Skip to main content
. 2024 Jun 25;14:14629. doi: 10.1038/s41598-024-65092-3

Table 2.

Performance metrics of AI methods on stereological annotations, grouped by slab.

Slab n. Tot. markers Method Prec. (%) Rec. (%) F1 (%)
6 379 BCFind-v2 69.0 84.4 75.9
StarDist (ResNet) 74.7 79.7 77.1
StarDist (UNet) 81.5 70.7 75.7
CellPose 81.5 36.2 50.1
18 746 BCFind-v2 76.9 68.7 72.6
StarDist (ResNet) 76.5 61.8 69.6
StarDist (UNet) 81.2 39.9 53.5
CellPose 78.9 47.0 58.9
30 626 BCFind-v2 72.0 81.6 76.5
StarDist (ResNet) 73.6 81.8 77.5
StarDist (UNet) 77.0 81.9 79.4
CellPose 76.1 56.4 64.8
42 494 BCFind-v2 76.4 82.6 79.4
StarDist (ResNet) 74.8 84.6 79.4
StarDist (UNet) 78.0 81.2 79.6
CellPose 83.8 47.2 60.4
Tot. 2245 BCFind-v2 73.8 78.0 75.8
StarDist (ResNet) 75.6 75.4 75.5
StarDist (UNet) 78.9 65.9 71.8
CellPose 79.3 47.8 59.7

DL models are here trained on volumes from slabs 1–5. Bold values are the highest results per metric and considered set within a maximum distance of 0.5 point percentage to the best model.