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Dissecting heritability, environmental risk,
and air pollution causal effects using > 50
million individuals in MarketScan

Daniel McGuire1,7, Havell Markus2,3,4,7, Lina Yang1, Jingyu Xu1,
Austin Montgomery2, Arthur Berg1, Qunhua Li 5, Laura Carrel 6,
Dajiang J. Liu 1 & Bibo Jiang 1

Large national-level electronic health record (EHR) datasets offer new oppor-
tunities for disentangling the role of genes and environment through deep
phenotype information and approximate pedigree structures. Here we use the
approximate geographical locations of patients as a proxy for spatially cor-
related community-level environmental risk factors. We develop a spatial
mixed linear effect (SMILE) model that incorporates both genetics and envir-
onmental contribution. We extract EHR and geographical locations from
257,620 nuclear families and compile 1083 disease outcome measurements
from the MarketScan dataset. We augment the EHR with publicly available
environmental data, including levels of particulatematter 2.5 (PM2.5), nitrogen
dioxide (NO2), climate, and sociodemographic data.We refine the estimates of
genetic heritability and quantify community-level environmental contribu-
tions.We also use wind speed and direction as instrumental variables to assess
the causal effects of air pollution. In total, we find PM2.5 or NO2 have statisti-
cally significant causal effects on 135 diseases, including respiratory, muscu-
loskeletal, digestive,metabolic, and sleep disorders, where PM2.5 andNO2 tend
to affect biologically distinct disease categories. These analyses showcase
several robust strategies for jointly modeling genetic and environmental
effects on disease risk using large EHR datasets and will benefit upcoming
biobank studies in the era of precision medicine.

It is widely known that most complex traits are jointly influenced by
genetics and environment. Yet, the extent to which genetic or envir-
onmental factors contribute to complex traits ismuch less understood
and often subject to contentious debate1, possibly due to the lack of
large and high-quality datasets containing both genetic data and
environmental exposures. Quantifying the genetic and environmental
contributions to human disease is critical to understanding the

underlying biology, performing accurate risk predictions, and
designing effective preventive and therapeutic interventions.

Traditionally, family-based studies and variance components
models have been used to partition phenotypic variance into genetic
and environmental components, where health outcome similarities
among relatives are regressed over measures of genetic relatedness
and shared environmental exposure2,3. In these studies, unmeasured
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environmental exposures across different families are often assumed
to be independent. However, a number of environmental risk factors
are shared between different families in the same geographic area and
are spatially correlated4. Examples include air pollution, climate, and
sociodemographic characteristics such as average levels of education
and income5,6. Unmodeled community-level environment effects
could lead to upwardly biased estimates of genetic heritability, as
within-family phenotypic correlation due to shared community-level
environment may be falsely attributed to genetics4. Twin studies may
also be subject to the impact of environmental confounding, and often
do not estimate the contribution of community-level environment.

Genome-wide association studies (GWAS) and linear mixed
models with unrelated individuals have been used to estimate narrow-
sense heritability that is captured by the genotyped SNPs (chip
heritability)7. GWAS using unrelated individuals often achieve much
larger sample sizes and are less likely to be confounded by shared
environment compared to family-based studies8. However, recent
research has shown that geographical confounding can bias estimates
of chip heritability as well9. Besides, these chip heritability estimates
are conceptually different from that of family-based studies and are
sensitive to the assumptions on the allele frequencies, effect sizes, and
levels of linkage disequilibrium between genotyped SNPs and the true
causal variants8. Standard linear mixed models in GWAS often do not
model community-level shared environmental variance and hence do
not quantify its contributions to disease. There are also existing works
that seek to estimate environmental impacts on diseases but do not
account for genetic relatedness, and hence do not provide joint esti-
mates of heritability and environmental contribution either3,10–15.

In this work, to address the aforementioned challenges and fill in
the knowledge gap, we describe a spatial mixed linear effect (SMILE)
model that jointly estimates genetic heritability and environmental
components of disease risk using geospatial locations of the study
participants as a proxy for community-level environmental risk factors.
The SMILE model helps characterize geographic variation in disease
risk, control for additional sources of within-family correlation, and
reduce the bias of estimated heritability. We apply SMILE to the Mar-
ketScan dataset16, a large insurance billing database with electronic

health records (EHR) from more than 50 million individuals to assess
the contribution of genetic and environmental factors to 1083 human
diseases. To further assess if environmental risk factors are causally
linked to disease, we augmented the MarketScan dataset with publicly
available environmental data, including levels of particulate matter 2.5
(PM2.5) andnitrogendioxide (NO2), climate, and socioeconomic status.
We apply a rigorous causal inference framework to assess the roles of
pollutants PM2.5 and NO2 for the phenome using wind speed and
direction as instrumental variables.

Results data overview
We used the IBM MarketScan health insurance claims database to
assemble a large quality-filtered cohort of 257,620 nuclear families
with parents and children (Methods). TheMarketScan database is a de-
identified compilation of patient billing code records from employer-
based health insurance policies in the United States. Family structure
was inferred based on the relationship of eachmember to the primary
enrollee on the policy. Members indicated as either “Employee” or
“Spouse”weredeemed as parents and those indicated as “Child/Other”
were deemed as children in the family17. We analyze nuclear families
who were enrolled in the database for at least 6 years between 2005
and 2017, and for whomall children are at least 10 years old at the time
of entry into the database. As we demonstrate in the Results and
Supplementary Methods, the impact of mis-specified familial rela-
tionship and the length of enrollment in the database have minimal
impact on the estimates of variance components.

A summary of the available demographic characteristics of
ascertained families is provided in Table 1. We then mapped the
inpatient and outpatient (International Classification of Diseases ver-
sion 9 and 10 (ICD-9/ICD-10) billing code records between 2005 to
2017 to PheWAS codes13, which represent biologically/medically more
meaningful phenotypes. We also include several individual-level cov-
ariates including the year of birth and sex, as well as the approximate
location in terms of U.S. County orMetropolitan Statistical Area (MSA)
in our analyses.

Multiple external datasets of community-level risk factors were
also incorporated, which were assigned to each individual based on
their location. These include demographic data extracted from the
2015 American Community Survey 5-year estimates18, satellite-derived
measurements of air pollution including particulate matter 2.5
(PM2.5)

19,20 (Supplementary Fig. 1) and nitrogen dioxide (NO2) (Sup-
plementary Fig. 2-3)21,22. We also integrated wind direction and wind
speed data23 as instrumental variables for causal inference (see Meth-
ods for details).

Statistical methodology overview
In the SMILE model, we incorporate random effects to capture phe-
notypic variation attributable to genetic relatedness, shared family
environment, and shared community-level environment. The full
SMILE model is specified by

Y =Xπ +ug +Zsus +Zparupar +Zchilduchild + ϵ

In this model:
• Y is the vector of 0-1’s for disease status, with 1 being the diseased
and 0 being the normal.

• X is the design matrix for fixed effect individual-level covariates
with effects π.

• ug is the vector of genetic random effects, whose correlation is
determined by genetic relatedness. Individuals in different
families are assumed to be genetically unrelated.

• upar and uchild are the vectors of random effects for the shared
parental and children-level family environment. Even though they
live in the same household, parents and children may share
distinct environment, including diet patterns, exercise levels,

Table 1 | Demographic description of ascertained nuclear
families in the Marketscan database

Total # of families 257,620

Unique family locations (County or MSA) 3,229

Median number of families per location (IQR) 15 (5,50)

Median months enrolled (IQR) 84 (72,102)

Median age at first year of enrollment (IQR)

Overall 23.5 (15,46)

Father 47 (44,51)

Mother 45 (42,49)

Children 15 (13,17)

Median age difference (IQR)

Father – Mother 1.907 (0,4)

Oldest Sibling – Youngest Sibling 3.061 (2,4)

% Primary enrollee by parent

Father 67.3%

Mother 32.7%

Fraction of smokers

Overall 66,723 (6.5%)

Father 23,457 (9.1%)

Mother 17,643 (6.8%)

Children 25,623 (5%)

IQR inter-quartile range
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hours of sleep, and exposures at work or school. upar and uchild

each capture the distinct environmental exposures that are
shared between parents and between children.

• Zpar and Zchild are the designmatrices that link each individual to
their corresponding within-family parent- or child-shared envir-
onment random effect.

• us is the random effect for the community-level shared environ-
ment. Families from the same location share the same random
effect. We assume that the random effects from neighboring
locations follow an independent normal distribution (IND), or
conditional autoregressive (CAR), or simultaneous autoregressive
(SAR) distribution. We chose these model specifications as they
cover a wide range of scenarios and are computationally feasible
for large-scale datasets.

• Zs is the design matrix linking each individual to his/her corre-
sponding spatial random effects.

We also extended the model in a two-stage regression framework
(SMILE-2) to assess the causal effects of air pollution on the phenome,
which is conceptualized in Supplementary Fig. 4. We use wind speed
and direction as instrumental variables24. Wind speed and direction
have previously been used as instrumental variables for various pol-
lution exposures25–28. They are unlikely to have any direct causal effect
on a disease phenotype, but are strong predictors of local pollution
levels, as the pollution level in a given location is a mixture of locally
produced and transported air pollution by the wind from its original
source28,29.

It is easy to verify that the wind speed and direction satisfy the
three primary assumptions of instrumental variables in two-stage
regression analyses24:

• Instrument relevance: the instrument is correlated with the pol-
lutant P, i.e., cov Z ,Pð Þ≠0, where Z collectively denotes for wind
speed and direction.

• Instrument exogeneity: The instrument (averagedwind-direction)
is uncorrelated with other confounders (measured or unmea-
sured) in the second stage model.

• The averaged wind instruments Z have no direct effect on the
disease phenotype Y .

In the first stage regression, we regress the pollution levels over
the instrumental variables. In the second stage model, the SMILE-2
model tests for the causal effect of pollution (β) using the predicted
pollution level (eP) from the first stage model as input, i.e.,

Y = ePβ+ Xπ2 +ug +Zparupar +Zchilduchild + ϵ

More details on SMILE and SMILE-2 models can also be found in
Methods and the Supplementary Methods.

SMILE model yields more accurate heritability and environ-
mental variance component estimates
We conducted extensive simulations to assess the accuracy of the
variance component estimates when models are correctly- or mis-
specified (Methods). To make sure that our simulation reproduces
realistic spatial distributions of family locations, disease prevalence,
risk factors, and confounders, we sampled nuclear families with
replacement from the available locations in the MarketScan dataset
based on the 257,620 families used in data analysis. We varied the
values of different variance components in the simulation and used
CAR covariance structure for simulating spatial random effects as it
best fits the data (shown in the sections below). For each combination
of variance components, we simulated the underlying liability and
created binary phenotypes under the liability threshold model with
varying disease prevalence. We compared sub-models with different
combinations of random effects in the simulation. A total of eight

models were fitted in the analysis, including SMILE (GPC + S), GP + S,
GC + S, GPC, PC + S, PC, G + S, and S, where we use G, P, C, and S to
denote the genetic, parental, children’s, or spatial community-level
variance components.WeusedBayesian InformationCriterion (BIC) to
determine the best fitting model.

We found that BIC chose the model with correctly specified var-
iance components in 71.1% of the replicates with 50,000 quad-families,
and 81.8% of replicates with 250,000 quad-families (Fig. 1A). The esti-
mates became more precise as sample size and prevalence increase
(Supplementary Data 1). We found that in the presence of community-
level spatial effects, the models that do not account for community-
level effects produce upwardly biased heritability estimates, as family
members who live in the same location have additional phenotypic
correlation which may be falsely attributed to genetics (Fig. 1B, Sup-
plementary Data 1). Our results show that the extent of upward bias in
heritability increases with the size of the spatial variance components.
Importantly, the full SMILE model yielded minimal or near-minimal
bias and mean squared error (MSE) for all variance component esti-
mates regardless of the underlying model (Fig. 1C, Supplementary
Data 1). For instance, if the true model does not contain parental
shared family environment, SMILE still gave unbiased estimates for all
variance components. For this reason, we used the full model with
GPC + S variance components in our analysis of MarketScan data, as it
eases the computational burden of estimating multiple models with-
out compromising the estimation accuracy. We also verified that our
chosen parameters for simulations reflect the parameters estimated
from the MarketScan and that our simulation setting is realistic (Sup-
plementary Data 2). We lastly conducted simulations with family
relationship errors (e.g., when stepchildren and adopted children are
coded as biological children for both parents) to assess the robustness
of heritability estimates (see Supplementary Methods for more
details). Overall, we observed that the heritability estimates from
SMILE models are robust. With noisy familial relationships, the con-
fidence intervals of the estimated variance components still overlap
the true values and the bias is small (Supplementary Fig. 5 and Sup-
plementary Data 3).

SMILE-2 model more powerfully identifies pollution causal
effects
Similar to variance component simulation, we sampled with replace-
ment families and their covariates from the MarketScan dataset, so
that all confounders and the covariates of interest (i.e., pollution
levels) maintain their realistic correlations. To assess the type-I error
and power for causal inference, we simulated the pollution effects of
either NO2 or PM2.5, varying the relative risk (RR). Based on estimated
variance components and assumed causal effects, we simulated dis-
ease liabilities, which were dichotomized to get binary disease status.
For each PheWAS code, we simulated six replicates and ensured that
each PheWAS code-based phenotype was selected under both the null
(RR= 1) and alternative (RR > 1) hypotheses at least once.

To illustrate the power for SMILE-2, we also compared the results
of SMILE-2with a standard two-stage regressionmodel of independent
individuals with fixed effects only (IND-FE).

Both IND-FE and SMILE-2Models produced calibrated Type-I error
rates under the null hypothesis for each significance threshold
(Fig. 2A). The SMILE-2modelwas substantiallymorepowerful than IND-
FE models, particularly when disease prevalence is low, or when the
disease prevalence ismoderate and the causal effect (measured by RR)
is large (Fig. 2A), as SMILE-2 incorporates additional related samples.
MSEs of the estimated log-odds ratios are also lower for SMILE-2
compared to IND-FE (Fig. 2B). These results indicate that modeling
genetically related individuals in insurance claim data using the SMILE-
2 model enlarges sample size and improves the accuracy of causal
effect estimates and the power of causal inference. We also conducted
simulations to assess how the causal effects of pollution may be
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affected if the pollution and wind measurements are noisy (see Sup-
plementary Methods for more details). We observed that causal effect
estimates by SMILE-2 remain unbiased when noisy pollution and wind
measurementswere used (Supplementary Fig. 6) and the power is only
minimally reduced.

Estimation and robustness of genetic heritability and spatial
variance components for 1083 traits
We used the SMILE model to analyze 1083 binary diseases as defined
by the PheWAS code (Supplementary Data 2). Comparing the GPC and
SMILEmodels, we found that BIC values were generally smaller for the
full SMILE model (with spatial random effects) in 1021/1,083(94.3%) of
phenotypes, which suggests that modeling community-level environ-
ment improves model fitting. We compared estimated genetic herit-
ability from the best models chosen for each phenotype with or
without spatial random effects (Fig. 3A). When the spatial variance
component was added to the model, the estimated heritability

generally decreases, with the median decrease being 0.03 and inter-
quartile range (IQR) being (0.018, 0.051). This verifies that many
complex traits are influenced by the shared community-level envir-
onment, and that the failure to model the shared community-level
environment could lead to inflated heritability estimates.

Among the 1,021 traits for which the full SMILE model was
chosen as the best model, a CAR covariance structure was selected
for 783 (76.7%) traits, compared to 203 (19.9%) for SAR and 35 (3.4%)
for uncorrelated covariance structures. We compared the herit-
ability and spatial variance component estimates for SAR and IND
against the CAR models for each phenotype (Fig. 3B, C). Interest-
ingly, the estimated heritability was virtually identical regardless of
the correlation structure of the spatial random effect (mean abso-
lute difference compared to CAR = 0.002, with standard deviation
0.003). Differences in the spatial variance component estimates
were also small (mean absolute difference compared to CAR =
0.002 with standard deviation 0.002). This is an indication that

Fig. 1 | Variance component model simulations. We conducted comprehensive
simulations to evaluate the SMILE model for estimating heritability and environ-
mental variance components under different model specifications. We simulated
data undermodelswith different combinations of genetic (G), parental (P), children
(C) and spatial community-level (S) environment variance components. When
analyzing simulated data, Bayesian information criterion (BIC) was used to deter-
mine the best model. In a, we display the fraction of replicates where each model
was selected, as reflected by the size of the data point. In b, we compare GPC and
GPC+ S models as the amount of true community-level spatial variance increases.
Each dot represents the difference in estimated genetic heritability and true

simulatedheritability across 5 simulation replicates under 60different scenarios. In
cwe showed the accuracy for the heritability estimates from SMILE under different
true models with varying numbers of variance components. Each dot represents
the estimated genetic heritability across 5 simulation replicates under 60 different
scenarios. In b and c, minima and maxima values (excluding outliers) are repre-
sented by the lower- and upper-bound of thewhiskers.Median value is represented
by the bold line in themiddle. First and thirdquartiles are represented by the lower-
and upper-bound of the box. All panels represent simulations using 250,000
nuclear families.
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the estimated heritability and community-level environmental
effects are robust to mis-specified correlation structure of spatial
effects, similar to what was observed for heritability estimates in
standard linear mixed models30.

We also investigated whether the length of enrollment of study
participants influences our phenotype definitions and the estimates
of variance components in the SMILE model (see Supplementary

Methods for more details). In brief, we compare the variance compo-
nents estimates using families enrolled 6-7 years (149,710 families) and
using families enrolled for 10–12 years (39,247 families) for all 1083
phenotypes. Overall, we observed a strong correlation for all variance
components (Supplementary Fig. 7 and Supplementary Data 4) sug-
gesting reduced length of enrollment has minimal impact on variance
component estimates in the MarketScan data.
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Fig. 2 | SMILE-2 controls type I error and improves power over methods that
ignore genetic relatedness. We simulated scenarios with 250,000 quad families.
We resampled with replacement families from MarketScan as well as the con-
founder variables associated with those families. We varied the causal effect (in the
unit of relative risk) for PM2.5 and NO2 between 1.0, 1.01, 1.05, 1.1, or 1.2. Con-
founding effects as well as genetic and family environment variance components
were simulated based on the parameter estimates reflective of reported values for
complex traits. The binary disease status was obtained by dichotomizing the con-
tinuous liability threshold according to the disease prevalence from real data. The

type I errors, power (a) andmean squared error (MSE) of the causal effect estimates
(b) were evaluated using 6 replicates for each of 1083 PheWAS code based phe-
notypes under a significance threshold of 0.05. We compared the power for SMILE-
2 against the standard two stage regression using unrelated parents (IND-FE) from
each family. Results are shown for different pollutants and are stratified by the
disease prevalence (K̂). Combined results for all diseases are also shown. The error
bars represent the standard error (SE) across simulation replicates performed
under different scenarios.
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Landscape of heritability and community-level environment
We further stratified the diseases into 16 categories based upon their
biological functions as designated by the PheWAS code mapping13

(Fig. 4). We examined the distribution of heritability and explainable
community-level spatial variation for traits within each category.

We highlighted the diseases with the largest genetic and
community-level environment variance components in each category
(Fig. 4A, B). Hematopoietic traits and congenital anomalies had the
highest average heritability compared to other trait categories, which
are concordant with other genetic studies on these traits31. Traits with

the highest community location-level spatial variance components
included diseases related to parasitic infections (e.g., Lyme disease),
and allergic reactions (e.g., contact dermatitis due to plants and der-
matitis due to solar radiation). For some of these diseases, the con-
nections to spatial environment and community are clear. For
example, the areas with a high incidence of Lyme disease occur pri-
marily in the upper Midwest and northeastern regions of the United
States that are more rural32. Allergic reactions may be triggered by air
pollution or pollen, both of which are spatially correlated and can be
captured by spatial random effects33.
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Community−level Variance Component by Covariance Structureb

Chosen Model (BIC) ● Best=CAR (BIC) Best=Other Covariance Structure (BIC)

Covariance Structure
Spatial random effects ● ●SAR IND
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Heritability by Spatial Effect Covariance Structurec

Fig. 3 | Comparison of estimated heritability with and without accounting for
community effects. In a, we labeled the top 30 phenotypes with largest likelihood
ratio increase after the addition of a community-location level spatial variance
component. As expected from the theory, heritability estimates decrease on
average by 4.3% after accounting for shared community-level environment. The
models with the best BIC values are labeled and the size of the data points

represents the magnitude of community-level environmental variance. In b and
c, we compared variance estimates under independent normal distribution (IND),
conditional autoregressive (CAR), and simultaneous autoregressive (SAR) covar-
iance structures. We showed that regardless of the spatial covariance matrix used,
(b) the spatial variance explained is very similar and (c) the estimated heritability is
nearly identical.

Article https://doi.org/10.1038/s41467-024-49566-6

Nature Communications |         (2024) 15:5357 6



We compared our heritability estimates for diseases defined by
PheWAS codes to the heritability estimates from several previously
published studies (Table 2):
1. An independent study using MarketScan database MS114, but

analyzed without modeling the shared community-level
environment;

2. A study that repurposed EHR data from the New York State NY15;
3. A study CaTCH3 that analyzed twins from EHR data to estimate

genetic and environmental contributions, and

4. Heritability estimates based upon GWAS summary statistics from
UK Biobank (LDSC-UKB34).

The MS1, NY, and CaTCH studies are family-based and estimate
narrow-sense heritability while LDSC-UKB estimates chip heritability.
We found the SMILE estimates are significantly correlated with pub-
lished studies, but generally yielded smaller estimates of heritability
than the GPC model and the other family-based studies, i.e., NY, MS1,
and CaTCH. This is consistent with our simulation results, indicating
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Cerebral aneurysm

Congenital anomalies of muscle,
 tendon, fascia, and connective tissue

Psoriatic arthropathy

Celiac disease

Disturbances of sulphur−bearing
 amino−acid metabolism

End stage renal disease

Congenital coagulation defects

Pediculosis and phthirus infestation

Allergic reaction to food

Alteration of consciousness

Spinal enthesopathy

Screening for malignant neoplasms 
of the skin

Infantile cerebral palsy

Lung disease due to external agents

Astigmatism

Nonallopathic lesions NEC

circulatory system

congenital anomalies

dermatologic

digestive

endocrine/metabolic

genitourinary

hematopoietic

infectious diseases

injuries & poisonings

mental disorders

musculoskeletal

neoplasms

neurological

respiratory

sense organs

symptoms
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Nonrheumatic tricuspid valve disorders

Congenital anomalies of posterior segment of eye

Chronic dermatitis due to solar radiation

Dentofacial anomalies, including malocclusion

Mineral deficiency NEC

Other cells and casts in urine

Other vitamin B12 deficiency anemia

Lyme disease

Spinal cord injury without evidence of spinal bone injury

Alteration of consciousness

Spinal enthesopathy

Neoplasm of unspecified nature of digestive system

Nerve root and plexus disorders

Dependence on respirator [Ventilator]
 or supplemental oxygen

Myopia

Other and nonspecific abnormal cytological, 
histological and immunological findings

circulatory system

congenital anomalies

dermatologic

digestive

endocrine/metabolic

genitourinary

hematopoietic

infectious diseases

injuries & poisonings

mental disorders

musculoskeletal

neoplasms

neurological

respiratory

sense organs

symptoms
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Spatial Variance Componentb

Hyperlipidemia
Disorders of lipoid metabolism
Other anemias
Cerebrovascular disease
Reflux esophagitis
Microscopic hematuria
Cardiac conduction disorders
Vitamin deficiency
Vitamin D deficiency
Hypercholesterolemia
Dry eyes
Allergic conjunctivitis
Chronic pharyngitis and nasopharyngitis
Pervasive developmental disorders
Attention deficit hyperactivity disorder
Other disorders of thyroid
Simple and unspecified goiter
Other arthropathies
Arthropathy NOS
Spondylosis and allied disorders
Spondylosis without myelopathy
Acute pain
Contact dermatitis and other eczema due to plants [except food]
Diabetes mellitus
Type 2 diabetes
Intestinal infection
Acute gastritis
Gastritis and duodenitis
Cystitis and urethritis
Cystitis
Chronic liver disease and cirrhosis
Other chronic nonalcoholic liver disease
Gastritis and duodenitis, NOS
Vitamin B−complex deficiencies
Allergic rhinitis
Acute cystitis
Precordial pain
Other specified gastritis
Cough
Atrophic gastritis
Bacterial infection NOS
Other endocrine disorders
Hyperglyceridemia
Hypertension
Essential hypertension
Edema
Morbid obesity
Abnormal weight gain
Hypopotassemia
Noninfectious gastroenteritis
Influenza
Nausea and vomiting
Fever of unknown origin
Cholelithiasis and cholecystitis
Overweight, obesity and other hyperalimentation
Obesity
Chronic airway obstruction
Ill−defined descriptions and complications of heart disease
Diaphragmatic hernia
Thoracic or lumbosacral neuritis or radiculitis, unspecified
Acute upper respiratory infections of multiple or unspecified sites
Acute bronchitis and bronchiolitis
Malaise and fatigue
Obstructive sleep apnea
Acute sinusitis
Other biliary tract disease
Glaucoma
Hemorrhoids
Other retinal disorders
Other specified diseases of sebaceous glands
Other dyschromia
Scar conditions and fibrosis of skin
Neoplasm of uncertain behavior of skin
Disorders of vitreous body
Benign neoplasm of skin
Hypothyroidism
Hypothyroidism NOS
Throat pain
Hemangioma and lymphangioma, any site
Hemangioma of skin and subcutaneous tissue
Septal Deviations/Turbinate Hypertrophy
Functional digestive disorders
Neoplasm of uncertain behavior
Dermatitis due to solar radiation
Chronic dermatitis due to solar radiation
Insect bite
Symptoms involving digestive system
Arrhythmia (cardiac) NOS
Other disorders of intestine
Calcaneal spur; Exostosis NOS
Other diseases of lung
Chemotherapy
Alteration of consciousness
Other specified nonpsychotic and/or transient mental disorders
Muscle weakness
Radiotherapy
Spasm of muscle
Acute tonsillitis
Tobacco use disorder
Chronic sinusitis
Bronchitis
Chronic pain
Astigmatism
Disorders of refraction and accommodation; blindness and low vision
Myopia
Other mental disorder
Stiffness of joint
Other symptoms referable to back
Other and unspecified disorders of back
Adjustment reaction
Sprains and strains of back and neck
Dislocation
Disorder of skin and subcutaneous tissue NOS
Fracture of unspecified bones
Nonallopathic lesions NEC

m
in

−t
em

p
m

ax
−t

em
p

9t
h_

to
_1

2t
h_

gr
ad

e_
no

_d
ip

lo
m

a
bl

w
po

ve
rt

y
pr

ec
ip

ita
tio

n

P
M

2.
5

bl
ac

k_
or

_a
fr

ic
an

_a
m

er
ic

an
le

ss
_t

ha
n_

9t
h_

gr
ad

e
hi

gh
_s

ch
oo

l_
gr

ad
ua

te
_i

nc
lu

de
s_

eq
ui

va
le

nc
y

lo
g(

po
p−

de
ns

ity
)

N
02

so
m

e_
ot

he
r_

ra
ce

na
tiv

e_
ha

w
ai

ia
n_

an
d_

ot
he

r_
pa

ci
fic

_i
sl

an
de

r
tw

o_
or

_m
or

e_
ra

ce
s

am
er

ic
an

_i
nd

ia
n_

an
d_

al
as

ka
_n

at
iv

e
gr

ad
ua

te
_o

r_
pr

of
es

si
on

al
_d

eg
re

e

as
ia

n
m

ed
in

co
m

e
ba

ch
el

or
s_

de
gr

ee
so

m
e_

co
lle

ge
_n

o_
de

gr
ee

w
hi

te
as

so
ci

at
es

_d
eg

re
e

Community−Level Exposure

D
isease

Pearson Correlation

−0.6,−0.5

−0.5,−0.4

−0.4,−0.3

−0.3,−0.2
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Correlation between Spatial Random Effects and Community−Location Environmental Risk Factorsc

Fig. 4 | Distribution of genetic and community effects by phenotype category.
Panels a and b show the distribution of heritability and community-level environ-
mental variance component in each category of PheWAS disease code and the
disease with the largest variance components is labeled for each category. Minima
and maxima values (excluding outliers) are represented by the lower- and upper-
bound of the whiskers. Median value is represented by the bold line in the middle.
First and third quartiles are represented by the lower- and upper-bound of the
box. Panel c displays heatmap of correlations between the best linear unbiased
predictor (BLUP) of spatial random effects and each individual community

location-level environmental exposure. Different colors in the plot indicate differ-
ent ranges of Pearson correlation coefficient values. The number of phenotypes in
each categories are the following: symptoms (n = 37), sense organs (n = 91),
respiratory (n = 70), neurological (n = 63), neoplasms (n = 43), musculoskeletal
(n = 91), mental disorders (n = 58), injuries & poisonings (n = 75), hematopoietic
(n = 40), genitourinary (n = 55), endocrine/metabolic (n = 100), digestive (n = 117),
dermatologic (n = 77), congenital anomalies (n = 38), and circulatory sys-
tem (n = 79).
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the shared community-level environmental risk, when left unac-
counted for, could add to the upward bias in the heritability estimates
from family-based studies. More details on the comparison can be
found in the Supplementary Methods.

For diseases with strong environmental contributions, our SMILE
model likely offersmuch refined estimates of heritability. For example,
our heritability estimates for type 2 diabetes (T2D) decreased from
37.7% to 28.4% after accounting for spatial community effects. Even
after redefining T2D cases using both ICD diagnostic codes and T2D
medication codes35 (see SupplementaryMethods formoredetails), the
heritability estimate only increased to 31% (Supplementary Data 5-6).
Both estimates are lower than a majority of previous estimates from
family studies of T2D, i.e., several previous studies have produced
heritability estimates in the range of (0.26–0.69)36–40. On the other
hand, the result is more concordant with a recent large-scale study
analyzing UK Biobank participants34 which consists of primarily unre-
lated individuals. It obtained heritability estimates ranging from 19.6%
to 33.2% depending on model specification using whole-genome data
and whether rare or low-frequency SNPs were included for
estimation41. Along similar lines, our heritability estimate for obesity
decreased from 53.1% to 46.3% when adjusted for spatial community
effects, while classical twin studies reported estimates as high as 70%42.
The spatial community-level random effects for T2D showed a strong
correlation with those for obesity ðρ̂=0:67Þ, and a number of other
lipid metabolism-related traits (i.e., Hyperlipidemia ρ̂=0:75,
Hypercholesterolemia ρ̂=0:61). Obesity is well known to be the
number one leading risk factor for T2D43. The correlations in
community-level environment effects underscore the well-known
shared etiology of T2D and obesity attributable to environmental
factors44,45, and increase our confidence in the validity of the effects
captured by the community-level spatial variance component.

Extensive correlation between spatial random effects and
environmental risk factors
Spatial random effects can capture a wide range of environmental risk
factors, including many that are not often measured or controlled for
in genetic studies. To gain a better understanding of what underlies
our estimates of community-level risk, we integrated potential com-
munity-level environmental risk factors (CLERF) from external data
sources into the MarketScan dataset according to the county or MSA
locations. The additional CLERF variables include averaged minimum
andmaximummonthly temperature andprecipitation levels, averaged
PM2.5 and NO2 air pollution, as well as sociodemographic variables of
median income, population density, poverty rates, education levels,
and racial distributions at the county or MSA level from the 2015 ACS
community survey18 (Supplementary Data 7-8). We calculated the total

community-level environmental contribution for each disease at each
MarketScan locationusing thebest linearunbiasedpredictor (BLUP)of
the spatial randomeffect from the SMILEmodel. As the external CLERF
variables are not included as covariates in the SMILE model, we
regressed the BLUPs over these risk factors to assess their impact.

We calculated the correlation between CLERF and BLUPs for 115
diseaseswith a prevalence of at least 2% andwith an estimated spatial
variance of at least 2% (Fig. 4C). For a majority of diseases, we
observed that increased disease risk is correlated with indicators of
lower socioeconomic status (SES), such as lower median income, the
percentage of individuals with high school as the highest education,
and poverty rate. Examples of lower SES-associated diseases inclu-
ded obesity, diabetes, chronic liver disease, chronic obstructive
pulmonary disease (COPD), influenza, and fever. Interestingly, sev-
eral traits were observed to be associated with higher SES, including
benign neoplasms of the skin, hemorrhoids, and adjustment reaction
(a more severe reaction than expected following a stressful event).
We speculate that these findings may be attributable to disparities in
education and access to healthcare for lower SES groups. For
example, previous research has found that low SES is associated with
more advanced melanoma at diagnosis, and that individuals with
lower SES were less likely to be concerned about melanoma risks, or
seeking screening and treatment by their physicians46,47, explaining
why higher SES groups would be more likely to have higher reported
neoplasm incidences. Multiple prospective studies have noted that
low SES is associated with poor mental health outcomes following
stressful events48,49. However, just as other observation studies, our
sample is an observational scan of EHR databases, the inverse rela-
tionship we observe in our study between SES and adjustment
reaction may be due to ascertainment. Similar explanations may
underlie the association between higher SES and hemorrhoids, which
has been noted in previous studies50.

Estimating causal effects of air pollution across 1083
phenotypes
We used SMILE-2 to assess the causal effects of PM2.5 and NO2 air
pollution on 1083 PheWAS disease codes with an observed prevalence
of at least 0.1%.

The distribution for satellite-inferred estimates of PM2.5 and NO2

air pollution at the centroids of eachMarketScan location were shown
in Supplementary Figs. 1–3 (Methods), whichwas based upon averages
across all years. The long-term averaged wind speed and direction
information at each location were shown in Supplementary Fig. 8,
which were used as instrumental variables for pollution to reduce the
correlation between pollution levels and any unobserved confounding
effects (Methods).

Table 2 | Correlations of SMILE results with heritability estimates from published studies

Cohort Scenario N H2 correlation between SMILE and
published study (P-value)

Percentage of traits
with overlapping
conference Interval

Mean squared differ-
ences between
SMILE and published
estimates of H2

Median difference in H2

(SMILE – published
estimates)

GPC SMILE GPC SMILE GPC SMILE GPC SMILE

CaTCH3 All 540 0.11 (0.014) 0.12 (0.0040) 0.43 0.42 0.060 0.053 0.002 −0.031

K > 1% 405 0.19 (8.7 × 10−5) 0.21(2.3 × 10−5) 0.42 0.41 0.049 0.044 −0.013 −0.045

LDSC-UKB34,79** All 68 0.18 (0.14) 0.16 (0.20) 0.75 0.79 0.11 0.099 0.189 0.169

K > 1% 44 0.33 (0.029) 0.30 (0.050) 0.66 0.73 0.12 0.098 0.205 0.169

MS14 All 63 0.79 (1.7 × 10−14) 0.83 (2.7 × 10−17) 0.44 0.26 0.016 0.020 −0.062 −0.101

K > 1% 52 0.76 (5.77 × 10−11) 0.79 (4.7 × 10−12) 0.41 0.2 0.017 0.021 −0.064 −0.106

NY15 All 33 0.57 (0.00051) 0.52 (0.0015) 0.7 0.65 0.029 0.032 −0.009 −0.049

K > 1% 31 0.48 (0.0069) 0.48 (0.0069) 0.68 0.68 0.028 0.030 −0.009 −0.053

(K >0:01 indicates traits with an observed prevalence greater than 1%.) All p-values are for two-sided hypothesis tests.
**The NY and LDSC-UKB studies are based on ICD-9/10 codes. It is difficult to directly compare ICD code defined and PheWAS code defined phenotypes. For this reason, we restricted our
comparisons to ICD-9/10 codes which could be mapped to a unique PheWAS code.
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For each disease, we first applied SMILE-2 to analyze PM2.5 and
NO2 air pollutants, and then also analyzed a constructed total pollutant
level based upon the sum of the standardized PM2.5 and NO2 levels
ðePSUM Þ. After Bonferroni correction, we found 135/1083 (12.5%) of the
phenotypes to have a significant associationwith either PM2.5 (Fig. 5A),
NO2 (Fig. 5B), or ePSUM (Fig. 5C) air pollution. The estimated causal
effect is positive for 105 of 135 significant traits (77.8%), indicating
elevated pollution levels increase disease risk.

Among the significant causal effects, we found that the two pollu-
tants affect different classes of diseases. For example, diseases sig-
nificantly associatedwithPM2.5 but notwithNO2 includedmultiple sleep
disorders (hypersomnia (cORPM2:5

= 1:13,P = 5:4× 10�17), obstructive
sleep apnea (cORPM2:5

= 1:04,P = 1:× 10�8), parasomnia (cORPM2:5
= 1:07,

P = 1:2 × 10�6), narcolepsy (cORPM2:5
= 1:13,P = 5:3 × 10�9)), respiratory

infections51 (acute sinusitis (cORPM2:5
= 1:07,P =3:8× 10�24), acute bron-

chitis and bronchiolitis (cORPM2:5
= 1:05, P = 1:1 × 10�18)), ear infections52

(otitis media (cORPM2:5
= 1:04,P = 1:2 × 10�23), and attention deficit

hyperactivity disorder (ADHD)53 (cORPM2:5
= 1:04,P = 1:4× 10�7), (Fig. 5A).

At the same time, diseases associated with NO2 pollution but
not with PM2.5 highlighted distinct symptomatology including
multiple gastro-intestine-related disorders54 (Gastritis (cORNO2

= 1:1,
P =4:4× 10�7), IBS (cORNO2

= 1:1,P =8:1 × 10�9)), as well as both type I
and type 2 diabetes55 (cORNO2

= 1:15, 1:17 and P =2:5 × 10�6, 2:3 × 10�6

respectively) (Fig. 5B). Additionally, we found several lipidmetabolism
associated diseases are causally linked with NO2 (e.g., hyperlipidemiacORNO2

= 1:09,P = 1:3× 10�7 and hypercholesterolemia cORNO2
= 1:10,

P = 7:5 × 10�6). This is concordant with discoveries from several pre-
vious studies in the Chinese populations56,57, with other research indi-
cating that NO2 may play a role in the regulation of lipid metabolism
and may promote the formation of fatty plaque in arteries58–60. Com-
pared to NO2, PM2.5 may have a more damaging direct effect on lung
function, and it has been shown that PM2.5 can cause inflammation and
a weakened immune-system defense, leaving the respiratory system
prone to infection61.

We also rediscovered associations with diseases of low pre-
valence, which have primarily only been studied in relation to air
pollution for specific subpopulations. For example, previous studies
showed that cystic fibrosis patients exposed to high levels of PM2.5 air
pollution are more likely to develop methicillin-resistant Staphylo-
coccus aureus (MRSA), which is an antibiotic-resistant infection62. In
our study, we recapitulate the causal relationship between MRSA and
PM2.5 in the general population as well ðcORPM2:5 = 1:05,P = 5:1 × 10�6Þ.
The causal effect of PM2.5 on MRSA in the general population under-
scores the important link between air pollution and infectious diseases
from a public health perspective.

Discussion
In this article, we develop the SMILE model to jointly quantify the
contributions of genetics and correlated community level shared
environment on disease phenotype variation. We applied the method
to analyze insurance claim data using the MarketScan dataset with
more than 50 million individuals. We refined the estimates of genetic
heritability and community-level environmental variance components.
We also quantified the causal effects of air pollutants PM2.5 andNO2 for
1,083 diseases.

The refined heritability estimates by SMILEmay help reconcile the
discrepancy between heritability estimates from family studies and
GWAS using unrelated individuals63, as it helps correct for the upward
bias induced by the correlated community-level environment in
family-based variance components models. SMILE does not need
genotype data as input, making it uniquely suitable for analyzing
insurance claim data without genetic information. It also differs from
genome wide interaction studies (GWIS), which uses explicitly mea-
sured environmental variables and genetic information to identify
genetic variants interacting with environment. As it is virtually

impossible to measure all environmental risk factors to the trait var-
iation, GWIS may share the same limitations of GWAS where unmea-
sured environmental risk factors may confound heritability estimates.
GWIS is also not applicable to insurance claim data as it needs geno-
type information. In contrast, SMILE captures the contributions of
spatially correlated environmental risk factors to the trait variation
without having to explicitly measure each environmental risk factor
individually. Thus, SMILE complements GWIS and is essential for
deriving more accurate variance components estimates in the pre-
sence of unmeasured environmental exposures.

Our comprehensive catalog of heritability estimates derived from
EHR-based phenotypes offers a unique reference to quantify envir-
onmental contribution and assess the “missing heritability” for com-
plex diseases. To ensure the validity of our results, we have conducted
comprehensive robustness analyses and simulations that suggest our
results are robust against different phenotype definitions, mis-
specified pedigrees, and measurement errors in wind/pollution
levels. These robustness analyses ensures the usefulness of SMILE and
its extensions to insurance claim data and national EHR-based bio-
banks, such as UK Biobank64 and All of Us65.

Another contribution of our work is that we showed that different
pollutants in the air may have distinct causal effects on different dis-
eases. This contrasts many epidemiological studies, where different
sources of ambient air pollution (i.e., PM2.5, NO2, ground-level ozone,
and carbonmonoxide) are combined into an aggregate measure of air
quality, not distinguishing the specific mechanisms by which indivi-
dual pollutants impact disease. These results would be useful for
generating hypotheses for follow-up analyses.

There are several aspects of our analyses that warrant discussion.
First, MarketScan database only includes individuals with employer
sponsored insurancepolicies. As such, low-income familiesmay not be
well-represented14. While the results are valid for the population the
dataset represents, it is important to exercise caution when extra-
polating our findings to different populations.

Second, as an insurance claim database, MarketScan data only
includes medical information during a limited period of time14. For
example, the data on children is only up to the age of 26, which is the
maximumage a child can be covered by their parent’s health insurance
in the US. Thus, the prevalence for late-onset conditions may be lower
in children when compared to parents. We account for this by (1)
limiting our analysis to families enrolled in the database for at least 6
years, (2) limiting our analysis to families where all children are at least
10 years old at the time of entry into the database, and (3) excluding
families where the age at enrollment of the youngest family member
was less than the 5th percentile of the age of diagnosis for the phe-
notype of interest and (4) including age and age2 as covariates in both
SMILE and SMILE-2 to account for the impact of age. Despite the lim-
itation of the datasets, our heritability estimates are comparable to
estimates obtained from other data types (Table 2), which demon-
strate the effectiveness of our filtering criteria and the validity of our
results.

Third, EHR-derived phenotypes may not be completely accurate.
For example, substance abuse disorder cases may be under-
represented if a substantial proportion of those affected do not seek
medical treatment. For some diseases, the presence of a medical
diagnostic code may highlight the differences in healthcare-seeking
behavior rather than a true representation of disease prevalence. Poor
coding practices for various traits may have negative net impacts on
public health research, and some research has provided evidence that
EHR documentation is heterogeneous across medical providers,
practices, and physicians, including the documentation of diagnostic
codes66. In this regard, spatial random effects may be viewed as a
potentially effective way of controlling for these biases, similar to the
use of a linear mixed model in GWAS to account for unexplained
population structure67.
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Fig. 5 | Volcano plots of causal effect estimates from SMILE-2 model for pol-
lution on diseases. We plotted the estimated odds ratios against −log10(p-values)
for the causal effects of (a) PM2.5, (b) NO2, and (c) the sum of the two pollutants

(ePSUM). All p-values are for two-sided hypothesis tests and are unadjusted for
multiple comparisons. Dashed horizontal line represents Bonferroni significance
threshold for testing 1083 diseases and three pollutants.
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Fourth, causal inference results should be carefully inter-
preted. The Bradford-Hill criterion68 is a standard benchmark for
assessing causality in epidemiological studies, and should be
considered for all causal inferences. Temporality is one assump-
tion, which states that the pollution exposure precedes the dis-
ease. Here, we used a single long-term average of PM2.5 and NO2

air pollution at MarketScan participant locations as the mea-
surement of pollution exposure69. Therefore, the analysis impli-
citly assumes that the average level of pollution is representative
of the pollution exposure for individuals at each location. While
this assumption is valid during the period where our data was
collected, environmental factors may experience transient chan-
ges. For example, during the COVID-19 pandemic, NO2 levels were
significantly reduced but PM2.5 levels remained similar to other
times. This is because NO2 is emitted during fuel combustion of
all motor vehicles and airplanes, but PM2.5 is mainly emitted by
diesel commercial vehicles and remained largely unchanged by
quarantine restrictions70. Understanding how the transient chan-
ges in individual pollutants impact diseases in future works may
lead to more effective and better-informed environmental poli-
cies and air quality regulations.

When causal effects are observed, it is also helpful to further
assess potential explanations and biological feasibility. We observed
several significant associations where air pollution was negatively
associated with diseases that potentially originate from sexually
transmitted infections (painful urination, viral hepatitis) (Fig. 5). This
correlation is consistent with increased sexually transmitted infections
across rural areas in the U.S. compared to more heavily polluted
regions, which may stem more directly from the lack of access to
public health resources and social conservatism71.

We also envision several exciting areas for future research which
exploit the pedigree structures, deep phenotyping, and massive sam-
ple sizes of EHR datasets. For one, computational constraints often
require dichotomizing diseases into binary traits indicating whether
the trait was “ever” or “never” observed for a patient, yet EHR records
are inherently longitudinal in nature. Modeling strategies that can
account for time-to-event outcomes and/or recurrent events (such as
common colds, broken bones, or infections)may yield greater insights
into the etiology of certain diseases. Similarly, modeling air pollution
changes over time could also yield additional findings. Incorporating
spatial random effects and modeling correlated community-level
environment could also lead to applications outside the scope of this
paper, e.g., improving the power of genetic association tests in
national biobanks72.

Together, our methods for modeling spatially dependent
community-level environmental risk open new venues to analyze
national biobanks and explore the genetic architecture of com-
plex traits. Our improved estimates of heritability, environmental
contribution, and causal effects for air pollution across the phe-
nome offer a valuable foundation upon which future studies may
be built.

Methods
Here we describe the SMILE model for quantifying the genetic and
community-level environment contribution. The extension of the
SMILE-2 model for assessing the causal effect for air pollution, the
description of the datasets used, and the simulation analyses are left to
the Supplementary Methods.

SMILE model of genetic heritability, family environment, and
community location random effects
We developed the SMILE model to jointly characterize the genetic,
family-level, and community-level environmental variance compo-
nents. We also refer to the model as GPC + S according to the variance
components included. We included age, the number of months

enrolled in the dataset, and the indicator variables for sex, and the first
year of enrollment as individual-level fixed-effect covariates. A total of
NF nuclear families (with N individuals) were used in the analysis. The
full SMILE model (i.e., GPC + S) may then be specified as

Y =Xπ +ug +Zsus +Zparupar +Zchilduchild + ϵ ð1Þ

where Y = y1, . . . ,yN
� �

is the vector of case-control status. To facilitate
the presentation of the method, we assume that Y is arranged by
families, and within each family, the phenotypes are arranged in the
order of father, mother, and children. X denotes the design matrix for
the fixed effect individual-level covariates with effect π. ug ,upar ,uchild ,
and us are respectively the genetic, shared parental, and children’s
environmental random effects, and community-level spatial random
effects. Zs ,Zpar , and Zchild denote the indicator matrices, mapping
each individual to their corresponding random effects in us ,upar ,
and uchild .

More specifically, upar = ðupar,1,1 . . . ,upar,NF ,1
,upar,NF ,2

, . . .Þ and
uchild = ðuchild,f ,1, . . . ,uchild,NF ,1

,uchild,NF ,2
, . . .Þ are vectors of independent

and identically distributed normal random variables. In family f , the
parents share random effect upar,f ,1 and the children have random
effects upar,f ,2, upar,f ,3, etc. Similarly, in family f , children share random
effects uchild,f ,3, while parents have random effects uchild,f ,1 and
uchild,f ,2, as children and parents may have different environmental
exposures.

Within each family, the correlation between genetic random
effects is determined by kinship matrix G. In the example of a quad
family (nuclear family with 2 children), the kinship matrix is given by:

G =

1 0 0:5 0:5

0 1 0:5 0:5

0:5 0:5 1 0:5

0:5 0:5 0:5 1

0
BBB@

1
CCCA ð2Þ

where the first two rows represent parents and the last two rows
represent children in the family. Each entry in thematrix represents the
genetic kinship between corresponding individuals in the family.

The genetic random effects across all families satisfy:

ug ∼N 0, σ2
g blkdiag G1, . . . ,GNF

� �� �

where blk diag represents block diagonal matrices.
The community-level spatial random effect us = us,1, . . . ,us,L

� �
is a

vector of length L, with individuals located in location l having random
effect us,l and L being the number of unique MarketScan county or
MSA locations). Tomodel the spatial dependence between families,we
considered conditional autoregressive (CAR), simultaneous auto-
regressive (SAR), and independent (IND) covariance matrices for
community-level spatial random effects, as they cover a range of sce-
narios, and it is computationally feasible to apply them to large data-
sets. Specifically, under CAR, SAR or IND models, the spatial random
effects follow:

CAR : us ∼MVN 0,ΣCAR

� � ð3Þ

SAR : us ∼MVN 0,ΣSAR

� � ð4Þ

IND : us ∼MVN 0, σ2
s I

� � ð5Þ

To describe the covariance matrix of the spatial random effects
(i.e., ΣCAR and ΣSAR), we first define the weight matrix W as a L× L
symmetricmatrix.W has diagonal entries of 0 and off-diagonal entries
of 1 for pairs of locations that share a common border. MSA’s were
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considered as ‘sharing borders’ with the counties they encompass.
Adjacencies between counties were identified using the R package
spdep73.W + is obtained fromW by standardizing its rows, so that the
entries fromeach rowaddup to 1 (according to thedefinitionofW , the
normalizing factor

P
jW ij equals the number of ‘neighbors’ to location

i). M is a diagonal matrix with diagonal elements Mii =
P

jW ij

� ��1
.

Using the defined weight matrices, the covariance matrices for
CAR and SAR models are specified as

ΣCAR = σ2
s M�1

2 I � ρM�1
2W +M

1
2

� �
M�1

2

� ��1 ð6Þ

ΣSAR = σ2
s I � ρM�1

2W +M
1
2

� �
M�1 I � ρM

1
2WT

+M
�1

2

� �� ��1 ð7Þ

The covariance matrices for CAR and SAR models have unequal
diagonal elements. For a given estimated parameter σ2

s , the spatial
random effects explain different amounts of phenotypic variance for
individuals at different locations. In order to better quantify the phe-
notypic variance explained by spatial random effects, we calculate a
Gower factor74–76

eσ2
s =

tr Zs I� 1
N 11

T
� �

ΣSZ
T
s

h i
N � 1

8

The Gower factor can be considered as the averaged variance of
spatial random effects across individuals.

For all traits, we report eσ2
s as the phenotypic variance contributed

by spatially-correlated community-level environment.

Conversion of variance components from observed scale to
liability scale
All disease outcomes are binary. We use linear regression
models to estimate variance components on the observed scale.
This has been a widely used approach in human genetics and is
computationally efficient compared to generalized linear mixed
models for large datasets77. To facilitate the comparison of
estimates across diseases with different prevalence, we will
convert them to liability scale. The details for the conversion are
given in the Supplementary Methods. As we demonstrate in
Results and Fig. 1, the conversion yields unbiased results across
different scenarios.

Fitting the model with laplace approximation
We make extensive use of the R package TMB78 to estimate model
parameters, which relies on Automatic Differentiation software to
calculate the gradients of the objective function obtained by Laplace
approximation. More details can be found in the Supplementary
Methods.

Two stage regression model for causal inference of PM2.5 and
NO2 air pollution
Weextend SMILEmodel into a two-stage regressionmodel SMILE-2 for
assessing the causality of air pollution levels using wind speed and
direction as instrument variables. Details are shown in the Supple-
mentary Methods.

Ethical approval
This study is deemed non-human subject research and approved by
Penn State College of Medicine IRB.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We provide all the data that support the findings of this study in this
published article (and its supplementary information files). The raw data
from Truven MarketScan are available for licensed users. A user license
could be obtained by following the instructions at https://marketscan.
truvenhealth.com/marketscanportal/. Multiple external datasets of
community-level risk factors were incorporated in this study. This
included demographic data from the 2015 American Community Survey
5-year estimates18, satellite-derived measurements of air pollution
includingPM2.5

19,20 andNO2
21,22, andwinddirectionandwindspeeddata23.

Code availability
The software package implementing the SMILE and SMILE-2 model is
available at https://github.com/dan11mcguire/smile and the linked
Zenodo repository (https://doi.org/10.5281/zenodo.11081928).
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