a

cleft less than 1/3 the tumor-brain interface, suggesting complete adhesion.

Tumor ROI segmentation

The 3D manual segmentation of these tumors was conducted by defining the boundaries of

the tumors on each individual slice, covering the entire tumor volume, by a neurological

research fellow (E.C., with 2 years of imaging research) supervised by an experienced neurora-

diologist (J.H., with 34 years of expertise). Brain masks were generated by segmenting the

T1W images and calculating probabilistic maps of gray matter, white matter, and CSF with the

use of SPM5 [35]. A brain mask was created by considering voxels in which the combined gray

and white matter content exceeded the CSF content. The T1W image, brain mask, and tumor

mask were then registered and resampled to match the MRE space. Trilinear interpolation was

used for resampling the T1W image while the brain and tumor masks were resampled using

nearest-neighbor interpolation. Of these 52 patients, 45 patients were previously published

with a separate tumor ROI delineated in a prior publication [34]. We specifically used this sub-

set of tumors with two tumor ROIs to conduct an Intraclass Correlation Coefficient (ICC)

analysis to investigate the dependency of our algorithm on tumor segmentation.

Tumor adhesion assessments by slip interface recognition (SIR)

We computed the NOSS maps based on the measured displacement fields obtained from the

unwrapped phase image for each slice of the MRE images of each patient, following the method

described in [35]. The octahedral shear strain (OSS) was calculated for each phase offset and

averaged over the eight offsets [37]. The NOSS map (Fig 1B) was calculated by normalizing the

OSS with a combined amplitude calculated as the square root of the sum of squares of the first

harmonic of the complex shear waves along the x/y/z-axis, where x, y, and z represent the left-

to-right, anterior-to-posterior, and superior-to-inferior directions in MRI scans, respectively.

The presence of a hyper-intense NOSS tumor interface is typically observed at slip bound-

aries, where the tumor lacks adherence to the adjacent brain parenchyma. Conversely, a lack

of a high-intensity NOSS contrast along the tumor interface usually indicates adhesion to sur-

rounding tissue [34]. To objectively identify adherent vs. non-adherent boundaries, we devel-

oped and tested an improved algorithm termed “slip interface recognition” (SIR), that

leverages recognition of patterns in NOSS images to automatically identify tumor adhesion by

analyzing the given tumor boundary and the characteristics of its neighborhood. Because the

tumor ROI was delineated manually, it may be slightly misaligned with the actual tumor mar-

gins. In such cases, the presence of hyper-intense NOSS contrast may result in high-intensity

features appearing 1–2 pixels away from the delineated tumor margin. The manually delin-

eated boundary would lie in regions adjacent to the high-intensity features, which display

either distinct low-intensity features or a significant intensity variation. In this context, the SIR

categorized these distinct low-intensity features and significant intensity variations as non-

adhesion. Moreover, due to variations in image quality, subtle details in the NOSS image may

be difficult to discern by visual inspection, and discrepancies between observers could lead to

inaccurate subjective observations. Using surgical adhesion grading as the gold standard, we

observed that tumors with a large variation in intensity along the tumor interface in the NOSS

image, which may not be discernible to visual observers due to image quality, can also indicate

non-adhesion. A case for illustration is shown in S1 Fig.
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Fig 1. Flowchart illustrating the process of slip interface recognition (SIR) for a case of left posterior fossa meningioma (62-years-old, female), which is

non-adhesion of surgical adhesion grading. (A) T2-weighted image of the tumor. (B) The corresponding NOSS map. (C) Tumor ROI overlaid on the NOSS

map, indicated by a black line in the white rectangle. (D) Extraction of rectangular partial (RP) NOSS images by extending 3 pixels (or 5 pixels) in the

horizontal and vertical directions beyond the tumor ROI boundary. (E) Standardization of the intensity of RP NOSS images. For each point a along the edge of

the tumor ROI, a neighborhood patch was identified with a default size of 3×3 (white square) or increased to 5×5 (white dashed square). (F) Non-adhesion at

each point was determined by the SIR Decision Function with a value of “Yes” if any of the three conditions were met. Non-adhesion points determined by the

SIR decision function Condition I, II, or III exclusively, were represented in F(a), F(b), and F(c), respectively. The non-adhesion points were depicted the blue
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NOSS image pre-processing. Due to the complexity of intracranial changes caused by

tumor compression, and the characteristics of NOSS images at the tumor boundary, the SIR

analysis utilizes the intensity of points along the tumor margin and within the adjacent 3x3 or

5x5 neighborhoods patches on the NOSS image to study the characteristics of tumor adhesion

and tumor non-adhesion. Before proceeding with further analysis, rectangular portions (RPs)

of the NOSS images were extracted by extending three pixels beyond the largest extent bound-

aries of the given tumor ROI in both horizontal and vertical directions, as shown in Fig 1D.

To ensure consistent contrast across all patients, the maximum intensity of the RP NOSS

images was empirically standardized to 1, as illustrated in Fig 1E.

Feature extraction and data training. A subset of the data (15%) obtained from the 52

patients was used to train the SIR algorithm. Surgical evaluations of tumor adhesion served as

the gold standard, where meningiomas were classified into three groups as defined above:

completely adherent, partially adherent, and non-adherent [34].

Next, neighborhood patches were identified by tracking the edge points of the tumor ROI

with a default size of 3 × 3. When the 3 × 3 patch did not include sufficient extracted tumor

boundary information, the patch size was increased to 5 × 5. Specifically, if the difference

between the average intensity of a 3 × 3 patch (comprising 9 pixels) and the intensity of a point

a along the edge of the given tumor ROI was less than an empirically derived threshold of

0.065 (based on the training dataset), we increase the patch size to 5x5. This adjustment allows

for a more comprehensive extraction of tumor boundary information.

Based on the pattern features along the tumor margin in the NOSS images, where hyper-intense

NOSS, distinct low-intensity and large intensity variations in NOSS image along the tumor interface

indicates a non-adhesive tumor, we established three conditions associated with tumor non-adhe-

sion. For each point, non-adhesion (Yes) was determined if any of 3 conditions were satisfied:

Condition I: The intensity of the point a fell outside 85% of the maximum intensity and

115% of the minimum intensity of the RP NOSS images (Fig 1F(a)). This condition corre-

sponds to a very clear NOSS boundary that is easily identifiable by any observer. Such bound-

aries exhibited distinct high-intensity along tumor boundary, or distinct low-intensity features

when the tumor ROI and actual tumor margin were not perfectly aligned.

Condition II: The difference between the intensity of point a and the average intensity of

the corresponding neighborhood patch was greater than a threshold τ, which was empirically

set as 20% of the difference between the maximum and minimum intensities of the patch (Fig

1F(b)). This condition represents a less distinct intensity contrast at the tumor boundary com-

pared to Condition I, yet it remains discernible and can be traced along the margin. This con-

dition also included situations featuring significant intensity variations in NOSS images when

the tumor ROI and actual tumor margin were misaligned.

Or condition III: When the difference between point a intensity and the average intensity

of the corresponding neighborhood patch by less than the threshold τ, the difference between

the maximum and minimum intensity of the patch is greater than 80% of the intensity of the

point a (Fig 1F(c)). This condition corresponds to interfaces that display large intensity varia-

tions in the neighboring patches along the tumor margins, interfering with the visual inspec-

tion and presenting tumor boundaries that show relatively weak or faint contrast with the

surrounding brain tissue.

line on the standardized RP NOSS image, indicated by white arrows. (G) All non-adhesion points (blue line) and (H) adhesion points (grey line) determined

through the combination of points identified by the SIR decision function under Conditions I, II, and III. (I) SIR automatically classifies the non-adherent

(blue line) and adherent (light gray line) interfaces and calculates the non-adhesion and adhesion percentage over the 3D tumor surface (37.71% of adhesion

percentage in this case).

https://doi.org/10.1371/journal.pone.0305247.g001
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The non-adhesion percentage was calculated for all tumor slices for each patient. The output

measures the percentage (%) of the peritumoral interface length with shear strain shown to be

non-adhesion across all tumor-brain interfaces, as indicated by the blue arrow in Fig 1G. Fig 1I

displays a visual representation of adhesion percentage on the NOSS image. For comparison,

another adhesion metric, the entropy of ΔNOSSbdy, was calculated as previously described [34].

The discriminative capabilities of both the SIR-derived adhesion percentage and the entropy of

ΔNOSSbdy were then evaluated on all 52 tumors based on surgical adhesion grading.

Clinical data collection and tumor recurrence follow-up

Tumors were classified as skull base and non-skull base in location. Skull base tumors were

defined by the following locations: cavernous sinus, clinoidal, cerebellopontine angle, foramen

magnum, anterior fossa, clival, and petroclival. All other tumors were classified as non-skull base.

Recurrence was defined as new nodular enhancement in the resection cavity in the gross

total resection or enlargement of a residual tumor by MRI and confirmed by clinical review.

The tumor tissue was graded using the WHO 2016 CNS tumors criteria [38]. Atypical features

were significantly associated with the recurrence rate of meningioma, including Grade I

tumors with atypical features [8]. Therefore, the presence of atypical features was recorded for

both Grade I and Grade II meningiomas, and patients were grouped into those with atypical

features (including atypical WHO Grade II and Grade I with atypical features) and those with

non-atypical features. Atypical features were defined as the presence of increased cellularity,

sheeting, prominent nucleoli, high nuclear-to-cytoplasmic ratio, or presence of necrosis.

Statistical analysis

The statistical analysis was conducted using BlueSky Statistics software (v10, BlueSky Statistics

LLC, Chicago, IL, USA). Continuous variables were reported as mean values with standard devi-

ation, while categorical variables were presented as frequencies and/or percentages. For group

comparisons among different surgical adhesion grades, nominal data were analyzed using the

Chi-square test (or Fisher exact test when appropriate). Wilcoxon rank-sum test and one-way

ANOVA were used for continuous variables when appropriate. A post-hoc Turkey honestly sig-

nificant difference (HSD) test was performed for the ANOVA. ICC analysis was used to assess

the dependency of our SIR algorithm on tumor segmentation. An ICC between 0.75 and 0.9

reflects good reliability of the algorithm, while values exceeding 0.9 indicate excellent reliability.

The agreement between CSF cleft predictions and surgical findings was assessed using Cohen’s κ
coefficients, with interpretations categorized as poor (<0.20), fair (0.21–0.40), moderate (0.41–

0.60), or good (>0.60) agreement [39]. To investigate the correlation with tumor recurrence,

univariate analysis was performed first, then multivariate regression analysis was conducted,

which included characteristic parameters showing a p-value< 0.1 at the univariate regression

analysis. In addition, to compare the classification efficacy of SIR with the previous technique

(entropy of ΔNOSSbdy), receiver operating characteristic (ROC) analysis was performed by calcu-

lating the area under the curve (AUC) values and diagnostic accuracy for discerning the extent

of adhesion. DeLong’s test was employed to compare the two distinct ROCs, and the AUC value

was calculated. A p-value of less than 0.05 was considered statistically significant.

Results

Demographics and clinical presentation

Table 1 summarizes the demographic and clinical characteristics of 52 patients. The mean age

of the patient population in this study was 59.9 ± 11.2 years (range 30–81 years), with the
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majority being female (73.1%, 38 out of 52). The most prevalent tumor location was the skull

base (27 patients, 51.9%), and the mean tumor size was 4.6 ± 1.4 cm (range 2.5–9 cm). The

majority of the tumors were WHO grade I (80.8%, 42 out of 52) and 16 patients (30.8%, 16 out

of 52) presented with atypical features. Tumor recurrence was found in 10 out of 52 (19.2%)

patients. The mean adhesion percentage was measured as 43.6% ± 10.1% of patients (range

20–67.2%). Complete adhesions were observed in 11 cases (21.2%), partial adhesions in 19

cases (36.5%), and no adhesions in 22 cases (42.3%). Upon analysis of the three subgroups of

surgical adhesion grading, no significant correlations were observed with tumor adhesion con-

cerning age, sex, tumor size, tumor location, and tumor recurrence. A noteworthy trend in the

correlation between SIR-measured adhesion percentage (p< 0.001) and WHO Grade had a

marginally significant p-value of 0.068.

Within the cohort of 42 patients initially classified as WHO Grade I, subsequent analysis

identified the presence of atypical features in 6 of these 42 patients. As a result, with the addi-

tion of 10 patients with WHO II atypical features, the cohort was reclassified into 36 patients

with non-atypical features, and 16 patients with atypical features.

Correlation between SIR adhesion estimation and surgical adhesion

grading

To illustrate the importance of employing all three SIR conditions, Fig 2 presents raincloud

plots that compare tumor adhesion percentages based on surgical adhesion grades when using

just Condition I, both Conditions I and II, and all three Conditions, respectively. In Fig 2(A)

and 2(B), utilizing only SIR condition I, or conditions I and II, do not yield clear differentia-

tion among the three tumor categories based on tumor adhesion percentage. Advancing fur-

ther, Fig 2(C) incorporates all SIR conditions I, II, and III—revealing that tumors with

complete adhesion display a significantly higher tumor adhesion percentage compared to both

partial and non-adherent counterparts (p = 0.005 and p< 0.001, respectively). Moreover, a

discernible trend in adhesion percentage emerges between partial and non-adherent tumors,

with partially adherent tumors exhibiting a noticeably higher median adhesion percentage rel-

ative to non-adherent tumors.

Forty-five among the 52 meningioma patients in our study had been published with sepa-

rate delineations of ROIs [34]. We conducted an ICC analysis within this sub-cohort of

patients to assess the dependence of our improved technique on tumor ROI delineation. We

found an inter-observer ICC of 0.89, demonstrating the reliability of our approach.

Table 1. Demographic data and clinical characteristics of patients with meningioma (N = 52).

Characteristic All patients (N = 52) Complete Adhesion

(N = 11)

Partial Adhesion (N = 19) Non-Adhesion (N = 22) p-value

Age (years) 59.9 ± 11.2 (Range [30, 81]) 62.7 ± 10.1 (Range [46,

81])

59.1 ± 11.9 (Range [30, 80]) 59.3 ± 10.9 (Range [38, 80]) 0.66

Sex (Male/Female) 14/38 5/6 5/14 4/18 0.25

Tumor Size (cm) 4.6 ± 1.4 (Range [2.5, 9]) 4.8 ± 1.1 (Range [3, 7]) 4.7 ± 1.5 (Range [2.8, 9]) 4.5 ± 1.3 (Range [2.5, 6.7]) 0.88

Tumor Location (Skull base/non-

Skull base)

27/25 7/4 11/8 9/13 0.38

WHO Grade (Graded I/Grade II) 42/10 8/3 13/6 21/1 0.068

Features (Non-Atypical/Atypical) 36/16 6/5 13/6 17/5 0.41

Adhesion (%) 43.64 ± 10.10 (Range [20.91,

63.16])

52.93 ± 7.16 (Range [41.9,

63.16])

42.18 ± 6.90 (Range [28.06,

51.33])

37.89 ± 9.93 (Range [20.91,

56.13])

<0.001

Recurrence (Recurrence /Non-

Recurrence)

10/42 4/7 4/15 2/20 0.17

https://doi.org/10.1371/journal.pone.0305247.t001
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Comparing SIR-derived adhesion percentage to the entropy of ΔNOSSbdy

and peritumoral CSF cleft

We compared the diagnostic efficacy of SIR-derived tumor adhesion percentage and the previ-

ously reported entropy of ΔNOSSbdy for the identification of tumor adhesion among meningi-

oma patients. Fig 3 shows a raincloud plot of entropy of ΔNOSSbdy with surgical adhesion

grading. A significant difference is observed between complete and non-adherent tumors

(p = 0.005). Fig 4 and Table 2 compares the diagnostic performance of (a) complete adhesion

versus partial/no adhesion and (b) non-adhesion versus partial/complete adhesion.

In the comparison of complete adhesion versus partial/no adhesion, the AUC for SIR was 0.86

and for the entropy of ΔNOSSbdy was 0.72. The difference in AUCs between the two techniques

was statistically significant (p = 0.037) according to DeLong’s test. SIR thus demonstrates superior

classification performance in distinguishing complete adherent tumors from others. In the com-

parison of non-adhesion versus partial/complete adhesion, the AUC for SIR was 0.72 and for

entropy of ΔNOSSbdy was 0.67; however, the difference was not statistically significant (p = 0.4).

Additionally, we assessed our SIR-derived measurements with standard MRI evaluations by

examining peritumoral CSF cleft. Table 3 demonstrates a κ coefficient of 0.057 [95% CI: -0.13,

0.24] indicating poor agreement between CSF cleft predictions and surgical findings. The κ
coefficient is not applicable for assessing the correlation between the SIR and surgical findings,

as the SIR-derived adhesion is quantified. However, visual representations in Figs 2 and 4,

complemented by data in Table 2, provide insights into the alignment between SIR-derived

measurements and surgical outcomes.

Variables associated with recurrence

Table 4 provides a summary of the relationship between various pre-operative and post-opera-

tive clinical variables and tumor recurrence. In the overall patient cohort, significant

Fig 2. Raincloud plots comparing the tumor adhesion percentage based on surgical adhesion grades when using

different SIR conditions. (a) Application of solely SIR condition I, or (b) both conditions I and II failed to

differentiate among the three tumor categories based on tumor adhesion percentage. (c) Employing all three SIR

conditions reveals that complete adhesion tumors exhibit a higher tumor adhesion percentage compared to partial and

non-adherent tumors.

https://doi.org/10.1371/journal.pone.0305247.g002
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differences were found between the recurrence and non-recurrence groups for the WHO

grading (p = 0.0016) and the presence of atypical features (p = 0.0057), but not in the qualita-

tive adhesion surgical grading (p = 0.17) and SIR-derived adhesion percentage (p = 0.42). Fur-

ther investigation revealed that among all aggressive tumors with atypical features, we found

that tumor adhesion was significantly associated with tumor recurrence and demonstrated

that qualitative surgical adhesion grading was correlated with recurrence (p = 0.036), and SIR

quantitatively showed that the adhesion percentage in the recurrence group was significantly

higher than that in the non-recurrence group (p = 0.042), as demonstrated in Fig 5.

Discussion

In the neurosurgical community, it is widely acknowledged that meningioma adhesion has

major impact on surgical and clinical outcomes. As a result, many studies have examined pre-

operative MRI findings to predict tumor adhesion [40–43]. Previous studies have indirectly

assessed tumor adhesive tendencies with MRI by measuring tumor vascular distribution and

peritumoral cerebrospinal fluid dynamics [28, 44–46]. However, the assessments of tumor

mechanical properties in these studies have been indirect and subjective, leading to consider-

able observer variability. In our study, we utilized MRE-based imaging parameters for a more

Fig 3. Raincloud plot of entropy of ΔNOSSbdy relative to surgical adhesion grading, encompassing complete,

partial, and non-adherent tumor categories. A significant distinction is observed between complete and non-

adherent tumors.

https://doi.org/10.1371/journal.pone.0305247.g003
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standardized and objective characterization of tumor adhesion. To achieve this, we utilized

MRE-based shear strain mapping and developed and tested an improved algorithm (SIR)

based on pattern recognition of strain characteristics at the tumor boundary to estimate the

degree of tumor adhesion. These tumor characteristics have the potential to improve our

understanding of meningioma biomechanical properties, ultimately contributing to optimized

treatment options for patients.

The SIR technique involves the identification of NOSS image patterns present at the tumor

boundary and subsequently utilizing these patterns to predict tumor adhesion. For the subset

of patients previously published (45 out of 52), two radiologists delineated ROIs indepen-

dently, which yielded an ICC of 0.89 in adhesion percentage, indicating the reliability of our

algorithm in accommodating variations in tumor ROI delineation. Based on 3x3 or 5x5 pixel

patches extracted from the NOSS image along the tumor margin, SIR extracted relevant infor-

mation from these pixels to discriminate tumor adhesion patterns by capturing variations in

intensity within the NOSS image. SIR can identify patterns within data that might be imper-

ceptible to the human eye, potentially contributing to consistent recognition while helping to

mitigate interobserver errors and biases.

The incorporation of multiple SIR conditions demonstrated enhanced sensitivity in distin-

guishing complete adhesion tumors from partial and non-adherent tumors. Furthermore, the

Fig 4. The diagnostic performance of two algorithms, SIR and entropy of ΔNOSSbdy, within a cohort of meningioma patients (N = 52). ROC curves for

(a) complete adhesion versus partial/no adhesion, and (b) non-adhesion versus partial/complete adhesion.

https://doi.org/10.1371/journal.pone.0305247.g004

Table 2. The area under the curve (AUC) values and p-values for SIR and entropy of ΔNOSSbdy and DeLong’s test compared to assess the discriminative power of

SIR and entropy of ΔNOSSbdy.

SIR Entropy of ΔNOSSbdy DeLong’s Test

p-value

Complete vs Others 0.86 0.73 0.037*
(p < 0.001) (p = 0.02)

Non-Adhesion vs Others 0.72 0.67 0.4

(p = 0.007) (p = 0.04)

https://doi.org/10.1371/journal.pone.0305247.t002
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SIR technique did encounter a certain degree of complexity in distinguishing between partial

adhesions and non-adhesions. This may be partly attributed the small sample size within our

study, and partly influenced by the subjective nature of our reference standard, where surgeon

assessments were based on clinical records and impressions. Further research with more

patients will allow the SIR algorithm to evolve further and improve the accuracy of tumor

adhesion recognition. Comparing our SIR methodology with the previously reported entropy

of ΔNOSSbdy [34], both approaches utilize NOSS images but diverge in their analytical

approaches and diagnostic applications. SIR demonstrated improved diagnostic capabilities

compared to entropy of ΔNOSSbdy in distinguishing tumor adhesion patterns, particularly in

complete adhesion. Our findings underscore the enhanced reliability of SIR compared to

entropy of ΔNOSSbdy. Furthermore, the standard MRI evaluations by examining the CSF cleft

showed suboptimal concordance with surgical findings, further suggesting the superior predic-

tive capability of the SIR methodology compared to conventional assessments.

To the best of our knowledge, our study represents the first investigation into the relation-

ship between mechanical properties measured by MRE and the surgical/clinical outcomes in

Table 3. Case agreement and κ coefficient for agreement between peritumoral CSF cleft and surgical findings.

Surgical Fundings κ Coefficient (95% CI range)

Complete Adhesion Partial Adhesion Non-Adhesion

CFS Cleft 0.057 (-0.13, 0.24)

Complete Cleft 4 7 6

Partial Cleft 5 9 10

Non-Cleft 2 3 6

https://doi.org/10.1371/journal.pone.0305247.t003

Table 4. Demographic data and clinical characteristics of meningiomas with and without recurrence.

Recurrence Non-Recurrence Univariate Analysis Multivariate Analysis

p-value p-value

Number 10 (19.2%) 42 (80.8%)

Age (years) 61.2 ± 18.1 [30, 81] 59.6 ± 9.4 [39, 80] 0.62

Sex 0.11

Male 5 (50%) 9 (21.4%)

Female 5 (50%) 33 (78.6%)

Tumor Size (cm) 4.4 ± 1.2 [2.5, 6.2] 4.7 ± 1.4 [2.5, 9] 0.55

Tumor Location 1

Skull base 5 (50%) 22 (52.4%)

Non-Skull base 5 (50%) 20 (47.6%)

WHO Grade 0.0016** 0.0014**
Grade I 4 (40%) 38 (90.5%)

Grade II 6 (60%) 4 (9.5%)

Feature 0.0057**
Atypical 7 (70%) 9 (21.4%)

Non-Atypical 3 (30%) 33 (78.6%)

Qualitative Adhesion Surgical Grading 0.17

Complete 4 (40%) 7 (16.7%)

Partial 4 (40%) 15 (35.7%)

Non 2 (20%) 20 (47.6%)

Quantified SIR Adhesion (%) 44.95 ± 7.84 [28.06, 58.14] 42.09 ± 10.49 [20.91, 63.16] 0.42

https://doi.org/10.1371/journal.pone.0305247.t004
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patients undergoing meningioma resection. Consistent with previous studies [8, 47–49], there

is a significant correlation between histological subtypes and tumor recurrence, with high-

grade tumors or low-grade tumors with atypical features having a higher likelihood of recur-

rence. Meningiomas with atypical features, such as increased mitotic activity, or invasion of

adjacent structures, are considered more aggressive and can lead to an increased recurrence

rate and overall morbidity. Notably, we found that tumor adhesion had no significant impact

on tumor recurrence in the overall patient cohort. However, when focusing on aggressive

tumors specifically, tumor adhesion was found to play a significant role. Specifically, aggressive

tumors exhibiting adherence to surrounding structures may increase the risk of recurrence

more than those without adhesion. We hypothesize that tumor adhesion may reflect the extent

of invasiveness, as a higher adhesion percentage may indicate pial or perineural invasion of the

tumor into the surrounding structures, which would lead to a higher likelihood of not achiev-

ing a gross total resection, with a resulting higher recurrence rate. These findings emphasize

the importance of considering tumor adhesion as a factor in predicting tumor recurrence.

It is important to acknowledge the limitations of our study. Firstly, accurate tumor segmen-

tation is crucial for calculating the tumor adhesion percentage. Manual segmentation was per-

formed in our study. Although SIR was designed to accommodate slight mismatches between

tumor ROI and the actual tumor boundary, manual ROI drawing can still be a time-consum-

ing and labor-intensive process. Future studies could develop machine learning algorithms for

automatic NOSS image pattern analysis, eliminating the need for manual tumor boundary

demarcation. Secondly, the resolution of our current SII analysis is not sufficient to distinguish

the adhesion between a tumor and adjacent very small structures. Higher resolution SII may

help address this in the future [50]. Finally, the sample size of our study was relatively small.

Further research with larger sample sizes and more diverse patient populations is necessary to

confirm the findings of this study and to better understand the impact of tumor adhesion on

surgical and clinical outcomes.

Fig 5. Group comparison between non-recurrent and recurrent tumors with atypical features. (a) Stacked bar charts show the percentage

distribution of the number of each qualitative surgical adhesion grading with atypical features, and (b) SIR-derived tumor adhesion percentage with

atypical features.

https://doi.org/10.1371/journal.pone.0305247.g005
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Conclusion

In conclusion, this study developed and tested an improved SII-based algorithm to measure

tumor adhesion in patients with meningiomas. This improved approach not only facilitates

quantification but also contributes to the precise classification of meningioma-brain adhesion.

Our findings provide initial evidence of the potential of MRE-measured tumor adhesion as

promising biomarkers to predict surgical and clinical outcomes among patients with meningi-

omas. This could lead to more effective and personalized care strategies for managing menin-

giomas, ultimately improving patient outcomes.

Supporting information

S1 Fig. This case shows a 53-year-old female patient diagnosed with meningioma. The surgical

grading categorized the tumor as non-adhesive. In (A), the figure depicts the challenge of visually dis-

cerning tumor adhesion at the edge of the tumor, as indicated by the white arrow. Our SIR tech-

nique, shown in (B), successfully identifies the adhesion as non-adhesive, depicted by the yellow line.

(TIF)
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2016 Jan 1; 11(1):168–73. https://doi.org/10.1515/med-2016-0032 PMID: 28352788

4. Goyal LK, Suh JH, Mohan DS, Prayson RA, Lee J, Barnett GH. Local control and overall survival in

atypical meningioma: a retrospective study. International Journal of Radiation Oncology* Biology*
Physics. 2000 Jan 1; 46(1):57–61. https://doi.org/10.1016/s0360-3016(99)00349-1 PMID: 10656373
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