Skip to main content
. 2024 May 28;26(7):309–323. doi: 10.1007/s11906-024-01297-1

Table 1.

Characteristics of ML algorithm prediction studies

S. No Studies Country Data source Centre Outcome Events/sample size (events per predictor) Best performing algorithm
1 Melinte-Popescu et al. 2023 [59•] Romania Case–control Single Any-onset 116/233 (17) Random forest
2* Liu et al. 2022 [48•] China Retrospective cohort Single Any-onset 143/11,152 (14) Random forest
3 Zhang et al. 2022 [50] China Retrospective cohort Single Any-onset 377/19,653 (126) Light GBM
4 Gómez-Jemes et al. 2022 [56] Slovenia Medical record Single Any-onset 22/95 (7) Decision tree
5 Bennett et al. 2022 [52] USA Prospective cohort Multicentre Any-onset 2743/31,431 (137) Deep neural networks
6* Ansbacher-Feldman et al. 2022 [60•] UK Prospective cohort Multicentre Preterm 484/60789 (35) Neural network
7* Chen et al. 2022 [61] China Case–control Single Any-onset 237/916 (40) Random forest
8* Li et al. 2021 [49•] China Retrospective cohort Single Any-onset 227/5243 (76) XGBoost
9* Wanriko et al. 2021 [62] Kenya Case–control Single Any-onset 88/352 (7) Random forest
10* Manoochehri et al. 2021 [63] Iran Case–control Single Any-onset 752/1452 (125) SVM
11* Marić et al. 2020 [51] USA Retrospective cohort Single Any-onset 561/5245 (80) Gradient boosting
12* Sufriyana et al. 2020a [54] Indonesia Nested case–control Single Any-onset 878/6734 (58) Random forest
13 Sufriyana et al. 2020b [55] New Zealand Prospective cohort Single Any-onset 22/95 (4) CVR
14 Marin et al. 2019 [53] Romania Medical record Single Any-onset NR Viterbi ML
15* Jhee et al. 2019 [57] South Korea Medical record Single Any-onset 474/10,532 (67) Gradient boosting
16* Sandström et al. 2019 [58] Sweden Prospective cohort Single Preterm 497/58,276 (41) Logistic regression

NB: XGBoost extreme gradient boosting, CVR classification via regression, SVM support vector machine, NR not reported

*The studies that used the same sample to compare ML algorithms with classical regression models