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Abstract
Purpose of Review  Machine learning (ML) approaches are an emerging alternative for healthcare risk prediction. We aimed 
to synthesise the literature on ML and classical regression studies exploring potential prognostic factors and to compare 
prediction performance for pre-eclampsia.
Recent Findings  From 9382 studies retrieved, 82 were included. Sixty-six publications exclusively reported eighty-four clas-
sical regression models to predict variable timing of onset of pre-eclampsia. Another six publications reported purely ML 
algorithms, whilst another 10 publications reported ML algorithms and classical regression models in the same sample with 8 
of 10 findings that ML algorithms outperformed classical regression models. The most frequent prognostic factors were age, 
pre-pregnancy body mass index, chronic medical conditions, parity, prior history of pre-eclampsia, mean arterial pressure, 
uterine artery pulsatility index, placental growth factor, and pregnancy-associated plasma protein A. Top performing ML 
algorithms were random forest (area under the curve (AUC) = 0.94, 95% confidence interval (CI) 0.91–0.96) and extreme 
gradient boosting (AUC = 0.92, 95% CI 0.90–0.94). The competing risk model had similar performance (AUC = 0.92, 95% 
CI 0.91–0.92) compared with a neural network. Calibration performance was not reported in the majority of publications.
Summary  ML algorithms had better performance compared to classical regression models in pre-eclampsia prediction. 
Random forest and boosting-type algorithms had the best prediction performance. Further research should focus on compar-
ing ML algorithms to classical regression models using the same samples and evaluation metrics to gain insight into their 
performance. External validation of ML algorithms is warranted to gain insights into their generalisability.
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Introduction

Pre-eclampsia is a multisystem disorder of pregnancy char-
acterised by new onset of elevated blood pressure and pro-
teinuria or hypertension and significant end-organ dysfunc-
tion with or without proteinuria after 20 weeks of gestation 
or postpartum in previously normotensive women [1, 2]. 
Pre-eclampsia affects 2–8% of pregnancies worldwide and 
causes 76,000 maternal and 500,000 perinatal deaths each 
year [3–5].

Administration of low-dose aspirin in women with at high 
risk of pre-eclampsia before 16-week gestation has been 
shown to reduce the risk of pre-eclampsia and adverse peri-
natal health outcomes [6–9]. Clinical risk prediction models 
are used in healthcare to identify those at risk and to guide 
diagnosis, prevention, and prognosis [10]. These use readily 
available data, such as demographic information, clinical 
characteristics [11–13], and specialised biomarkers [14, 15]. 
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Maternal medical and clinical characteristics are the most 
used prognostic factors [11–13] that have the advantage of 
being widely available in non-specialised and low-resource 
settings; however, the addition of specialised biomarkers can 
improve prediction performance but might limit the imple-
mentation into low-resource settings [16].

Risk prediction models can be developed and validated 
either by applying classical regression models (for example, 
logistic regression, competing risk models) or machine 
learning (ML) algorithms (for example, decision tree, 
random forest, gradient boosting, and neural networks) [10, 
17]. Classical regression prediction models are abundantly 
reported in the medical literature [18–21], whilst ML 
prediction algorithms are gaining in popularity in the field 
[22–24]. Differences between classical regression prediction 
model and ML algorithm approaches have been extensively 
discussed in the literature [25, 26]. Classical regression 
models are based on theory and assumptions [17]. In 
contrast, ML algorithms learn from the data with the ability 
to analyse non-linear data structures using fewer assumptions 
and modelling high dimensional data [27, 28]. Some 
studies report that ML algorithms manage more predictors 
and outperform classical regression models [29–31]; yet, 
others report no prediction performance advantage of ML 
algorithms [32, 33] in healthcare prediction models.

Previous systematic reviews and meta-analyses have 
investigated prediction performance based on classical 
regression models in pre-eclampsia prediction [34–36]. 
Currently, no systematic review has been conducted 
comparing the prediction performance of ML algorithms 
to classical regression models in pre-eclampsia prediction. 
This review aims to (1) explore the existing ML algorithms, 
classical regression prediction models, and potential 
prognostic factors in pre-eclampsia prediction and (2) 
compare the prediction performance of ML algorithms 
to that of classical regression models in pre-eclampsia 
prediction.

Methods

Search Strategies

This systematic review was conducted following the 
Preferred Reporting Items for Systematic Reviews and 
Meta-analyses (PRISMA) guideline [37]. We used the 
Population (pregnant women), Index prognostic model 
(developed prognostic models), Comparator (machine 
learning algorithms with classical regression models), 
Outcome (pre-eclampsia), Timing (prediction of pre-
eclampsia after 20  weeks of gestation), and Setting 

(individualised risk stratification) PICOTS framework 
[38]. Pre-eclampsia is classified based on the gestational 
age at clinical presentation as any-onset (delivery at any 
gestation), preterm (delivery < 37 weeks of gestation), late-
onset (delivery ≥ 34 weeks of gestation), and early-onset 
(delivery < 34 weeks of gestation) [39]. This review was 
registered with the International Prospective Register of 
Systematic Reviews (PROSPERO CRD42023445732).

Literature search was conducted on Ovid platform 
(MEDLINE, Embase, Emcare, and Maternity & Infant 
Database (MIDIRS)) and CINAHL databases. The search 
was conducted until 20 May 2023 without restriction 
of publication years. In addition, a Google Scholar grey 
literature search was conducted as per Enticott et al. (2018) 
[40]. We included studies from previously published 
systematic reviews which considered only classical 
regression models [34,  36]. The search strategies were 
developed following search filters for prediction and 
diagnostic studies [41] and in consultation with a university 
librarian. Medical Subject Heading (MeSH) terms and free 
text words were used to locate potential prediction models. 
Boolean operators (AND, OR, and NOT) and truncation 
were used to combine the search key terms. A detailed 
description of search combinations and strategies is given 
in Supplementary File 1.

Eligibility Identification

Prediction models for pre-eclampsia (any-, early-, and 
late-onset and preterm) conducted using cohort/follow-up, 
nested case–control, case–control, case-cohort, randomised 
controlled trial, and routinely collected health records data 
sources were included in this review. We excluded prediction 
model studies focused exclusively on hypertensive disorders 
of pregnancy or gestational hypertension unless they also 
provided a distinct model for pre-eclampsia. Studies 
conducted on selected populations (only twin pregnancies, 
only high-risk/low-risk women), studies in languages other 
than English, and prognostic studies conducted with only 
single prognostic factors were excluded from this review. 
Furthermore, external validation prediction studies were 
excluded from the comparison.

Screening and Methodological Quality Appraisal

The included studies were screened using the Covi-
dence platform [42]. After duplicates were removed, two 
authors (SAT and TV) independently assessed the title 
and abstract followed by full-text screening. Discrep-
ancies between the two authors were resolved through 
discussion.
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Assessment of Methodological Quality for Classical 
Regression Models

The risk of bias (ROB) and concern for applicability [43] 
was assessed using the Prediction model Risk Of Bias 
ASsessment Tool (PROBAST) tool by two authors (SAT 
and TV). The tool has four domains (participants, predictors, 
outcomes, and analysis) structured into 20 signalling ques-
tions. Each included study rated as high, low, or unclear risk 
of bias for both ROB and concern for applicability.

Data Extraction

The CHecklist for critical Appraisal and data extraction 
in systematic Reviews of clinical prediction Modelling 
Studies (CHARMS) tool was used to extract the data [44]. 
Authors, publication year, country, data sources, outcome(s) 
to be predicted, candidate prognostic factors, sample size, 
type of models or algorithms, internal validation methods, 
discrimination performance, and calibration measures were 
extracted. The algorithm’s discrimination and calibration 
performance were extracted from the test dataset for studies 
that specifically conducted internal validations; otherwise, 
from the development dataset. The model/algorithm 
deployment strategy was also extracted. Deployment 
strategies, such as regression formulae, nomograms, and 
score chart rules, are methods used to employ an algorithm/
model into a system, enabling it to predict outcomes for new 
clients. Two authors (SAT and TV) independently extracted 
the data. Disagreements were managed through discussion 
and by another author (JE) if necessary.

Data Analysis

The descriptive synthesis was performed for both ML and 
classical regression studies. Prognostic factors were iden-
tified. Algorithm/model discrimination and calibration 
performance were narratively described and compared. 
ML algorithms and classical regression model prediction 
performance were primarily compared in studies that used 
the same sample. Furthermore, the prediction performance 
was compared across overall ML algorithms and classical 
regression models. The discrimination performance for stud-
ies reporting on both ML and classical regression models 
was visualised in a forest plot so that readers can easily com-
pare the performances. Model discrimination refers to the 
model ability to correctly classify and discriminate between 
participants who had the outcome of interest and those who 
did not, often measured by the area under the receiver-
operating characteristics (ROC) curve. An area under 
the curve (AUC) value = 0.5 suggests no discrimination 

ability, 0.5 < AUC < 0.7 is considered as poor discrimina-
tion, 0.7 ≤ AUC < 0.8 is good/acceptable discrimination, 
0.8 ≤ AUC < 0.9 is excellent discrimination, and AUC ≥ 0.9 
is considered outstanding discrimination performance [45]. 
Calibration reflects how well the predicted risks match 
the observed risks of an outcome of interest. This is often 
measured by comparing the mean predicted probability and 
the observed outcome rates within risk groups and by the 
Hosmer and Lemeshow statistic. A well-calibrated model 
is when the Hosmer–Lemeshow p value is not significant 
and/or the calibration slope value approaches one and/or 
calibration-in-the-large close to zero [46, 47].

Results

Study Selection and Search Strategies

We retrieved 9376 records from five electronic databases 
and an additional six studies from previously published sys-
tematic reviews which considered only classical regression 
models [34, 36]. After 2343 duplicates were removed, 7033 
articles were excluded through title and abstract screening, 
leaving 241 articles eligible for full-text review. In the full-
text screening, 76 records met inclusion criteria. Finally, 
based on the database search and previously published sys-
tematic reviews of classical regression models, we included 
82 developed studies (ten with both ML algorithm and clas-
sical regression models, six with ML only, and 66 with clas-
sical regression only) (Fig. 1).

Characteristics of ML‑Based Prediction Studies

Table 1 shows that sixteen [48•, 49•, 50–57, 56, 59•, 60•, 
61–63] (fourteen any-onset and two preterm pre-eclampsia) 
ML studies were included and reported from 2019 to 2023. 
Ten studies reported both ML algorithms and classical regres-
sion models. Four ML studies were developed in China [48•, 
49•, 50, 61], two in the United States of America (USA) [51, 
52], two in Romania [53, 59•], and the rest were from United 
Kingdom [60•], Indonesia [54], New Zealand [55], Slovenia 
[56], South Korea [57], Sweden [58], Kenya [62], and Iran 
[63]. Case–control, retrospective/prospective cohort, and medi-
cal record data sources were used in the included studies. The 
maximum sample size was 60,789, the minimum was 95, and 
one [53] study did not report the sample size and/or event rate. 
Decision tree, naïve Bayes, support vector machine, random 
forest, gradient boosting machine, extreme gradient boosting 
machine (XGBoost), light boosting, neural network, Viterbi 
ML, and classification via regression ML algorithms were 
reported (Table 1).
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Distribution of Prognostic Factors

Maternal demographic, medical, and clinical factors and 
a variety of biomarkers were commonly included in ML 
and classical regression studies to predict pre-eclampsia. 
Figure 2a shows the distribution of prognostic factors 
used in ML studies. Maternal age, chronic hypertension 
and diabetes mellitus, parity/gravidity, pre-pregnancy 
body mass index (BMI), blood pressure measurements, 
weight, prior history of pre-eclampsia, and ethnicity 
were the most frequently used maternal medical and 
clinical prognostic factors in ML studies. Uterine artery 
pulsatility index (UtA-PI) was the most frequently used 
biomarker in ML studies. Figure 2b shows the distribu-
tion of prognostic factors used in classical regression 
models. Family history of pre-eclampsia, prior history 
of pre-eclampsia, pre-pregnancy BMI, parity, chronic 
hypertension, and ethnicity were the most frequently 
used prognostic factors in classical regression models. 
Uterine artery pulsatility index (UtA-PI), mean arterial 
pressure (MAP), pregnancy-associated plasma protein A 
(PAPP-A), and placental growth factor (PIGF) were the 

most frequently used biomarkers in classical regression 
models (Fig. 2).

ML Algorithm Performance and Comparison 
with Classical Regression Models

Figure 3 shows model discrimination performance of 
thirteen ML studies. Three [53, 62, 63] ML studies did 
not report model discrimination performance through 
AUC values. Ten studies [48•, 49•, 51, 54, 57, 58, 60•, 
61–63] reported both ML algorithms and classical regres-
sion model performance; eight studies [48•, 49•, 51, 54, 
57, 58, 61–63] reported that ML algorithms have better 
prediction performance than classical regression models. 
Another study [60•] showed that there is no difference in 
prediction performance between competing risks preterm 
pre-eclampsia model and ML algorithms. Only one pre-
term pre-eclampsia [58] prediction model used logistic 
regression showed better prediction performance than a 
random forest algorithm. The minimum AUC of ML algo-
rithms was 0.60 (95% CI 0.57–0.62) and the maximum 
AUC was 0.94 (95% CI 0.91–0.96). Two studies [62, 63] 

9376 records identified from five databases:

(MEDLINE = 3678, Embase = 2771, MIDIRS =
788, CINAHAL = 1193, and Emcare = 946)

Duplicates removed 

(n = 2343)

Records screened (n = 7033) Records excluded (n = 6792)

Reports sought for retrieval (n = 241) Reports not retrieved (n = 0)

Reports assessed for eligibility (n = 241)

165 studies excluded for the following reasons:

• Not pre-eclampsia prognostic models (n = 47)
• Not studies on prognostic models (n = 41)
• There is no full text or poster (n = 22)
• Selected population (n = 20)
• Duplicate studies (n = 14)
• Single predictor studies (n = 11)
• Lack of clear outcome (n = 8)
• Not English language study (n = 2)

New studies included in review (n = 76)

Identification of new studies via databases
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Studies included in qualitative synthesis (n = 82)

� ML based studies (n = 16); with 10 out of 16 ML studies used the same sample to compare ML algorithms with classical
regression models.

� Exclusively classical regression-based studies (n = 66); reported 84 models: 41 any-onset, 20 early-onset, 16 late-onset,
and 7 preterm pre-eclampsia prediction models.

Studies included in previously
published reviews purely on 
classical regression models (n = 6)

Previous studies

Fig. 1   PRISMA flow diagram for the inclusion and exclusion criteria [37]
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have not reported algorithm/model discrimination (AUC) 
performance, however reported prediction accuracy. 
Overall, random forest and boosting-type algorithms 

(gradient boosting and XGBoost) showed better predic-
tion performance than other ML algorithms (Fig. 3). 
Three [48•, 49•, 55] models were well-calibrated, one 

Table 1   Characteristics of ML algorithm prediction studies

NB: XGBoost extreme gradient boosting, CVR classification via regression, SVM support vector machine, NR not reported
* The studies that used the same sample to compare ML algorithms with classical regression models

S. No Studies Country Data source Centre Outcome Events/sample size 
(events per predictor)

Best performing algorithm

1 Melinte-Popescu et al. 2023 
[59•]

Romania Case–control Single Any-onset 116/233 (17) Random forest

2* Liu et al. 2022 [48•] China Retrospective cohort Single Any-onset 143/11,152 (14) Random forest
3 Zhang et al. 2022 [50] China Retrospective cohort Single Any-onset 377/19,653 (126) Light GBM
4 Gómez-Jemes et al. 2022 

[56]
Slovenia Medical record Single Any-onset 22/95 (7) Decision tree

5 Bennett et al. 2022 [52] USA Prospective cohort Multicentre Any-onset 2743/31,431 (137) Deep neural networks
6* Ansbacher-Feldman et al. 

2022 [60•]
UK Prospective cohort Multicentre Preterm 484/60789 (35) Neural network

7* Chen et al. 2022 [61] China Case–control Single Any-onset 237/916 (40) Random forest
8* Li et al. 2021 [49•] China Retrospective cohort Single Any-onset 227/5243 (76) XGBoost
9* Wanriko et al. 2021 [62] Kenya Case–control Single Any-onset 88/352 (7) Random forest
10* Manoochehri et al. 2021 

[63]
Iran Case–control Single Any-onset 752/1452 (125) SVM

11* Marić et al. 2020 [51] USA Retrospective cohort Single Any-onset 561/5245 (80) Gradient boosting
12* Sufriyana et al. 2020a [54] Indonesia Nested case–control Single Any-onset 878/6734 (58) Random forest
13 Sufriyana et al. 2020b [55] New Zealand Prospective cohort Single Any-onset 22/95 (4) CVR
14 Marin et al. 2019 [53] Romania Medical record Single Any-onset NR Viterbi ML
15* Jhee et al. 2019 [57] South Korea Medical record Single Any-onset 474/10,532 (67) Gradient boosting
16* Sandström et al. 2019 [58] Sweden Prospective cohort Single Preterm 497/58,276 (41) Logistic regression

Fig. 2   Distribution of prognostic factors across ML algorithms (a) 
and classical regression-based models (b). For the 16 ML algorithms, 
the number of feature variables ranged from 3 to 17, with a median of 
7. For the 41 any-onset pre-eclampsia classical regression models, the 
number of predictor variables ranged from 2 to 13, with a median of 

5. In the ten studies with both ML algorithm and classical regression 
model, the number of feature variables ranged from 3 to 17, with a 
median of 8. NB: Others = alcohol consumption in the first trimester, 
family history of chronic heart disease, and single miscarriage
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[54] model was not well-calibrated, and the rest studies 
did not report model calibration performance. Except two 
[53, 59•], ten ML studies reported split sample, and four 
studies reported cross-validation for internal validation; 
yet none reported external validation. None of the ML 
studies provided deployment strategies for individualised 
risk prediction (Supplementary. Table 1).

Characteristics of Classical Regression‑Based 
Prediction Studies

Sixty-six publications [14, 64, 73–82, 65,  83–92, 66, 
93–102, 67, 103–112,68, 113–122, 69, 123–128,70–72] 
reporting on 84 models were included:

•	 Forty-one any-onset pre-eclampsia models (Table 2)
•	 Twenty  ea r ly-onse t  p re -ec lamps ia  mode l s 

(Supplementary Table 3)
•	 S i x t e e n  l a t e - o n s e t  p r e - e c l a mp s i a  m o d e l s 

(Supplementary Table 4)
•	 Seven preterm pre-eclampsia models (Supplementary 

Table 5)

Any‑Onset Pre‑Eclampsia Models

Forty-one [65, 66, 75–84, 67, 85–94, 68, 95–104, 69, 105, 
70–74] any-onset pre-eclampsia prediction models were 

Fig. 3   Machine learning algorithm performance (reported in 13/16 
studies). Among the ten studies that reported both ML algorithms 
and classical regression models, the top eight reported discrimination 
performance (AUC), and the remaining did not. NB: The red verti-

cal line highlights algorithms/models with AUC cut-off values above 
0.7, which indicates good discrimination performance. *This classical 
regression model used the same sample as the ML algorithm above it 
and was reported in a separate publication [19]
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included. The maximum sample size was 120,492, and the 
minimum sample size was 104 for any-onset pre-eclampsia 
prediction models. Almost all (40/41) any-onset pre-eclamp-
sia prediction models were from middle or high-income 

countries. Nine pre-eclampsia prediction models were 
reported from the United Kingdom (UK) [72, 81, 85, 98, 99, 
101, 103–105], six from the USA [66, 82, 86, 87, 89, 97], six 
from China [67–70, 79, 96], three from Brazil [76, 78, 90], 

Table 2   Characteristics of classical regression models for any-onset pre-eclampsia prediction

NB: aNew Zealand, Australia, the UK, and Ireland

S. No Author, year Country Data sources Centre Events/sample size 
(events per predictors)

1 Suksai et al. 2022 [65] Thailand Routinely collected Single 167/4600 (14)
2 Tarca et al. 2022 [66] USA Case cohort Single 166/1150 (42)
3 Tang et al. 2022 [67] China Retrospective cohort Single 717/20,582 (102)
4 Yue et al. 2021 [68] China Routinely collected Single 310/6064 (34)
5 Kim et al. 2021 [69] China Prospective cohort Single 13/351 (4)
6 Wang et al. 2020 [70] China Prospective cohort Single 25/356 (6)
7 Al-Rubaie et al. 2020 [71] Australia Retrospective cohort Multicentre 293/12,395 (37)
8 Sovio and Smith 2019 [72] UK Prospective cohort Single 28/4184 (3)
9 Boutin et al. 2019 [73] Canada Prospective cohort Single 232/4739 (38)
10 Boutin et al. 2018 [74] Canada Prospective cohort Single 232/4665 (33)
11 Cheng et al. 2018 [75] China Case–control Single 30/3330 (10)
12 Praciano de Souza et al. 2018 [76] Brazil Prospective cohort Single 40/372 (10)
13 Asiltas et al. 2018 [77] Turkey Case–control Single 38/160 (12)
14 Rocha et al. 2017 [78] Brazil Prospective cohort Multicentre 55/733 (14)
15 Luo and Han 2017 [79] China Case–control Single 33/104 (11)
16 Agarwal et al. 2017 [80] India Nested case–control Single 35/291(11)
17 Guy et al. 2017 [81] UK Prospective cohort Multicentre 66/2764 (5)
18 Gabbay‐Benziv et al. 2016 [82] USA Prospective cohort Single 108/2433 (21)
19 Kumar et al. 2016 [83] India Prospective cohort Single 98/3069 (20)
20 Giguere et al. 2015 [84] Canada Nested case–control Single 96/343 (16)
21 Wright et al. 2015 [85] UK Prospective cohort Multicentre 2704/120,492 (540)
22 Moon and Odibo 2015 [86] USA Prospective cohort Single 102/1177 (15)
23 Baschat et al. 2014 [87] USA Prospective cohort Multicentre 108/2441 (27)
24 Kenny et al. 2014 [88] SCOPEa Prospective cohort Multicentre 278/5623 (56)
25 Goetzinger et al. 2014 [89] USA Prospective cohort Single 49/578 (8)
26 Gurgel Alves et al. 2014 [90] Brazil Prospective cohort Single 31/550 (6)
27 Teixeira et al. 2014 [91] Portugal Retrospective cohort Single 140/4799 (12)
28 Skråstad et al. 2014 [92] Norway Prospective cohort Single 39/640 (10)
29 Direkvand-Moghadam et al. 2013 [93] Iran Prospective cohort Single 58/610 (11)
30 North et al. 2011 [94] SCOPEa Prospective cohort Multicentre 186/3529 (16)
31 Odibo et al. 2011 [95] USA Prospective cohort Single 42/452 (14)
32 Yu et al. 2011 [96] China Case–control Single 31/124 (7)
33 Goetzinger et al. 2010 [97] USA Retrospective cohort Single 293/3716 (59)
34 Thilaganathan et al. 2010 [98] UK Nested case–control Single 45/170 (15)
35 Poon et al. 2008 [99] UK Prospective cohort Single 104/5193 (26)
36 Deis et al. 2008 [100] France Prospective cohort Single 110/4777 (18)
37 De Paco et al. 2008 [101] UK Prospective cohort Single 83/4617 (17)
38 Pilalis et al. 2007 [102] Greece Prospective cohort Single 13/878 (2)
39 Yu et al. 2005 [103] UK Prospective cohort Multicentre 612/30,708 (76)
40 Papageorghiou et al. 2005 [104] UK Prospective cohort Multicentre 369/17,480 (53)
41 Harrington et al. 1997 [105] UK Prospective cohort Single 30/626 (7)
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three from Canada [73, 74, 84], two from the SCOPE study 
[88, 94], and one each from Australia [71], Thailand [65], 
Turkey [77], India [83], Iran [93], Greece [102], France [100], 
Australia [71], Norway [92], and Portugal [91]. Twenty-four 
(10/42) percent of any onset pre-eclampsia prediction models 
were developed with less than ten events per prognostic fac-
tor (Table 2). Only fifteen any-onset pre-eclampsia prognostic 
models report the model equation. Among any-onset pre-
eclampsia prediction models, ten studies reported regression 
formulae and eleven reported nomogram and score chart rule 
for deployment strategy to estimate individualised risks. The 
remaining models did not report deployment strategies (Sup-
plementary Table 2).

Early‑Onset Pre‑Eclampsia Models

Twenty [67, 83, 113–122, 87, 106–112] early-onset pre-
eclampsia models were included in this review. The maxi-
mum [115] sample size reported was 33,602, and the mini-
mum [111] sample size was 359. Ninety percent of the 
studies were from middle and high-income countries. Six 
studies were from the UK [115, 117–120, 122], three from 
France [107, 109, 110], two from the Netherlands [112, 
116], two from Chile [111, 113], and one each from China 
[67], Spain [106], India [83], Finland [108], the USA [87], 
Italy [114], and Denmark [121]. Only five [106, 107, 112, 
115, 121] developed models had more than ten events per 
prognostic factor (Supplementary Table 3).

Late‑Onset Pre‑Eclampsia Models

Sixteen [64, 83, 118–123, 107, 109–112, 114, 115, 117] 
late-onset pre-eclampsia prediction models were included. 
The maximum sample size was reported 33,602, and 
359 was the minimum sample size. Eighty-eight percent 
(14/16) of the models reported were from high-income 
countries. Six models were developed in the UK [115, 
117–120, 122], three models in France [107, 109, 110], two 
models in Italy [114, 123], and one each from India [83], 
Thailand [64], Chile [111], and Denmark [121]. Sixty-nine 
percent of models used more than ten events per predictor 
(Supplementary Table 4).

Preterm Pre‑Eclampsia Models

Seven preterm [14, 67, 124–128] pre-eclampsia prediction 
models were included. Two models were from the UK [14, 
128], one was multicentre international (SCOPE [127] 
study), and the other studies were one each from Sweden 
[124], China [67], Denmark [125], and Chile [126]. Only 
one model used less than ten predictor variables per event 
(Supplementary Table 5).

Classical Regression Studies Prediction Performance

Almost all any-onset pre-eclampsia models reported dis-
crimination performance but not model calibration. Ninety 

Fig. 4   Risk of bias graph: review authors’ judgements about each risk of bias item presented as percentages across all included studies
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percent of any-onset pre-eclampsia models (36/40) reported 
good discrimination performance (AUC > 0.70). The mini-
mum AUC reported was 0.62 (0.58–0.66) [74] and the max-
imum AUC reported was 0.96 (0.92–1) [80]. Calibration 
performance was not reported in most studies. Only four 
models [68, 71, 94, 100] reported calibration performance, 
and three were well-calibrated. Fifteen models reported 
deployment strategies. Ninety percent (18/20) of the early-
onset pre-eclampsia prediction models have reported the 
model discrimination performance, whereas one study [116] 
has reported calibration performance. Ninety-four percent 
of the studies showed excellent to perfect discrimination 
performance, with a minimum AUC of 0.78 [67] and maxi-
mum AUC of 0.99 (0.99–1) [122]. The deployment of indi-
vidualised risk stratification was reported in fourteen out of 
twenty early-onset pre-eclampsia models. Moreover, eleven 
out of sixteen late-onset pre-eclampsia prediction models 
have reported model discrimination performance and none 
of the studies report model calibration performance. Only 
five out of seven preterm pre-eclampsia prediction studies 
reported model discrimination performance with none of 
them reporting calibration performance. Most of the clas-
sical regression models failed to report internal validation, 
and nearly one-third (30/84) of the models were externally 
validated (Supplementary Table 6).

Methodological Quality of ML and Classical 
Regression Studies

Figure 4a shows the assessment of risk of bias (ROB) and 
concerns for applicability of ML studies. Overall, more than 
40% of the ML studies have high risk of bias. Among four 
domains, the analysis domain had high risk of bias. Among 
studies at low risk of bias, discrimination performance 
(AUC) ranged from 0.77 to 0.92. Ninety-five percent of ML 
studies have low risk of concern for applicability. Figure 4b 
shows the ROB and concern for applicability of classical 
regression studies. Sixty percent of classical regression stud-
ies exhibited a high risk of bias with the analysis domain 
being the primary contributor. Among studies at low risk 
of bias, the AUC ranged from 0.66 to 0.89. More than 90% 
of classical regression studies have low risk of concern for 
applicability (Fig. 4).

Discussion

Machine learning algorithm approaches are increasingly 
common in risk prediction [129, 130]; however, prediction 
performance compared with classical regression models 
remains unclear, including in pre-eclampsia prediction. 
This review identified 16 ML algorithms and 84 classical 
regression models for pre-eclampsia prediction, and overall, 

the ML approaches had the better prediction performance 
compared to the classical regression approaches. In the 
10 studies reporting both ML algorithms and classical 
regression models in the same sample, eight [47, 48•, 
50, 53, 56, 60•, 61–63] reported superior prediction 
performance for ML algorithms. The most frequent 
prognostic factors in all models were maternal demographic 
and clinical characteristics in pre-eclampsia prediction, with 
biophysical (UtA-PI, MAP) and biochemical (PAPP-A, 
PIGF) measurement being the most common biomarkers 
as prognostic factors. Almost all ML studies had reported 
internal validation, but failed to report external validation. 
All except three ML algorithms [52, 61, 63] reported 
discrimination performance with AUC ranging from 0.60 
(95% CI 0.57–0.62) [57] to 0.94 (95% CI 0.91–0.96) 
[58]. Random forest, gradient boosting, and extreme 
gradient boosting algorithms were the top-performing ML 
algorithms. Of 66 classical regression studies reporting 
84 models for any-, early-, late-onset, and preterm pre-
eclampsia prediction showing poor-to-perfect discrimination 
performance, most failed to report model calibration. A high 
or unclear methodological risk of bias, yet low concern for 
applicability, was seen in both ML and classical regression 
studies. Deployment strategies were seen in some classical 
regression models, but not in ML algorithms.

Medical and clinical characteristics of the mother are the 
most cited risk factors for pre-eclampsia [11, 13]; similarly, 
we found these to be the most used prognostic factors in both 
ML and classical regression models. In addition, biomarker 
prognostic factors such as UtA-PI, MAP, PAPP-A, and PIGF 
were most frequently used in classical regression models 
whilst UtA-PI was most frequently used in ML algorithms, 
which is aligned to previous studies [115, 120]. The risk 
of pre-eclampsia can increase by eight-fold with prior pre-
eclampsia history, seven-fold with obese pre-pregnancy 
BMI, five-fold with chronic hypertension, four-fold with 
chronic diabetes, three-fold in nulliparous woman, and a 
first-degree relative with pre-eclampsia [13]. Hence, the 
most frequently used prognostic factors in our review, 
in line with existing literature, but here combined in ML 
and classical regression models, have stronger predictive 
performance than when used in isolation. Considering 
only maternal medical and clinical characteristics have the 
advantages of readily attainable, easy to implement in all 
clinical settings, and cost-effective, however, addition of 
biomarkers could improve the prediction performance [15]. 
Machine learning prediction approach has the advantage of 
using raw biomarker data without the need for conversion 
into multiple of the medians (MoMs), which would simplify 
the implementation of screening tool [60•].

To our knowledge, no previous review has compared 
the prediction performance of ML to that of classical 
regression studies in pre-eclampsia prediction. We have 
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captured previous studies that compared ML with classical 
regression studies in pre-eclampsia [131–134]. Similar to 
our review, a recent systematic review compared ML and 
classical regression studies in cardiovascular risk prediction 
and found that ML algorithms outperformed classical 
regression models [132, 135]. Other comparison reviews 
in hypertension [133] and acute kidney injury [33] found 
that ML algorithms had similar prediction performance 
to classical regression models, aligned to other clinical 
prediction models [32,  136]. However, a recent study 
reported that ML algorithms are a more powerful tool for 
prediction modelling than classical regression models in 
terms of higher flexibility and automatic data-dependent 
complexity optimisation [137]. Machine learning prediction 
can address challenges with rare events (class imbalance) 
prediction by oversampling the minority class and/or 
undersampling the majority class [138–140]. Classical 
regression models may be challenging to predict rare events, 
potentially yielding unstable prediction metrics values [141]. 
Consequently, advanced ML algorithms like random forest 
and boosting type algorithms might benefit from predicting 
rare events such as pre-eclampsia.

In this systematic review, we observed a lack of direct 
comparison between ML algorithms and classical regression 
models using harmonised data sources and evaluation 
metrics. Further research may focus on head-to-head 
comparisons using harmonised data sources and the same 
evaluation metrics, ideally measured on test rather than 
development data to minimise overfitting and consequently 
optimism. To gain a comprehensive understanding of true 
performance in other healthcare settings, it encourages 
research in low- and middle-income countries to apply these 
prediction models.

In terms of ML methods, similar to this review, some 
studies have shown that random forest and boosting-
type algorithms (gradient boosting and extreme gradient 
boosting) achieve better prediction performance [33] 
compared with other ML approaches. Potentially, random 
forest and boosting-type algorithms are some of the most 
powerful algorithms, especially for structured and tabular 
data. Random forest is an ensemble learning algorithm that 
combines multiple decision trees based on bagging and 
random feature selection to make a prediction. As compared 
to other algorithms, random forests reduce overfitting, 
handle missing data, are robust to outliers, and can work out-
of-the-box with less sensitive to hyperparameter selection 
[142]. Boosting-type algorithms such as gradient boosting 
and extreme gradient boosting are another class of ensemble 
learning starting with a weak algorithm (often decision 
tree) and sequentially boost its performance to create a 
stronger algorithm [143, 144]. As a result, boosting-type 
algorithms can handle imbalanced datasets, missing values, 
and allow for fine-grained control over hyperparameters for 

optimisation [145]. However, further algorithm development 
might be needed to differentiate the best algorithm for 
pre-eclampsia prediction; if this is confirmed, it would 
be advantageous (1) to externally validate the best-fit ML 
algorithm and (2) to facilitate clinical implementation in 
healthcare settings.

This study faces some limitations. Firstly, a high or 
unclear methodological risk of bias yet low concern for 
applicability was seen in both ML and classical regression 
studies. Some studies report insufficient sample sizes 
which might increase the risk of overfitting and can yield 
inaccurate and unstable predictions. Deployment strategies 
were seen in some classical regression models, but not 
in ML algorithms. ML algorithms lack interpretability, 
making it difficult to present equations and explicit 
mathematical relationships. Besides, the majority of the 
studies have not reported model’s calibration performance, 
which led to challenges in judging the accuracy of the 
risk estimates. Secondly, none of the ML studies reported 
external validation; hence, it remains unclear how well 
the models could perform among diverse population 
and settings. Therefore, further studies warranted for 
temporal and external validation. Furthermore, prediction 
performance can be influenced and underestimated by the 
treatment paradox, wherein high-risk women who would 
otherwise develop pre-eclampsia are treated with aspirin 
and do not develop the disease, effectively converting true-
positives into false-positive results from predictive tests.

This review also has strengths. It was able to review 
the common prognostic factors in term of pre-eclampsia 
prediction, those were shown to consistent throughout 
studies to enhance practical of future prediction studies. 
Both prediction approaches were particularly compared 
against studies that used the same sample and similar 
prognostic factors, perhaps helpful in evaluating their 
performance in predicting the outcome of interest.

Conclusion

This systematic review has explored prognostic factors and 
compared ML algorithms and classical regression models for 
pre-eclampsia prediction. Maternal demographic and clinical 
characteristics, MAP, UtA-PI, PAPP-A, and PIGF are the most 
used prognostic factors. Pre-eclampsia prediction performance 
appears better with ML algorithms, yet varies among ML 
approaches. Advanced ML algorithms such as random forest, 
gradient boosting, and extreme gradient boosting outperformed 
classical regression models in discrimination. To gain further 
insight into the performance of ML algorithms, research 
should focus on comparing ML algorithms to classical 
regression models using similar samples, evaluation metrics, 
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comparing calibration, and conducting external validation 
of ML algorithms to provide insight into generalisability 
to other populations and settings. Ultimately, for optimal 
models, effective deployment and implementation strategies 
are needed.
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