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Dear Editor,
The atypical chemoattractant receptor GPR15, a class-A GPCR, is

significantly involved in colorectal cancer pathogenesis and the
maintenance of intestinal immune homeostasis. Originally identi-
fied as a co-receptor for human immunodeficiency virus (HIV) or
simian immunodeficiency virus (SIV), GPR15 regulates the targeted
homing of T cells, notably FOXP3+ regulatory T cells (Tregs), to the
lamina propria of the large intestine1. Moreover, GPR15 mediates
Tregs homing and immunosuppression in the mouse colon2.
Recently, a natural ligand for GPR15, C10orf99 (GPR15L), has been
identified. It is a chemokine-like peptide strongly expressed in
gastrointestinal tissues, confirming that the GPR15-GPR15L axis
constitutes a novel signaling pathway capable of regulating
intestinal homeostasis and inflammation through the migration of
immune cells3,4.
GPR15L shares certain characteristics with the CC chemokine

family. Its uniqueness lies in the C-terminal region, serving as the
activation domain, distinguishing it from traditional chemokines4.
Specifically, the 11 amino acids at the C-terminus of GPR15L
(GPR15LC11) have been shown to exhibit potent efficacy in
activating GPR155.
Understanding the molecular recognition between the

GPR15L–GPR15 pair and the signaling mechanism of GPR15 via
its downstream Gi proteins is crucial to providing insight into the
development of peptide-derived ligands and pharmaceuticals to
treat intestinal disorders. To this end, we present the Cryo-EM
structure of the GPR15–Gi complex bound to GPR15LC11 at 2.9 Å
resolution (Fig. 1a, b; Supplementary Figs. S1, S2, S3, Table S1 and
Materials and Methods). This structural elucidation marks a
significant stride towards unraveling the intricacies of GPR15-
mediated signaling and provides a solid foundation for designing
and optimizing therapeutic interventions targeting this pathway.
Using the Glo-Sensor assay (see Materials and Methods), we

profiled the binding of GPR15LC11 which exhibits high-affinity
recognition and activation of GPR15’s Gi pathway, albeit with
∼40 times lower potency compared to the full-length GPR15L
(Supplementary Fig. S4a). The complex structure elucidates the
precise positioning of GPR15LC11 within the receptor pocket.
The peptide adopts a “V” shape and occupies a transmembrane
pocket, formed by residues from transmembrane (TM) seg-
ments TM1/2, TM3/4, TM5/6/7, and the second extracellular
loop (ECL2) in the extracellular side of GPR15 (Fig. 1c). We
divide the binding interface into the “PQV” motif (79–81 aa),
“GAL” motif (76–78 aa), and “WVVP” motif (72–75 aa),
respectively, according to the natural sequence of the
C-terminal 10 residues of GPR15C11 (Fig. 1c–f). The main chains
of V81 and P79 of the “PQV” motif of GPR15LC11 form polar
interactions with the side chains of S1965.39 and K2616.55 of
GPR15, respectively (superscripts indicate B–W numbering for

class-A GPCR6) (Fig. 1d). The main chain of G76 of the “GAL”
motif forms a hydrogen bond with Y401.39 in the receptor
(Fig. 1e). The functional assay shows that K2616.55A and
Y401.39A mutations completely abolished ligand-induced recep-
tor activation (Fig. 1g, h; Supplementary Fig. S4b), suggesting
that this hydrogen bonding interaction plays a key role in
receptor recognition (Fig. 1d, e; Supplementary Fig. S4b). In the
“WVVP” motif, interactions with the receptor include the main
chain of V73 and W82 forming hydrogen bonds with E185ECL2,
stabilizing the conformation of the ligand and the extracellular
portion of the receptor (Fig. 1f). Additionally, a panel of single
mutations including W892.60A, K922.63A, I1133.32A, R1724.64A,
Y182ECL2A, C183 ECL2A, E185 ECL2A, K187 ECL2A, F2576.51A,
A2917.42F and F2927.43A all markedly reduce the activation of
GPR15 (Fig. 1g, h; Supplementary Fig. S4 and Table S2).
Specifically, K92 of GPR15 makes polar interaction with P75 of
GPR15LC11, while M284 and F292 engage in hydrophobic
interactions with the ligand. Mutations at these positions
disrupt critical interactions with the ligand, resulting in reduced
activation of the receptor. Additionally, the mutation of A291F
introduces a clash with L78 on the ligand, further impairing
receptor activation. These results confirm the important roles of
the hydrogen bonding and hydrophobic interactions in this
region.
To elucidate the conformational changes following the

activation of GPR15 by GPR15LC11, we aligned the structure of
GPR15–Gi with inactive CXCR4 (PDB: 3OE0). The binding of
GPR15LC11 engages in a hydrophobic interaction with F2576.51

of GPR15, inducing its downward shift (Fig. 1i). Accordingly,
F2576.51A mutation profoundly reduces the activation of GPR15
(Fig. 1g). This conformational change is accompanied by a
downward rotational movement of toggle switch residue
W2546.48 (Fig. 1i). The interaction of GPR15LC11 with GPR15
also leads to a twisting movement of TM7 towards TM6. This is
primarily driven by the hydrophobic side chains of Q80 and L78
from GPR15LC11 interacting with M2847.35, A2917.42, and
F2927.43 of TM7, influencing the movement of TM7 along with
the displacement of TM5 and the outward movement of the
extracellular part of TM6 (Fig. 1d, e; Supplementary Fig. S5a).
Subsequent conformational alterations include rearrangement
of the P5.50V3.40F6.44 motif, an outward kink in the TM6
intracellular domain, collapse of the Na+ pocket, rearrange-
ments in the DR3.50Y motif and the conserved NPxxY motif
(Supplementary Fig. S6)6. These conformational changes
ultimately result in the opening of the intracellular cavity to
accommodate the G protein, consistent with the canonical
activation mechanism observed in class-A GPCRs6. The interac-
tion between Gi proteins and GPR15 is similar to that of other
GPCR–Gi complexes. The C-terminal residues of Gαi protein,
including I319, T321, D341, C351, L353, and F354, engage in
polar interactions with residues on TM3, TM5, TM6, and H8 of
GPR15 (Fig. 1j).
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GPR15L shares functional similarities with chemokines, notably
in mediating the migration of immune cells7. The molecular
recognition of chemokines for their cognate chemokine receptors
was previously investigated in detail8–14. In our GPR15L–GPR15–Gi

structure, the ligand portion within the pocket consists of 10
residues, whereas pockets occupied by other chemokines typically
span only 5–8 residues, supporting a highly specific receptor
recognition for GPR15L. Compared with other chemokines,
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GPR15L extends further within the receptor pocket and is
positioned closer to TM5 and TM6 (Fig. 1k). A notable difference
in receptor recognition between GPR15L and other chemokines
lies in the fact that while GPR15L employs its C-terminal 10 amino
acids to recognize GPR15, all other chemokine–receptor interac-
tions are primarily mediated by the chemokine’s N-terminus
(Fig. 1k). Due to the lack of conservation in the N-terminus among
chemokines, various chemokines can activate different chemokine
receptors. However, GPR15L exclusively activates GPR15, differ-
entiating it from typical chemokines3. In our structure, we noted a
unique positioning of GPR15L that induces movement in TM5,
TM6, and TM7 of GPR15 relative to other chemokine receptors
(Supplementary Fig. S5a). This movement arises from the unique
interaction pattern by two residues, Q80 and V81, in GPR15L,
potentially resulting in clashes with corresponding positions in
other chemokine receptors (Fig. 1k). This observation suggests
that GPR15L may exclusively activate GPR15 through a unique
recognition mechanism, emphasizing the specificity of their
interaction. Moreover, the side chain of L78 of GPR15L extends
into the pocket, making a distance of approximately 5.5 Å with the
W6.48 position. This distance is notably shorter than in other
chemokines with known structures (Supplementary Fig. S5b). In
conclusion, GPR15L employs a distinctive recognition mode
through a “V-shaped” peptide at its C-terminus to occupy a
deep-binding pocket within GPR15, distinguishing it from other
chemokines (Supplementary Fig. S5b).
Given the pivotal role of GPR15, particularly as a co-receptor for

HIV/SIV and its significant involvement in colorectal cancer as well
as in regulating colonic inflammation and immune homeostasis,
the imperative for drug design targeting GPR15 is undeniable. In
this study, we analyzed the structure of the complexes formed
between GPR15 and the endogenous ligand GPR15LC11 coupled
to the downstream Gi proteins, thereby gaining a deep under-
standing of the ligand recognition and activation mechanisms of
GPR15. This holds significant implications for developing peptide
and small molecule drugs targeting GPR15. Furthermore, the 10-
aa V-shaped conformation of GPR15L within the pocket suggested
that this peptide sequence could be potentially grafted to the
variable regions of an antibody fragment, which may represent a
favorable direction in drug design.
The structural analysis of this study does not encompass the

N-terminal region of GPR15L. While the full-length ligand
demonstrates superior activation potency compared to GPR15LC11

(Supplementary Fig. S4a), prior research has highlighted the pivotal
role of the 11 amino acids located in the C-terminus for receptor
recognition and activation3,5,15. We hypothesized that the
N-terminal portion might participate in interactions with regions
outside the orthosteric pocket of the receptor (pertaining to the
interaction between chemokine C-termini and their receptors),
potentially influencing ligand activation potency to some extent.
However, truncating the C-terminal 11 amino acids from full-length
GPR15L renders the peptide incapable of activating the recep-
tor3,15, thereby affirming the essential role of interactions between
GPR15LC11 and the orthosteric pocket of GPR15. Nonetheless,

further investigations into the full-length structure of GPR15L are
warranted to comprehensively elucidate its functional significance.
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