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LETTER TO TH E JOURNAL

Multiscale fusion network drives the repurposing of
anticancer drugs

Dear Editor,
Drug repurposing is at the forefront of a transformative

shift in computational methods driving new applications
of approved or investigational drugs.1,2 With the develop-
ment of network pharmacology, repositioning algorithms
for drug effects or drug targets are constantly expanding,
but integrating multidimensional data to achieve pre-
cise repurposing is still a challenge.3–9 We focus on drug
attribute characteristics and propose a scalable systematic
paradigm. Using the Genomics of Drug Sensitivity in Can-
cer (GDSC) database for anti-tumor drugs, a integrated
drug similarity network (iDSN) derived from different
drug similarity networks (DSNs) based on chemical struc-
ture and drug target sequence data is constructed to infer
potential drug pathways from drug properties and realise
drug repurposing.
Initially, we processed drug profile data by vectorizing

it (Figure 1A). Based on chemical and pharmacological
properties, we constructed two separate DSNs: chem-DSN
and pharm-DSN. These were then merged into an iDSN
using a nonlinear fusion algorithm called Similarity
Network Fusion (SNF) (Figure 1B). To validate the iDSN’s
potential in therapeutic similarity, we utilized a spectral
clustering model with seven gold-standard annotations
from PubChem (Figure 1C). Downstream analysis was
delineated across three dimensions for drug repurposing
(Figure 1D): (1) identifying similar components within
classes, amalgamating pharmacological mechanisms with
pathway annotation; (2) establishing associations between
drug network clusters and distinct biological path-
ways; (3) prioritizing higher-ranked drug pairs for drug
repositioning.
Employing spectral clustering, iDSN exhibited a more

distinct clustering structure compared to the chem-DSN
and a more evenly distributed structure than the pharm-
DSN (Figures 2A and S1). With the advantage of frame-
work transparency, pharmacological properties contribute
more than chemical properties through the quantita-
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tive assessment in clustering (Figure 2B). In 11 clusters,
pharmacological features accounted for over 70% of edge
similarity, and four clusters were entirely determined
by pharm-DSN. In comparison to single-property DSNs,
iDSN demonstrated superior performance across all three
metrics (Figure 2C).
Evaluation using six diverse benchmark datasets of drug

categories confirmed iDSN’s stronger correlations with
all benchmark annotations compared to single-property
DSNs (Table S1). Comparing clustering performance
among single-property DSNs, pharm-DSN displayed bet-
ter interaction with cell line (ARI = .470) and pathway
(ARI = .585) annotations (Figure 2D). Importantly, iDSN
based on the cross-fusion network algorithm achieves
higher performance on IC50 (ARI = .502, NMI = .53),
indicating improved generalisation and accuracy through
multi-feature fusion (Figures 2E and S2). Data contri-
bution analysis within the IC50-based cluster of the
three DSNs highlighted iDSN’s predominant contribution
(77.23%), while chem-DSN and pharm-DSN contributed
less (9.83% and 12.94%, respectively), underscoring iDSN’s
dominance in the IC50-based network (Figure 2F). To vali-
date the superior performance, our method was compared
with state-of-the-art approaches, encompassing traditional
machine learning, network propagation and matrix fac-
torisation. The framework demonstrated a significantly
higher value (SC = .58) compared to other methods.
Similar results were observed with the NMI index using
the IC50 dataset, where our framework outperformed in
interactivity score (ARI = .512) (Table S2).
To facilitate drug precision repositioning, we uncov-

ered the drug preferences within each cluster for various
molecular functions using the KEGG pathway and Gene
Ontology (GO) annotations10 (Figure 3). Notably, certain
highly similar drug pairs within clusters exhibited con-
sistent downstream pathway annotations, indicating the
potential for drug repositioning by leveraging common
targets or similar cellular signalling pathways to achieve
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F IGURE 1 The overall flowchart of the proposed framework. (A) In the first part, we preprocess structural data and target protein
sequences based on 276 anti-tumor drugs containing target protein, PubChem CID and pathway annotations in GDSC to construct
eigenvectors or eigen decomposition matrices that can be used for similarity network analysis. (B) In the second part, we constructed two
structure-based single-property DSNs by vector space model and multiple sequence alignment denoted as chem-DSN and pharm-DSN,
respectively, and fused them into multi-scale network, named iDSN. (C) In the third part, we used the drug classification notes on DrugBank
and PubChem as the gold standard to test the classification effect of DSN according to the adjusted Rand index. (D) In the fourth part, 276
drugs included in the iDSN were grouped into 16 clusters (Cluster 1–Cluster 16) and performed a systematic statistic analysis for annotating
iDSN clusters from various perspectives to guide drug repositioning. Possible drug repositioning applications were obtained based on
high-similarity drug pairs or the occurrence of unexpected drugs within iDSN clusters.

therapeutic effects. The results revealed that several drug
clusters exhibited significant enrichment annotations on
GO analysis, such as Cluster 4, Cluster 2, and Cluster 5
included in the histone deacetylation, ADP ribosylation
and phosphorylation respectively based on biological pro-
cess. Furthermore, we observed that some individual drug
clusters met different KEGG enrichment pathways under
secondary classification, but specific on GO enrichment
analysis in biological processes, cell components or molec-

ular functions. For instance, in Cluster 9, we observed
enrichment in KEGG pathways related to cancer and cell
growth and death, with emphasis on apoptosis and molec-
ular functions associated with dimerisation in biological
processes, which suggests that Cluster 9 may exhibit a
pharmacodynamic pattern, potentially influencing pro-
tein dimerisation and participating in pathways related
to cancer or cell growth and death through apoptosis
regulation.
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F IGURE 2 Clustering validation and feature contribution of DSNs. (A) Heatmaps of DSNs. chem-DSN and pharm-DSN were
integrated into the iDSN. The sidebar to the left of the networks corresponds to the cluster label. (B) Structural features used alone were
defined in the stem-and-leaf display with drug clusters to evaluate their respective contributions. (C) Categorical internal evaluation by
Davies–Bouldin index, Calinski–Harabaz score and Silhouette coefficient for chem-DSN, pharm-DSN and iDSN. (D) Categorical external
evaluation by adjusted RAND coefficient for chem-DSN, pharm-DSN and iDSN based on multiscale drug classification annotations. (E)
Normalised mutual information bar chart of chem-DSN, pharm-DSN and iDSN with IC50-based benchmark drug classification separately. (F)
Data types contribution defined in the pie chart include chemical structure, drug targets and fusion value.

Exploring drug pairs with high similarity in the iDSN
reveals potential drug repositioning opportunities. For the
top 100 similar drug pairs, 86% had consistent pathway
annotations, confirming the reliability of our drug similar-
ity calculations. However, some pairs with high similarity
scores had different annotations, mainly linked to six
pathways in four classification clusters (Figure 4A). For
instance, a closely related set of drug pairs, including

BMS-536924, BMS-754807, GSK1904529A, Linsitinib and
NVP-ADW742, exhibited connections to annotations in the
IGF1R signalling and RTK signalling pathways, suggest-
ing potential shared targets or interactions with similar
cellular signalling pathways. In amajor cluster, drugs asso-
ciated with the kinases pathway (KIN001-244) showed
high similarity to drugs linked to the Metabolism path-
way (BX-912 and OSU-03012) and the Mitosis pathway
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F IGURE 3 Target-based enrichment analyses. (A) Enrichment landscape of GO biological processes, molecular function, and
cellular components based on taxonomic clusters. (B) Enrichment landscape of pathway identifiers from the KEGG database. Deeper colour
signifies greater significance in all panels, respectively. Common biological themes shared by multiple clusters are boxed with names
provided in the plot.

(MPS-1-IN-1), unveiling potential crosstalk for therapeu-
tic strategies (Table S3). Among them, the drug pair
with the highest similarity is CMK-LJI308 (ranked sixth),
annotated in the kinase pathway and the PI3K/MTOR sig-
nalling pathway, respectively. Drug pairs with different

annotation pathways in specific spectral clustering clus-
ters indicate distinct subgroups with unique downstream
pathway preferences. Some clusters may exhibit pathway-
specific therapeutic effects, while others show divergent
pathway orientations (Figure 4B). To explore the global
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F IGURE 4 Repositioning association with the different pathway. (A) The consistent distribution of the top 100 similarity drug
pairs on the pathway and the proportion of different pathway pairs. (B) The cumulative frequency histogram calculated the corresponding
consistent pathway and nonconsistent pathway in the cluster under the distribution of the top 100 highly similar drug pairs in the drug cluster.
The area plot represents whether the set of consistent and non-consistent paths under each cluster evaluates the p-value after taking the
negative logarithm of the significance difference. The corresponding frequencies are represented by the left ordinate while the statistical test
index is represented by the right. (C) The global anti-tumor drugs in the iDSN are grouped into 16 clusters. Node colour signifies the pathway
assignment of the drug. (D) Pathway association network for global drug mapping. The peripheral ring represents the GDSC drug annotation
pathway, and the arc length is determined by the central angle corresponding to the proportion of the drug counts included in the pathway.
The lines represent inconsistent pathways mapped under 276 drug global associations. The inner ring represents the potential pathway of the
drug on the outer circumference of the same radius. The colour-indicated pathways correspond to inconsistent pathway-source drug pairs
with a similarity greater than .7, and the grey-indicated pathways correspond to highly similar drugs that are all mapped on the same pathway.

repositioning associations, we aligned pathway annota-
tions with clustering results and observed a well-balanced
distribution of downstream pathways across drug clusters
(Figure 4C). Within one cluster containing nine drugs,
four were associated with the IGF1R signalling pathway,
and the remaining drugs were linked to the RTK sig-
nalling pathway. In another cluster with 37 drugs, 14 were

mapped to the RTK pathway, while the remaining drugs
were connected to the kinase pathway. Furthermore, we
independently analysed highly similar drug pairs within
these clusters (Figure 4D).
In conclusion, this scalable structure-derived frame-

work offers fresh insights into deducing characteristic
downstream pathways and repurposing drugs via common
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drug structural properties. With the accumulation of drug
informatics data and the development of future drugs, we
will continue to expand our data, to deepen our under-
standing of feature integration, and to further improve the
algorithm’s performance for new drug development.
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