Table 1.
S. No | Studies | Country | Data source | Centre | Outcome | Events/sample size (events per predictor) | Best performing algorithm |
---|---|---|---|---|---|---|---|
1 | Melinte-Popescu et al. 2023 [59•] | Romania | Case–control | Single | Any-onset | 116/233 (17) | Random forest |
2* | Liu et al. 2022 [48•] | China | Retrospective cohort | Single | Any-onset | 143/11,152 (14) | Random forest |
3 | Zhang et al. 2022 [50] | China | Retrospective cohort | Single | Any-onset | 377/19,653 (126) | Light GBM |
4 | Gómez-Jemes et al. 2022 [56] | Slovenia | Medical record | Single | Any-onset | 22/95 (7) | Decision tree |
5 | Bennett et al. 2022 [52] | USA | Prospective cohort | Multicentre | Any-onset | 2743/31,431 (137) | Deep neural networks |
6* | Ansbacher-Feldman et al. 2022 [60•] | UK | Prospective cohort | Multicentre | Preterm | 484/60789 (35) | Neural network |
7* | Chen et al. 2022 [61] | China | Case–control | Single | Any-onset | 237/916 (40) | Random forest |
8* | Li et al. 2021 [49•] | China | Retrospective cohort | Single | Any-onset | 227/5243 (76) | XGBoost |
9* | Wanriko et al. 2021 [62] | Kenya | Case–control | Single | Any-onset | 88/352 (7) | Random forest |
10* | Manoochehri et al. 2021 [63] | Iran | Case–control | Single | Any-onset | 752/1452 (125) | SVM |
11* | Marić et al. 2020 [51] | USA | Retrospective cohort | Single | Any-onset | 561/5245 (80) | Gradient boosting |
12* | Sufriyana et al. 2020a [54] | Indonesia | Nested case–control | Single | Any-onset | 878/6734 (58) | Random forest |
13 | Sufriyana et al. 2020b [55] | New Zealand | Prospective cohort | Single | Any-onset | 22/95 (4) | CVR |
14 | Marin et al. 2019 [53] | Romania | Medical record | Single | Any-onset | NR | Viterbi ML |
15* | Jhee et al. 2019 [57] | South Korea | Medical record | Single | Any-onset | 474/10,532 (67) | Gradient boosting |
16* | Sandström et al. 2019 [58] | Sweden | Prospective cohort | Single | Preterm | 497/58,276 (41) | Logistic regression |
NB: XGBoost extreme gradient boosting, CVR classification via regression, SVM support vector machine, NR not reported
*The studies that used the same sample to compare ML algorithms with classical regression models