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Abstract

Gulf War Illness (GWI) is a chronic condition characterized by multisystem symptoms that

still affect up to one-third of veterans who engaged in combat in the Gulf War three decades

ago. The aetiology of GWI is mainly explained by exposure to multiple toxic agents, vaccines,

and medications. As there is a significant overlap in symptoms between GWI and Myalgic

Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), the objective of this study was to

investigate a biomarker widely reported in Natural Killer (NK) cells from ME/CFS patients, the

Transient Receptor Potential Melastatin 3 (TRPM3) ion channel. NK cells from 6 healthy con-

trols (HC) and 6 GWI participants were isolated, and TRPM3 function was assessed through

whole-cell patch-clamp. As demonstrated by prior studies, NK cells from HC expressed typi-

cal TRPM3 function after pharmacomodulation. In contrast, this pilot investigation demon-

strates a dysfunctional TRPM3 in NK cells from GWI participants through application of a

TRPM3 agonist and confirmed by a TRPM3 antagonist. There was a significant reduction in

TRPM3 function from GWI than results measured in HC. This study provides an unprece-

dented research field to investigate the involvement of TRP ion channels in the pathome-

chanism and potential medical interventions to improve GWI quality of life.

Introduction

Gulf War Illness (GWI) is a chronic, debilitating, and multisystem disorder that affects people

who served in the Gulf War (GW). In 1990 and 1991, almost one million defence personnel

from 41 countries engaged in combat in the GW, where they were exposed to diverse known

and unknown/undefined hazardous environmental stressors, biological and chemical agents

(insecticide, pesticide, insect repellent, organophosphate nerve agents, smoke from oil-well

fires, depleted uranium) [1–4]. Prophylactic strategies, several mandatory vaccines and drugs
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were also administered concomitantly to reduce conflict risk, such as botulinum toxoid and

anthrax vaccines and pyridostigmine bromide to protect from nerve agent exposures [5–8] in

addition to the hypervigilance and mental stress that life-threatening military conflict brings.

Despite the fact that defence personnel returned from the GW more than three decades

ago, it is estimated that from 25% to 32% of GW veterans continue to suffer from health issues

and disabling symptoms likely caused by exposures during the GW [4,9,10]. In general, GWI

symptomatology includes chronic fatigue, pain, inflammation, sleep disturbances, neurologi-

cal and cognitive impairment, gastrointestinal and respiratory disorders, and post-exertional

malaise, but not all affected individuals develop the entire array of symptoms, which makes

diagnosis difficult [9,11–13]. Currently, the most recommended consensus definitions for

GWI are: Chronic multisymptom illness from the Centers for Disease Control and Prevention

(CDC) [14] and Kansas definition [15].

To date, GWI aetiology remains not completely understood, however, scientific evidence

suggests the most reasonable cause of GWI is the exposure to the abovementioned combina-

tion of toxicant agents (insecticide, pesticide, insect repellent, organophosphate nerve agents,

smoke from oil-well fires, depleted uranium) and prophylactic strategy [9,16,17]. Interestingly,

GWI symptoms spectrum significantly overlaps Myalgic Encephalomyelitis/Chronic Fatigue

Syndrome (ME/CFS), fibromyalgia and long COVID-19, all conditions in which complex

pathomechanisms are only partially defined, including some GWI patients who meet the clini-

cal criteria for ME/CFS and Fibromyalgia [6,13,18,19]. A remarkable feature of ME/CFS is the

post-exertional neuroimmune exhaustion caused by an inappropriate response to stressors

and involves symptoms exacerbated following mild physical or mental activity [20–22], a char-

acteristic also reported in GWI patients [12,23].

Our previous studies have demonstrated the role of Transient Receptor Potential (TRP) ion

channels in the pathophysiology of ME/CFS which also promoted research into novel thera-

pies [24–29]. The Mammalian TRP ion channels family is compounded by six subfamilies

totaling 28 members: ankyrin (TRPA), canonical (TRPC), melastatin (TRPM), mucolipin

(TRPML), polycystin (TRPP), and vanilloid (TRPV) [30–32]. Furthermore, a large number of

the TRP superfamily members are highly sensitive to diverse chemical, physical and biological

stimuli, therefore these ion channels act as molecular sensors to perceive modifications in the

internal and external environment for the purpose of maintaining homeostasis [33–38]. In

addition, many TRP channels participate in the regulation of calcium (Ca2+) signalling to pre-

serve cellular homeostasis. Overall, TRP channels also contribute to crucial processes, includ-

ing neurogenesis, plasticity, immune functions, inflammation control, cell proliferation and

survival, and pain perception [32,37,39–45].

Although GWI symptoms are the result of the long-term effects of exposure during military

service, and the potential for TRP channels to be modulated by various environmental and

toxic stimuli, to our knowledge this is the first study to analyse a TRP channel function in vet-

erans with GWI. We specifically selected TRPM3 as the first TRP channel to be investigated in

the GWI pathomechanism due to TRPM3’s association with ME/CFS, even though other TRP

channels may also be associated with the symptomatology presented by patients with GWI.

Hence, in this pilot study, the aim was to evaluate TRPM3 ion channel activity in NK cells

from GWI participants in comparison with the same cells from healthy controls (HC).

Materials and methods

Participant characteristics

Participants diagnosed with GWI and HC participants were recruited between 06th June and

30th November 2023 to be included in this study. The GWI group was composed of six
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Australian males who engaged in combat at the GW, were diagnosed with GWI previously,

and met CDC Case Definition [14] and Kansas criteria [15] for GWI. Six HC male participants

were selected for this study, all those reported to be in good health, absence of illness and no

fatigue episodes. All volunteers were between 18 and 65 years and non-smokers. Participants

were excluded from this investigation if they were previously diagnosed with a chronic illness

or reported alcohol abuse, use of opioids, medication, or supplements that interfere with

TRPM3 ion channels or Ca2+ signalling. However, participants had the option to cease taking

conflicting medications in accordance with the half-life of pharmacological compounds and if

authorised by their physician. This investigation was approved by the Griffith University

Human Research Ethics Committee (GU HREC 2022/666) and all participants provided their

written consent.

Participant symptoms and disability

All participants completed a questionnaire created by the National Centre for Neuroimmunol-

ogy and Emerging Diseases (NCNED) to provide their medical history, sociodemographic

background, illness symptoms, and disability information. To assess disability data the ques-

tionnaire includes the World Health Organization Disability Assessment Schedule

(WHODAS).

In this study, symptoms from people with GWI were classified in ten subtypes: (1) cognitive

difficulties (e.g. cognitive overload, confusion, disorientation, impaired concentration, forget-

fulness and memory problems); (2) pain (e.g. headaches, muscle aches and multi-joint pain);

(3) sleep disturbances (e.g. unrefreshing sleep, frequent awakenings, prolonged sleep, reversed

sleep cycle); (4) cardiovascular symptoms (e.g. orthostatic intolerance, cardiac arrhythmias,

heart palpitations, light headedness and dizziness); (5) respiratory symptoms (e.g. air hunger,

difficulty breathing); (6) thermostatic intolerances (e.g. subnormal body temperature, abnor-

mal sweating episodes, hot flushes and cold extremities); (7) neurosensory or perceptual symp-

toms (e.g. inability to focus vision, impaired depth perception, sensitivity to touch, light,

odour, taste, sound, vibration and poor balance or coordination); (8) urinary changes (e.g.

changes to urination frequency and urgency to urinate); (9) immune disturbances (e.g. sore

throat, tender lymph nodes, new allergies/sensitivities); and (10) gastrointestinal disturbances

(e.g. nausea, abdominal pain, bloating, diarrhoea and irritable bowel syndrome).

The WHODAS indicates the level of disability from each participant and data is combined

by groups. WHODAS is subdivided into seven domains of life: (1) Communication and

understanding; (2) Mobility; (3) Self-care; (4) Interpersonal connections; (5) Life activities; (6)

Work or School participation; and (7) Participation in society. WHODAS items were scored

on a five-point scale (none, mild, moderate, severe, and extreme or cannot do). The subscale

scores were determined in accordance with the WHODAS 2.0 manual, first converting each

item score into the corresponding, predefined weighted values [46]. Scores converted from 0%

to 100%, disability are inversely proportional to the scale, whereby lower scores indicate less

disability and correspond 100% to full disability [47].

Peripheral blood mononuclear cell and natural killer cell isolation

Each participant donated between 40 ml and 84 ml of whole blood. All blood collections were

conducted by a qualified phlebotomist, via venepuncture, using ethylenediaminetetraacetic

acid (EDTA) tubes. A sample of 4 ml of whole blood from each participant was sent to a

pathology laboratory for full blood count (FBC).

The remaining whole blood samples were used to isolate peripheral blood mononuclear

cells (PBMCs) by centrifugation over a density gradient medium (Ficoll-Paque Premium, GE
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Healthcare, Uppsala, Sweden). PBMCs total cell count, live cell count and viability were

assessed using trypan blue dye (Invitrogen, Carlsband, CA, USA) and automatic cell counter

(TC20 Automated cell counter, Bio-Rad, Laboratories, Hercules, CA).

For NK cell isolations, PBMCs were adjusted for a concentration of 5×107 cells/ml. NK cell

isolations were conducted by immunomagnetic selection using an EasySep Negative Human

NK Cell Isolation Kit (Stem Cell Technologies, Vancouver, BC, Canada).

Flow cytometry was performed to identify the NK cell purification from each NK cell isola-

tion. Immediately after NK cell isolation, cells were incubated with CD56 APC (0.25g/20l) and

CD3 PE Cy7 (0.25g/5l) monoclonal antibodies (Becton Dickinson (BD) Bioscience, San Jose,

CA, USA) for 20 minutes in the dark at room temperature. NK cells were washed and resus-

pended in 350 ml of stain buffer (BD Bioscience, New Jersey, USA) and acquired at 10,000

events using the BD LSR- FortessaTM X-20 flow cytometer (BD Biosciences, San Diego, CA,

USA). The NK cell population was then identified using phenotypic surface expression as

CD3-CD56+. For this study, acceptable NK cells purity was� 90%. S1 Fig shows and compares

purity results from HC and GWI groups. Importantly, there was no statistical difference

between groups.

Electrophysiological experiments

The gold standard patch-clamp technique was conducted to determine TRPM3 ion channel

activity in NK cells freshly isolated from HC and people with GWI. In this study, borosilicate

glass capillaries (Harvard Apparatus, Holliston, MA, USA, GC150F-15, outside diameter = 1.5

mm, inside diameter = 0.86 mm) were pulled to obtain glass pipette (Sutter Instrumental,

model P-97) and polished posteriorly (Narishige, Micro Forge MF-900). When filled with

pipette solution, membrane resistance was 8 to 12 MΩ. A CV203BU head-stage (Molecular

Devices, Sunnyvale, CA, USA) connected to a 3-way coarse manipulator and a micromanipu-

lator (Narishige, Tokyo, Japan) were used in these experiments. To amplify and record electri-

cal signals, an Axopatch 200B amplifier and pClamp 10.7 software (Molecular Devices,

Sunnyvale, CA, USA) were used, with data filtered at 5 kHz and sampled digitally at 10 kHz

via a Digidata 1440A analogue to digital converter (Molecular Devices, Sunnyvale, CA, USA).

The voltage-ramp protocol was a step from a holding potential of +10 mV to -90 mV, followed

by a 0.1 s ramp to +110 mV, before returning to +10 mV (repeated every 10 seconds). The liq-

uid junction potential between the pipette and bath solutions (10 mV) was corrected and no

leak current component was subtracted.

The intracellular pipette solution contained: 30 mM CsCl, 2 mM MgCl2, 110 mM L-Aspar-

tic acid, 1 mM EGTA, 10 mM HEPES, 4 mM ATP disodium hydrate, 0.1 mM GTP sodium

salt hydrate (pH = 7.2, adjusted with CsOH; Osmolality = 290 mOsm/L, adjusted with D-man-

nitol), filtered with 0.22 m membrane filter (Sigma-Aldrich, St. Louise, MO, USA), aliquoted

and stored at -20˚C. The possibility of chloride current involvement in TRPM3 assessment

was minimized by using L-Aspartic acid in the intracellular pipette solution. The extracellular

solution contained: 130 mM NaCl, 10 mM CsCl, 1 mM MgCl2, 1.5 mM CaCl2 2H2O, 10 mM

HEPES, (pH = 7.4, adjusted with NaOH; Osmolarity = 300 mOsm/L, adjusted with D-glucose)

freshly prepared.

As previously validated by NCNED, pharmacological agents were included in the extracel-

lular solution to assess TRPM3 ionic currents [26]. Briefly, a gravity perfusion system was used

to apply extracellular solution for 50 seconds to establish a baseline current. Subsequently,

extracellular solution containing 100 μM of PregS was added to stimulate TRPM3 ion channels

for 2.5 minutes. Following on from this addition extracellular solution with 10 μM Ononetin

and 100 μM of PregS was applied for another 2.5 minutes to block TRPM3 ion channels. After
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the conclusion of the drugs application, another cycle of 100 seconds of only extracellular solu-

tion was applied to remove the drugs. ATP and GTP were purchased from Sapphire Bioscience

Reagents, PregS and Ononetin were purchased from Tocris Bioscience, while all other reagents

and chemicals were ordered from Sigma-Aldrich. PregS and Ononetin were resuspended and

stored in accordance with the manufacturer’s instructions. Electrophysiological experiments

were conducted at room temperature (22–24˚C).

All recordings were analysed individually by a blinded researcher and posteriorly data was

reviewed one by one by another blinded researcher, as detailed in S2 Fig. Additionally, any

unstable currents or chloride contamination was excluded from the analysis.

Statistical analysis

Questionnaire data were analysed through the Statistical Package for the Social Sciences

(SPSS) software, version 27 (IBM Corp, Armonk, NY, USA) and purity results with GraphPad

Prism v9 (GraphPad Software Inc., La Jolla, CA, USA). For electrophysiological data analysis

and data presentation, pCLAMP 10.7 software (Molecular Devices, Sunnyvale, CA, USA), Ori-

gin 2021 (OriginLab Corporation, Northampton, MA, USA), and GraphPad Prism version 9

were used. Shapiro-Wilk normality test was performed to identify the distribution of data.

ROUT method was conducted to determine outliers and they were removed from analysis.

The independent nonparametric Mann-Whitney U test was performed to identify the statisti-

cal significance between GWI and HC groups in PregS and Ononetin amplitude. The Fisher’s

exact test (applying Bonferroni method) was conducted to determine statistical significance

regarding sensitivity to Ononetin in NK cells. Significance was set at p< 0.05 and the data are

presented as mean ± standard error of the mean (SEM) unless otherwise stated.

Results

Participant characteristics and full blood count

In general, there were no significant differences between GWI and HC participants regarding

age (HC = 47.33 ± 9.24 and GWI = 52.33 ± 2.07), body mass index (BMI) (HC = 29.22 ± 4.20

and GWI = 25.93 ± 1.90), employment status and education level. An overview of participants’

features is detailed in Table 1.

Table 2 provides the WHODAS and FBC results compared between groups. There were no

differences in FBC results between HC and GWI participants. Meanwhile, there were signifi-

cant differences between HC and GWI results in communication and under-standing

(p = 0.029), mobility (p = 0.007), self-care (p = 0.022), interpersonal connections (p = 0.024),

life activities (p = 0.022), work participation (p = 0.007) and participation in society

(p = 0.004). GWI participants had higher scores in all WHODAS domains, which indicates a

significant increase in disability levels.

Table 3 describes the symptoms experienced by GWI veterans in the month prior to blood

donation, these symptoms might fluctuate over time as previously described [48]. All veterans

reported fatigue, cognitive difficulties, pain and sleep disturbances, while respiratory distur-

bances were the less identified symptoms in this cohort, with only one patient referring respi-

ratory problems. Furthermore, sensory, gastrointestinal and urinary disturbances were

reported by 5 GWI participants (83.33%), while cardiovascular and immune symptoms by 4

GWI (66.66%). Thermostatic instabilities were reported by half of GWI participants. Interest-

ingly, GWI participants from this study met ME/CFS clinical criteria, specifically all GWI met

Canadian Consensus Criteria (CCC) for ME/CFS [49] and one GWI met the International

Consensus Criteria (ICC) for ME/CFS [20].
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Electrophysiological experiments

The gold standard patch-clamp technique for studying ion channels was performed to charac-

terize TRPM3 using whole-cell configuration in this study. In line with extensive literature

[26,50–55], the TRPM3 agonist pregnenolone sulfate (PregS) activates these ion channels

inducing an increase in intracellular Ca2+ concentration in HC cells, as represented in Fig 1A

and 1B. Under voltage-clamp conditions, 100 μM PregS induced small outward rectifying

Table 1. Participant characteristics.

HC GWI P-value

Age (years) 47.33 ± 9.24 52.33 ± 2.07 0.180

BMI (kg/m2) 29.22 ± 4.20 25.93 ± 1.90 0.200

Employment Status

Full Time 5 (83.33%) 4 (66.66%)

0.400Part Time 1 (16.67%) -

Casual - 1 (16.67%)

Retired - 1 (16.67%)

Illness/Disability - -

Education

Primary Education - -

0.277High School - 1 (16.67%)

Professional Training 2 (33.33%) 2 (33.33%)

Undergraduate 1 (16.67%) 3 (50.0%)

Postgraduate/Doctoral 3 (50.0%) -

Data presented as mean ± SD or N (%). Values of p < 0.05 are bolded. Abbreviations: BMI, body mass index; GWI, Gulf War Illness; HC, healthy controls.

https://doi.org/10.1371/journal.pone.0305704.t001

Table 2. Disability and full blood count results.

HC GWI P-value

WHODAS

Communication and Understanding 5.55 ± 8.19 28.47 ± 21.96 0.029

Mobility 0.0 ± 0.0 28.33 ± 21.13 0.007

Self-Care 0.0 ± 0.0 12.50 ± 16.77 0.022

Interpersonal Connections 3.12 ± 5.23 31.25 ± 20.16 0.024

Life Activities 0.0 ± 0.0 26.04 ± 22.51 0.022

Work Participation 0.0 ± 0.0 23.96 ± 18.72 0.007

Participation in Society 0.52 ± 1.28 37.50 ± 26.66 0.004

Full blood count

White Cell Count (4.0–11.0 x109/L) 5.90 ± 0.64 7.02 ± 1.69 0.109

Lymphocytes (1.0–4.0 x109/L) 1.80 ± 0.58 1.78 ± 0.39 0.873

Neutrophils (2.0–8.0 x109/L) 3.45 ± 0.88 4.46 ± 1.19 0.150

Monocytes (0.1–1.0 x109/L) 0.42 ± 0.15 0.57 ± 0.18 0.054

Eosinophils (< 0.6 x109/L) 0.17 ± 0.12 0.15 ± 0.11 0.376

Basophils (< 0.2 x109/L) 0.04 ± 0.02 0.05 ± 0.03 0.373

Platelets (140–400 x109/L) 227.5 ± 17.44 271.0 ± 81.39 0.261

Red Cell Count (3.8–5.2 x1012/L) 5.22 ± 0.29 5.06 ± 0.67 0.749

Haematocrit (0.33–0.47) 0.45 ± 0.03 0.45 ± 0.04 0.747

Haemoglobin (115–160 g/L) 154.7 ± 10.97 154.0 ± 16.89 0.873

Data presented as mean ± SD. Reference ranges for full blood count parameters have been included in the table. Values of p < 0.05 are bolded. Abbreviations: DAS,

disability assessment schedule; GWI, Gulf War Illness; HC, healthy controls; WHO, World Health Organization.

https://doi.org/10.1371/journal.pone.0305704.t002
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currents in most NK cells isolated from HC which showed characteristic TRPM3 current–volt-

age relationship (I–V) (Fig 1B). However, in NK cells from the GWI group, the application of

100 μM of PregS stimulated only a few NK cells. To statistically compare TRPM3 ion channel

function between both groups, amplitudes were determined for each recording as a change in

amplitude from baseline to PregS induced peak, as represented in time-series graphs (Fig 1A

and 1D). In this investigation a significantly smaller amplitude of PregS-evoked currents was

found in NK cells isolated from GWI participants in comparison to cells from HC (Fig 1G,

p< 0.0001), a result that indicates people diagnosed GWI have TRPM3 impaired function. Fig

1 provides examples of recordings in a NK cell from a HC (Fig 1A–1C) and GWI participant

(Fig 1D–1F).

To confirm the presence of TRPM3, 10 μM of the antagonist Ononetin was applied in the pres-

ence of PregS whereby a reduction in ionic currents indicated sensitivity to Ononetin and conse-

quently the presence of TRPM3 [56]. As expected, PregS-evoked ionic currents were successfully

suppressed during Ononetin application in NK cells from HCs (Fig 1A) and an outward rectifica-

tion I-V curve was observed (Fig 1C). However, there was a significant reduction in Ononetin

amplitude in currents obtained in NK cells from GWI patients compared to HC individuals (Fig

1H, p = 0.0008). In addition, there was a significant reduction in the number of NK cells from

GWI participants sensitive to Ononetin compared with HC (30.8%, Fig 2A p< 0.0001). In Fig 2,

scatter plots demonstrate each current amplitude with PregS and Ononetin modulation, to show

changes during patch-clamp protocol in NK cells from HC (Fig 2B) and GWI (Fig 2C). These

results confirmed the involvement of TRPM3 ion channels in PregS-evoked currents in NK cells

isolated from HC and the TRPM3 dysfunction in cells from GWI participants.

Table 3. GWI participants symptom.

GWI

Fatigue Yes 6 (100.0%)

No 0 (0.0%)

Cognitive Difficulties Yes 6 (100.0%)

No 0 (0.0%)

Pain Yes 6 (100.0%)

No 0 (0.0%)

Sleep Disturbances Yes 6 (100.0%)

No 0 (0.0%)

Sensory Disturbances Yes 5 (83.33%)

No 1 (16.67%)

Immune Disturbances Yes 4 (66.66%)

No 2 (33.34%)

Gastrointestinal Disturbances Yes 5 (83.33%)

No 1 (16.67%)

Cardiovascular Disturbances Yes 4 (66.66%)

No 2 (33.34%)

Respiratory Disturbances Yes 1 (16.67%)

No 5 (83.33%)

Thermostatic Instability Yes 3 (50.0%)

No 3 (50.0%)

Urinary Disturbances Yes 5 (83.33%)

No 1 (16.67%)

Data presented as mean ± SD and N (%). Abbreviations: GWI, Gulf War Illness.

https://doi.org/10.1371/journal.pone.0305704.t003
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Fig 1. Representation of TRPM3 ion channel activity in NK cells from HC and GWI participants (whole-cell patch-clamp). a, b, c—Current obtained in

whole-cell patch-clamp condition in a NK cell from a HC participant. (a) A representative time-series of current amplitude at +100 mV and −100 mV. (b) I–V

curve before and after 100 μΜ PregS stimulation. (c) I–V curve on PregS stimulation and after modulation with 10 μΜ Ononetin in the presence of PregS. d, e,

f—Current obtained in whole-cell patch-clamp condition in a NK cell from a GWI participant. (d) A representative time-series of current amplitude at +100

mV and −100 mV. (e) I–V curve before and after 100 μΜ PregS stimulation. (f) I–V curve on PregS stimulation and after modulation with 10 μΜ Ononetin in

the presence of PregS. g–h: Bar graphs representing TRPM3 current amplitude at +100 mV, (g) is regarding TRPM3 stimulation with 100 μΜ PregS in GWI

(N = 6; n = 47) compared with HC participants (N = 6; n = 48), while (h) is regarding TRPM3 modulation with 10 μΜ Ononetin in the presence of PregS in

GWI (N = 6; n = 42) compared with HC participants (N = 6; n = 39). Dash-lines in time-series illustrate the baseline and PregS effects. N refers to number of

participants and n to number of records analysed. Data presented as mean ± SEM and determined by Mann-Whitney U test. Abbreviations: GWI, Gulf War

Illness; HC, healthy control; NK, natural killer; PregS, pregnenolone sulfate.

https://doi.org/10.1371/journal.pone.0305704.g001
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Discussion

Our data is the first to report significant impairment in TRPM3 ion channel function in NK

cells from participants with GWI compared to HC. TRPM3 is a non-selective cation channel

that highly exhibits permeability to Ca2+ and plays a critical role in a variety of biological pro-

cesses due to its contribution in the Ca2+ signalling regulation [24,57,58]. For instance, Ca2+ is

an essential element for intracellular signalling pathways, immunity activation, proliferation

and maintenance of cellular activities, degranulation, release of cytolytic proteins and homeo-

stasis [24,28,37,57–60]. Likewise, abnormal intracellular Ca2+ concentration associated with

Fig 2. Ononetin results. (a) Bar graphs representing percentage of sensitive and insensitive NK cells to 10 μΜ Ononetin in presence of PregS, from HC (N = 6;

n = 39), and GWI (N = 6; n = 42). (b—c) Scatter plots representing change of each current amplitude before and after application of Ononetin in presence of

PregS in NK cells from HC and GWI participants respectively. Each red line represented a cell sensitive to Ononetin as a reduction in amplitude was recorded.

N to number of participants and n to number of records analysed. Abbreviations: GWI, Gulf War Illness; HC, healthy control; NK, natural killer; PregS,

pregnenolone sulfate.

https://doi.org/10.1371/journal.pone.0305704.g002
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dysfunctional TRPM3 may cause inadequate cell function and imbalance intracellular signal-

ling pathways [26,27,61].

The design of the present study used a primary NK cell model to investigate TRPM3 func-

tion as the immune system plays a substantial role in GWI. Many studies have supported

impaired immunological function and inflammation as significant components of GWI patho-

physiology [23,62,63]. Whistler and colleagues results showed significant reduction in NK cell

cytotoxicity which is indicative of immune disruption in GWI patients [23]. TRP channels are

involved in oxidative stress, pain and inflammatory responses, while TRPM3 specifically in

peripheral nociceptors have pronociceptive and pro-inflammatory properties [37,64,65]. Elhaj

et al recently identified an increase in interleukin 6 (IL-6) and C-reactive protein (CRP) levels

in GWI patients compared with other veterans without GWI, which is consistent with previ-

ous research [62,66] and corroborate the role of chronic neuroimmune and neuroinflamma-

tion disturbances [1].

Recent literature in the immune field, has described similarities among individuals with

GWI, long COVID-19 or ME/CFS, including symptoms, impact on quality of life, lack of diag-

nostic testing and treatment [6]Click or tap here to enter text. Notably, our present finding of

decreased TRPM3 function in NK cells from GWI is compatible with results reported in ME/

CFS and long COVID cohorts [26,61,67], suggesting a common overlap of TRPM3 dysfunc-

tion, or TRP ion channels, in the pathomechanism of each of these diseases. Support for this

argument is highlighted by TRP ion channels being modulated by numerous stimuli, for

example, by environmental (e.g. temperature, light, chemicals), mechanical (e.g. osmolarity,

pressure), natural (e.g. herbs or spices, venoms, toxins), endogenous factors, tissue damage,

infection and inflammation [40,41,68–71]. In addition, people diagnosed with these diseases

report having been exposed to some of these threats/stimuli prior to the symptom’s onset. For

instance, the precedent factor for long COVID-19 is unequivocally the Severe Acute Respira-

tory Syndrome Coronavirus 2 (SARS-CoV-2) infection, while ME/CFS patients often report

prior infections, stressors, trauma and toxin exposure, with about 75% of cases associated to

infection-like episodes before ME/CFS onset [22,72]. The hypothesis of TRP ion channel dys-

function underpinning the potential pathomechanism due to the intense exposure of a wide

variety of chemical components, as well as vaccine and prophylactic drugs, is highly plausible

[5,6,9,17].

Furthermore, TRP ion channels have been recognized as potentially associated with multi-

system diseases and emerging as important drug targets due to their ubiquitous expression in

cells from human organs and peripheral tissues [30,40,41,44,73,74]. Fonfria et al. characterized

the expression of all TRPM family members in many human tissues, TRPM3 specifically was

detected in cells from the brain, pituitary, kidney, adipose tissue, pancreas, prostate, and bone

[75]. Other researchers also reported TRPM3 in different parts of the central nervous and car-

diovascular systems, immune cells, liver, urinary and genital systems [24,26,50,73,76,77].

Despite the present study having assessed only TRPM3 ion channels in NK cells, these findings

suggest this ion channel is dysfunctional in other tissue cells in GWI participants. Hence, the

ubiquitous expression of TRPM3 ion channels is compatible with the constellation of GWI

symptoms.

Interestingly, animal studies have reported that other TRP channels are related to chemical

exposure suffered by veterans in the GW that could potentially explain their symptoms. For

instance, Ding et al demonstrated through application of Transient Receptor Potential

Ankyrin 1 (TRPA1) antagonists that TRPA1 is a principal mediator of organophosphate-

induced delayed neuropathy, a condition that occurs due to acute or chronic exposure and is

usually correlated to acetylcholinesterase suppression [78]. However, Ding and colleagues

reported that tested organophosphates activated TRPA1 (also a Ca2+ permeable non-selective
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cation channel), increased the influx of Ca2+ while TRPA1 antagonists significantly relieved

organophosphate-induced neuropathy models [78].

A substantial variety of animal models have been developed to investigate GWI pathology,

mainly induced by animal exposure to a single or combination of threats/agents (organophos-

phates, PB, stressors) to reproduce the GW environment [9]. Although animal studies are cru-

cial tools for health research, results should not be extrapolated to humans. Principal

limitations of animal models are genomic differences that studies evaluate on short term

effects disregarding decades of GWI, and focusing on symptoms individually [1,77,79]. In con-

trast, our results are directly based on freshly isolated immune cells from veterans diagnosed

with GWI compared to cells from HC. Moreover, these results were obtained evaluating

endogenous TRPM3 from human primary cells freshly isolated from blood, through the gold

standard technique for studying ion channels.

Notably, the importance of identifying TRPM3 as a biomarker for GWI is mainly to facili-

tate a diagnosis. Currently, due to the absence of a screening or specific diagnostic test, GWI

remains diagnosed through case definitions and exclusion of other conditions that would not

explain the symptoms expressed by GW veterans [80]. Nevertheless, the novel findings of

these studies provide the perspective of developing a test focused on the characterization of ion

channel function using an easily acquired biological sample.

Conclusion

In conclusion, the present study creates a rationale for future studies analysing other TRP

channels in plasma membrane, as well as organelles. It further provides an opportunity to lead

investigations of therapeutic strategies to treat and manage the GWI condition, to alleviate

severe symptoms and consequently improve their quality of life. Further, ion channel studies

are necessary to investigate the contribution of other TRP channels in the pathophysiology of

GWI.

Supporting information

S1 Fig. NK cell purity. NK cell purity was acquired at 10,000 events using the BD LSRFortes-

saTM X-20. NK cells, defined as CD3-CD56+ lymphocytes were 96.08% ± 0.953 for HC and

94.33% ± 1.144 for participants with GWI. (a) lymphocytes were gated based on Side Scatter

(SSC) and versus Forward Scatter (FSC). (b) CD3- cell population was gated from selected

lymphocyte population. Gating was identified through isotype controls. (c) NK cell purity was

based on CD56+ population from the CD3- population. (d) Bar graphs illustrating percentage

of NK cell population. Data presented as mean ± SEM and determined by Mann-Whitney U

test. Abbreviation: GWI, Gulf War Illness; HC, healthy controls; NK, natural killer.

(TIF)

S2 Fig. Individual recording analysis. Two representative time-series of current amplitude at

+100 mV and −100 mV showing the effect of PregS and Ononetin in the presence of PregS.

Baseline = blue dash-lines; PregS baseline = green dash-lines. (A) Baseline; (B) PregS points;

(C) PregS baseline; (D) Ononetin points. PregS amplitude = (B)–(A) and Ononetin amplitude

= (C)–(D). PregS was effective when presented with an increase at +100 mV current and Ono-

netin was effective when there is a decrease at +100 mV current. No difference means drugs

were not effective to stimulate agonist or antagonist effect on TRPM3 ion channels. On (a),

PregS and Ononetin in the presence of PregS were effective, however, on (b) only PregS was

effective.

(TIF)
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