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Nonreciprocal feedback induces 
migrating oblique and horizontal 
banded vegetation patterns 
in hyperarid landscapes
Belén Hidalgo‑Ogalde 1*, David Pinto‑Ramos 1,3, Marcel G. Clerc 1 & Mustapha Tlidi 2

In hyperarid environments, vegetation is highly fragmented, with plant populations exhibiting 
non-random biphasic structures where regions of high biomass density are separated by bare soil. 
In the Atacama Desert of northern Chile, rainfall is virtually nonexistent, but fog pushed in from the 
interior sustains patches of vegetation in a barren environment. Tillandsia landbeckii, a plant with 
no functional roots, survives entirely on fog corridors as a water source. Their origin is attributed to 
interaction feedback among the ecosystem agents, which have different spatial scales, ultimately 
generating banded patterns as a self-organising response to resource scarcity. The interaction 
feedback between the plants can be nonreciprocal due to the fact that the fog flows in a well-
defined direction. Using remote sensing analysis and mathematical modelling, we characterise the 
orientation angle of banded vegetation patterns with respect to fog direction and topographic slope 
gradient. We show that banded vegetation patterns can be either oblique or horizontal to the fog flow 
rather than topography. The initial and boundary conditions determine the type of the pattern. The 
bifurcation diagram for both patterns is established. The theoretical predictions are in agreement with 
observations from remote sensing image analysis.

Macfayden is credited with being the first to document vegetation patterns such as bands and/or labyrinths in 
the early 1950s1. Advances in aerial photography have made it possible to make these spatial large-scale obser-
vations, often invisible from the ground. Vegetation patterns are sparsely populated or bare areas alternating 
with dense vegetation patches. It is often referred to them as tiger bush2. They have been seen throughout large 
areas in numerous landscape locations in Africa, America, Australia, and the Middle East2–4. Banded vegetation 
pattern includes shrubs, trees and grasses. They can grow on clay, loam, and sandy soils and are not restricted 
to a single soil type. They are specific to arid and semi-arid landscapes where the annual rainfall (50-750 mm) 
is low with regard to potential evapotranspiration (larger than 1.5× 103 mm). As annual rainfall decreases, the 
average vegetation density decreases while the pattern wavelength increases5. Figure 1 shows examples of tiger 
bush. Permanent, non-transient topological defects characterize these vegetation patterns6. In addition to tiger 
bush, other types of vegetation consisting of a regular distribution of arcs7, patches or gaps have been reported8. 
More recently, other vegetation patterns in the form of spirals have been documented9,10.

Mathematical modelling of biological and ecological systems is challenging because these systems lack basic 
physical principles. An early discrete modelling approach based on cellular automata has been proposed11–13. 
Soon after, modelling approaches that are continuous in time and space, explaining vegetation patterns and self-
organisation, proliferated. They fall into three categories. The first approach, commonly known as the interaction-
redistribution model, is based on the relationship between the structure of individual plants and the facilitation-
competition interactions existing within plant communities14–18. The second approach incorporates explicitly 
water transport19. Other reaction-diffusion models that are mainly the extensions of Klausmeier model19 has 
been proposed in the literature20–26. The third approach focuses on the role of environmental inhomogeneities, 
either in space or time, as a source of symmetry-breaking transitions induced by noise27–31. Despite the diversity 
of modelling approaches, the symmetry-breaking at the origin of the formation of periodic structures follows the 
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generic sequence: a homogeneous cover becomes spontaneously unstable and gives rise to gaped structures, then 
banded pattern or labyrinthine structures, and finally spot structures before collapsing onto the bare ground as 
the level of aridity increases32,33. This sequence has been found in other reaction-diffusion type of models20,34,35. 
Analysis of remote sensing images confirms this theoretical prediction36,37. Vegetation patterns are not always 
periodic; they can be aperiodic and localised in space38–42. The interaction between localized gaps and patches 
has been documented15,43. However, the circular shapes of localised spots can become unstable due to the cur-
vature instability, leading to a phenomenon of self-replication and allowing arid ecosystems to repopulate44,45.

It is now widely accepted that symmetry-breaking is responsible for the spontaneous formation of vegetation 
patterns, even under homogeneous and isotropic environmental conditions14. However, spatial anisotropies, 
such as vegetation growing on a slope, are inherent to most landscapes46,47. The slope of the ground alters the 
pattern selection process because it generates nonreciprocal feedback between plants, i.e., biomass privileges its 
development in certain spatial symmetry and/or orientation14. Patches or gaps are replaced by migrating banded 
patterns or arcs. More recently, remote sensing image analysis has shown that vegetation stripes form a down-
ward convex arc when growing on the top of a ridge and an upward convex arc when growing in a valley48. This 
scenario is supported by numerical simulations of the Klausmeier model modified to include the influence of 
terrain curvature48. An upslope moving vegetation pattern was observed using a reaction-diffusion model with 
advection describing the coupling between biomass and toxicity49. The travelling vegetation patterns presented 
in this work are not specific to arid ecosystems. A further generalization of Klausmeier’s model with inertia and 
secondary seed dispersal effects has been shown to support travelling banded solutions50. An early explanation 
of an upward migration of bands has been attributed to the redistribution of water from scattered patches of 
vegetation to dense patches via runoff51,52, or dominant wind53,54. Models that take into account the slope of the 
ground as a precondition for the formation of vegetation are unable to explain the formation of regular patches 
and/or gaps19. The wavelength and the speed of horizontal uphill banded vegetation have been evaluated55.

The orientation of the banded vegetation, orthogonal to vegetation lines, is not always parallel to the slope. 
Their orientation can be orthogonal14,56 or even oblique, as shown by Dunkerely and Brown57 in arid landscapes 
of Australia. The proposed mechanism is mainly attributed to precipitation in sloping landscapes. Other hyper-
arid ecosystems such as the Atacama desert, where vegetation is constituted by Tillandsia landbeckii develops 
banded vegetation in fog-dependent environments58–60. These vegetation populations are devoid of root systems 
and survive in a hyperarid environment. The coastal region of northern Chile and southern Peru is characterised 
by a hyperarid climate defined by annual precipitation of less than 25 mm61. Tillandsia landbeckii catches water 
droplets and nutrients from the advected fog in the direction west-to-east from the Pacific Ocean62. The vegeta-
tion covers mainly the west side of hills, suggesting that topography plays a crucial role in spatial vegetation 
confinement (see Fig 7 in “Materials and methods” section).

The aim of this work is to investigate the spatiotemporal dynamics of the bands of Tillandsia landbeckii 
as a function of their orientation in relation to the topographical gradient and the dominant wind direction. 
For this purpose, we consider a generic interaction redistribution model with nonreciprocal feedback from 

Figure 1.   Tiger Bush patterns around the world. Vegetation banded patterns living in the coordinates: (a) 
Texas, USA, 31◦ 02 ′  N, 103◦ , 06 ′  W. (b) West Kordofan, Sudan, 11◦ 20 ′  N, 28◦ 19 ′  E. (c) Saudi Arabia, 24◦ 
19 ′  N, 42◦ 56 ′  E. (d) Atacama desert, Chile, 20◦ 24 ′  S, 70◦ 05 ′  W. (e) Sanaag, Somalia, 9 ◦ 48 ′  N, 48◦ 55 ′  E. (f) 
Northern Territory, Australia, 22◦ 40 ′  S, 134◦ 05 ′  E.
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neighbouring plants. Nonreciprocity means that the facilitation and competitive interactions are asymmetrical. 
This is because plants absorb water droplets and nutrients from moving fog. For each plant, the interaction with 
its front neighbour with respect to incoming fog is different from that of its rear neighbour. We show that as the 
aridity parameter increases, horizontal bands form, followed by the stabilisations of two oblique bands. Both 
horizontal and oblique bands have an overlapping domain of stability. Indeed, depending on the initial and 
boundary conditions, both bands can be observed. We include appropriate boundary conditions to model the 
behaviour of tillandsia, clarifying the observed patterns. Oblique vegetation bands have never been reported in 
any of the above-mentioned modelling approaches.

Results
Tillandsia landbeckii banded patterns: remote sensing image analysis
Tillandsia species are plants original to the coastal Peru and northern Chile areas, characterised by being epi-
phytic and unrooted63. Tillandsia landbeckii corresponds to a specialised epiarenic specie dominating the popu-
lation of fog-dependent ecosystems in northern Chile58,63; their vast community formations are often called 
tillandsiales58. An example of such communities is shown in Fig. 2a. They are characterised by capturing fog water 
and having exceptional capabilities for its retention against the hyper-arid conditions of the Atacama desert64,65. 
The fog moves inland from the Pacific Ocean in a preferred direction from west to east 59, reaching the banded 
vegetation patterns living on sloped terrain as schematised in Fig. 2b.

We compute first the orientation field of the pattern γpattern which measures the angle with respect to a fixed 
horizontal direction of the banded vegetation pattern (see Fig. 2c). Second, we compute the angle with respect to 
the horizontal direction γslope which measures the angle of topographic gradient as shown in Fig. 2d (see “Materi-
als and methods” section for details). Figure 2c illustrates how the slope direction angle γslope changes across the 
pattern with respect to the horizontal direction. Figure 2d shows a banded pattern with an approximate 120◦ , 
counterclockwise with respect to the east, which seems to not vary with changes in slope direction. To see the 
relation between these two orientations, we measure the difference angles �θ(r) between pattern orientation 
γpattern and slope γslope at the spatial position r , as shown in Fig. 2e. Based on typical reaction-diffusion theoreti-
cal models, one would expect a 90◦ difference throughout space, that is, bands orient perpendicular to the slope. 
Figure 2f summarises these measurements. Unexpectedly, we obtain a distribution �θ that does not exhibit a 
90◦ dominance. From these charts, we can infer that there is no clear correlation between the slope angle and 
the orientation of the banded pattern.

On the other hand, the wind’s mean direction is west to east, with a slight 30◦ tilt counterclockwise with 
respect to east 66, as depicted in Fig. 2g, blue arrows account for the average wind propagation. Additionally, via 
satellite images  67, we observe that, on average, bands align perpendicularly to the wind direction. To shed light 
on the wind effect on patterns, we locally measure the orientation angle �φ(r) between the pattern angle γpattern 
and the wind direction Ŵ (see Fig. 2g), determining its angular distribution histogram (cf. Fig. 2h). By analys-
ing several vegetation bands within vegetation pattern patches, we observe that there are deviations from the 
perpendicular direction, thus observing the phenomenon of oblique bands, as illustrated in Fig. 2h. From this 
chart, we infer that the distribution is trimodal, characterised by the horizontal (perpendicular to wind direc-
tion) and two oblique patterns with ±7◦ of difference from the horizontal one. Indeed, this histogram shows the 
coexistence of vegetation-banded patterns with different orientations. From these charts, we can infer that there 
is a relationship between wind propagation and the orientation of the banded pattern. Going further and calculat-
ing the correlation �cos(γpattern − Ŵ)� ≈ 0.98 and �cos(γpattern − γslope)� ≈ 0.1 , where the symbol 〈〉 accounts for 
the spatial average. Noting that, the angle used to compute the correlation is perpendicular to γpattern . For more 
details, check the “Material and methods” section. The results indicate that the pattern propagation direction 
is more aligned with the wind direction than with the slope gradient direction. Hence, this is analogous to the 
phenomenon of oblique vegetation patterns involving vegetation with functional roots, which could be oblique 
or not to the slope direction in which water flows57. Note that there is no histogram with perfectly symmetrical 
angular deviations between wind direction and band pattern due to variations in the soil, such as topography, 
nutrient distribution, and other natural causes.

In this statistical analysis based on remote sensing image analysis, we consider landscapes populated by a 
dominant Tillandsia landbeckii, neglecting genetic variation between the plant species present in a landscape 
and ignoring phenotypic differences68.

Theoretical model
An attempt to model hyper-arid ecosystems specifically involving vegetation population of Tillandsia landbeckii 
was proposed in an earlier report59. This model is an extension of the Klausmeier-type model involving droplets 
of water density flowing in the direction of fog coupled with biomass density. In this work, the analysis is limited 
to one-dimensional dynamics in the direction of fog propagation. We adopt the modelling approach based on the 
interaction redistribution model15 in which the competitive interaction occurs through the roots. However, the 
Tillandsia landbeckii do not have functional roots, so the competition takes place at the level of aerial vegetation 
in the presence of fog. They absorb water droplets and nutrients from the atmosphere through the trichomes 
that densely cover their leaves. They can live on the mobile soils of desert dunes, an aspect which is not explicitly 
considered in our modelling approach. Considering conservative dynamics of soil resources has recently proved 
useful to further understand arid ecosystems69,70, leading to phase separation and their respectively coarsening 
dynamic over time. Nevertheless, the observation of a well-defined pattern wavelength is consistent with a dis-
sipative mechanism of self-organization captured by the interaction redistribution model. Three modifications 
are required to model the Tillandsia landbeckii population in relation to the interaction redistribution model15: 
First, we attribute the competitive interaction to the uptake of fog that contains not only water but also nutrients 
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Figure 2.   Statistical analysis of Tillandsia landbeckii patterns alignment. (a) Photograph of Tillandsiales in the 
north of Chile (courtesy of Nicolás Lavandero, some rights reserved (CC BY https://​creat​iveco​mmons.​org/​
licen​ses/​by/4.​0/)). (b) Schematic representation of nonreciprocal feedback for fog-dependent plants. (c) Slope 
orientation map of a vegetation pattern patch, where the colours show different orientations. The inset shows 
the angle γslope generated by the slope gradient. (d) Angle of the banded pattern with respect to the east axis. 
The inset illustrates the angle, γpattern , which the banded pattern forms with respect to the horizontal axis. (e) 
Slope gradient streamlines for a patch of Tillandsia landbeckii. The colours in the curves account for the height 
h. �θ stands for the angle between the vegetation band and the topography gradient. (f) �θ distribution of the 
banded pattern and the direction of the slope. (g) Representation of the direction of fog propagation (wind) for 
a vegetation pattern patch. �φ accounts for the orientation angle between the vegetation band and wind. (h) �φ 
distribution histogram between wind direction and the vegetation banded pattern. Ol , H, and Or account for the 
oblique left, horizontal, and oblique right pattern.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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such as minerals. Second, we modify the kernels or influence functions governing the non-local interactions by 
taking into account the anisotropy due to the fog movement and the sloped nature of the topography. Third, we 
take into account the nonreciprocal feedback. The spatiotemporal evolution of the biomass density b(r, t) obeys 
the following integrodifferential equation

where r and t are the spatial and temporal coordinates, Mf  and Mc are functionals of the neighbouring biomass 
field b, and they model the feedback involving vegetation growth enhancement or decay, respectively.

The nonlocal coupling functions are Mi[b](r) = exp [χi
∫

φi(r, r
′)b(r′)dr′] ,  where, the sub-

script i stands for facilitative (f) and competitive feedback (c), and χi measures their intensity; 
φi(r, r

′) = exp[−(x − x′ − xi0)
2/2l2ix − (y − y′ − yi0)

2/2l2iy]/2π lix liy are the kernel or influence functions. D∇2b 
models the dispersion by seed dispersion which is assumed to be a diffusive process.

The kernel functions are anisotropic due to the environmental conditions, i.e., φi(r, r′) �= φi(|r − r
′|) . This 

means that these functions break the rotational symmetry. However, the kernels are not reciprocal due to the 
slope and/or the fog, which induces a directionality in the competition for resources, i.e., φi(r, r′) �= φi(r

′, r) . 
In the case of water runoff, we assume that the slope is homogeneous, for a driving fog, the direction of the fog 
flow is, on average, along a uniform wind.

In the following, we approximate the original integrodifferential Eq. (1) describing the dynamics in general 
with a nonlinear partial differential equation of fourth order. This reduction is valid in the weak gradient limit, 
where unstable spatial fluctuations have large wavelengths. This means we are looking for conditions close to 
the critical point associated with nascent bistability where µ = 1 , χf − χc = 1 , and b = 0 . Starting from the 
interaction-redistribution model Eq. (1) and taking into account anisotropy and nonreciprocity, the deviation b 
from its value at the onset of nascent bistability is shown to obey the following equation 6

 where η accounts for the balance between linear birth and mortality rate; η is positive when the mortality rate 
is greater than the birth rate. κ is the parameter that stands for the quadratic nonlinearity arising due to logistic 
saturation and kernel effects, often called the cooperativity parameter. d/σ 1/2 models the seed dispersion. α 
accounts for the intensity of nonreciprocity. γ accounts for the balance between facilitation and competition 
ranges. The link between the reduced parameters and the coefficients that appear in Eq. (2) are κ = χf − χc − 1 , 
α = (x0cχ0 − x0f (1+ χ0))/σ

1/4 , γ = (χ1(l
2
cx − l2fx))/σ

1/2, with χ0 = l2fx/(l
2
cx − l2fx) , χc = χ0 + χ1 and σ = 3l2fx l

2
cx . 

The space has been rescaled according to r = r/σ 1/4 . The previous equation is valid close to the critical point, 
that is, µ = 1+ η , with η ≪ 1.

Oblique and horizontal banded vegetation patterns: numerical simulations
Numerical simulations of model Eq. (1) are performed using a finite differences code with Runge-Kutta 
order-4 algorithm and mixed boundary conditions. In the x-direction, we use the Dirichlet boundary con-
ditions b(x = 0, y) = b(x = Lx , y) = 0 and in the y-direction, we apply periodic boundary conditions, 
b(x, y + Ly) = b(x, y) , with Lx and Ly are the box size in x and y direction, respectively. The Dirichlet boundary 
conditions are justified by the fact that the Tillandsia bands are localised, since the topography can limit the avail-
ability of fog water and restrict plant propagation along the x-direction, as shown in Figs. 2 and 7 (see “Materials 
and methods”). The result of numerical simulations is shown in Fig. 3. To observe horizontal patterns in the 
spatial monostable region, we consider a noisy initial condition for biomass. We observe different patterns when 
considering noisy initial conditions in the pattern coexistence region.

The homogeneous solutions of Eq. (2) are identical to the generic interaction and redistribution model 
derived for isotropic environmental conditions32. These solutions are a bare state bs = 0 corresponding to land-
scapes totally devoid of plants and homogeneous plant populations b± = κ ±

√

κ2 − 2η . When κ < 0 , only 
the homogeneous steady state bs+ , defines the biomass density, for η < 0 . It decreases monotonically with η and 
disappears at η = 0 . When κ > 0 , the homogeneous branch of the solution extends to the tipping point bl = κ/2 
and ηl = κ2/4 . In the interval 0 < η < ηl , biomass density exhibits bistable behaviour between the homogeneous 
branches of solutions bs± and bs = 0.

(1)∂tb = b(1− b)Mf [b] − µbMc[b] + D∇2b,

(2)∂tb = −ηb+ κb2 − b3/2+ d∇2b− b
(

α∂x + γ ∂2x + ∂4x
)

b,

Figure 3.   Horizontal and oblique banded patterns obtained by numerical simulations of Eq. (1). (a) Oblique 
banded pattern to the left clockwise (oblique left vegetation pattern), (b) horizontal, and (c) oblique banded 
pattern to the right counterclockwise (oblique right), respectively. All numerical patterns are obtained using a 
noisy initial condition. All patterns are obtained for the same parameters µ = 0.98 , χf = 2.1 , χc = 1.2 , D = 0.2 , 
x0c = −0.2, x0f = 0.5, y0i = 0 , lfx = lfy = 0.9 , lcx = 5 , and lcy = 3.5.
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We fix all parameters, vary the aridity parameter η , and focus our analysis on the bistable regime κ > 0 . The 
reduced Eq. (2) is integrated numerically in a rectangular-shaped domain subjected, as in the case of Eq. (1), to 
Dirichlet and periodic boundary conditions for the x and y direction, respectively. The initial condition is chosen 
to be random for the phytomass density. The results are summarised in Fig. 4. The spatiotemporal behaviour 
undergoes banded patterns with a wavevector oriented in the x direction. When α  = 0 , banded vegetation pat-
terns are moving due to nonreciprocal facilitative and competitive feedback. As in the case of model Eq. (1), 
two types of vegetation patterns are generated numerically: oblique and horizontal propagative bands, as shown 
in Fig. 4. Therefore, the non-local model Eq. (1) and its respective local approximation Eq. (2) account for the 
coexistence of propagative band vegetation patterns. This behaviour resembles what is observed in Tillandsia 
landbeckii vegetation patterns, where for a single patch, different angles with the fog propagation direction are 
well defined (cf. Fig. 2). However, the patterns observed in northern Chile exhibit spatial irregularities and 
dislocation defects.

Oblique and horizontal banded vegetation patterns: linear and nonlinear analysis
Nonlinear study through normal form analysis is required to understand horizontal and oblique banded vegeta-
tion patterns. To do this, let us first linearise the Eq. (2) of the homogeneous cover bs+ , and consider a spatial 
perturbation of the form b = bs+ + boe

�t+kr where k = (kx , ky) , r=(x,y) and b0 ≪ 1 , which yields a character-
istic equation for the growth rate � as a function of wavenumber k . The threshold associated with the pattern 
forming instability requires two conditions: ∂kRe �(k)|kc = 0 and Re �(kc) = 0 . We fix all parameters, and we 
consider the aridity η as a control parameter. These two conditions determine the critical wavenumber kc and 
the critical aridity ηc . The summary of the linear analysis is shown in Fig. 5. Above the critical threshold, i.e., 
η > ηc then Re� > 0 , two ellipsoids of unstable spatial modes appear in Fourier space as shown in Fig. 5a,b. The 
Dirichlet boundary conditions along the x direction impose that unstable modes are discrete, i.e., ky = 2πn/Ly 
and kx = πm/Lx for integers n and m. As the aridity parameter increases, the spatial discrete unstable oblique 
modes appear, as depicted in Fig. 5c,d. These figures reveal that the first pattern to appear for increased mortality 
corresponds to bands with a wavenumber parallel to the x direction; then, a symmetric pair of oblique banded 
patterns appear for enough aridity, see Fig. 5d. The linear analysis predicts that any superposition of these patterns 
should be a solution; however, this is not observed in numerical simulations or field observations. Of course, 
nonlinear saturation and interaction of these Fourier modes play an essential role in selecting the well-defined 
banded patterns as observed in nature.

To determine the solutions, such as horizontal and oblique banded patterns that have been numerically 
obtained and observed by remote sensing image analysis, we conduct a weakly nonlinear analysis. The solution of 
Eq. (2) can be approximated by b = bs+ + A(r, t)eikcx+i�c t + c.c. where c.c. accounts for complex conjugate. The 
complex amplitude A(r, t) of the banded vegetation pattern near the threshold associated with pattern forming 
process obeys a Ginzburg-Landau type of equation6

µ̂ is proportional to the critical mode growth rate, β is a nonlinear dispersion, and α̂ is proportional to the 
group velocity of the pattern, which arises from relation dispersion Im(�(k)) , specifically α̂ = ∂Im(�)/∂kx and 

(3)∂tA = µ̂A− (1+ iβ)|A|2A+∇2A− α̂∂xA,

Figure 4.   Horizontal and oblique banded patterns obtained by numerical simulations of Eq. (2) with 
η = −0.02 , κ = 0.3 , d = 0.3 , α = 0.27 , and γ = 2 . Columns Ol , H, and Or show oblique banded patterns to the 
left clockwise, horizontal, and oblique banded patterns to the right counterclockwise, respectively. From top to 
bottom, the first row shows the 2D colour representation of the biomass field b(x, y, t). The second row is the 
biomass profiles b along the y direction at the central line, and the final row is the spatiotemporal evolution of 
these profiles, depicting the upward movement or advected patterns.



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14635  | https://doi.org/10.1038/s41598-024-63820-3

www.nature.com/scientificreports/

corresponds to the speed of propagation of the pattern bands. See reference6 for a detailed derivation and param-
eter expressions. If the reflection symmetry is not broken, the model equation will be invariant with respect to 
the transformation r → −r and rotation of coordinates, then, the banded pattern will be motionless14. However, 
if the interaction is nonreciprocal, the reflection symmetry is broken, as in the case of Ginzburg-Landau Eq. (3). 
Therefore, the banded vegetation pattern exhibits a global motion, in this case towards the incoming fog.

The solution of the horizontal banded pattern is A ≡ H = H0e
iφ0 , with H0 the pattern amplitude and φ0 

an additive phase. The solution of oblique banded patterns is A(y) ≡ Ol,re
i(φ0±�ky) , with Ol,r representing the 

oblique patterns amplitude towards the left and right flanks, respectively. The horizontal and oblique patterns 
are described by the wavevector kH = (kc , 0) , and kO = (kc ,�k) , respectively. Note that �k is of order 

√

µ̂.
To calculate the solutions emerging from the pattern-forming instability, we use a standard nonlinear analy-

sis based on a truncated Fourier mode expansion of the field A(r, t) . This analysis allows us to determine both 
horizontal and oblique banded patterns, and assess their stability. Then, solutions of the Ginzburg-Landau Eq. (3) 
can be approximated by a superposition of horizontal and oblique modes as

By replacing the ansatz (4) in Eq. (3), collecting the coefficients proportional to {1, ei�ky , e−i�ky} , and neglecting 
higher modes, we obtain the following amplitude equations

The set of Eqs. (5) describes the dynamics of banded patterns, that is, given an initial condition composed 
of horizontal and oblique stripes, the amplitude of each one is determined in the future by integrating in time 
Eqs. (5). Then, we are interested in the different equilibria that Eqs. (5) exhibit, as well as their stability. One can 
see that for µ̂ < 0 the only equilibrium is (H ,Ol ,Or) = (0, 0, 0) , this is because the system is in a non-pattern 
forming regime and the homogeneous solution is the stable one. When increasing the bifurcation parameter 
µ̂ such that µ̂ > 0 , first appears the horizontal band pattern from the uniform state bs+ (see Fig. 6a), and after 
a second threshold, the unstable oblique patterns emerge from the homogeneous solution (cf. Fig. 6b); this 
behaviour is depicted in phase space portraits projection as shown in the bottom panels Fig. 6. Further varying 
the control parameter, the oblique pattern is stabilised through the emergence of an unstable mixed mode from 

(4)A = H(t)+ Ol(t)e
i�ky + Or(t)e

−i�ky .

(5)

∂tH = µ̂H − (1+ iβ)H
(

|H|2 + 2
(

|Ol|
2 + |Or |

2
))

− 2(1+ iβ)OlOrH̄ ,

∂tOl = (µ̂−�k2)Ol − (1+ iβ)Ol

(

2|H|2 + |Ol|
2 + 2|Or |

2
)

− (1+ iβ)H2Ōr ,

∂tOr = (µ̂−�k2)Or − (1+ iβ)Or(2
(

|H|2 + |Ol|
2)+ |Or |

2
)

− (1+ iβ)H2Ōl .

Figure 5.   Linear analysis close to the onset pattern formation. Panel (a) represents the Fourier space for 
Re �(k) , where the blue plane indicates � = 0 . The condition for pattern formation is depicted in (b) as a 
projection; as η increases towards a critical value ηc , the curve surpasses the {kx , ky} plane, allowing a band of 
unstable modes to appear. This region is shown in (c), where the discrete unstable modes, represented by dots, 
are within the solid line, while those outside satisfies Re �(k) < 0 . For η = −0.219 , there are three unstable 
modes, as shown in (d), two obliques Ol and Or , and the horizontal one H.
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it (see Fig. 6c). Hence, the oblique and horizontal banded patterns coexist. Due to the dynamics of modes, the 
analytical bifurcation diagram depicted in Fig. 6e is obtained. This figure shows a parameter range for which 
only horizontal banded patterns are possible in finite systems but also a region of coexistence for both patterns. 
Moreover, through direct simulation of Eq. (2), we obtain an analogous bifurcation diagram depicted in Fig. 6f, 
describing the same phenomenon using a bifurcation parameter η , one zone with only the existence of a hori-
zontal banded pattern and another with both horizontal and oblique patterns as stable solutions. The coexistence 
of horizontal and oblique banded patterns is in agreement with the remote observations as shown in Fig 2h.

Conclusions
We studied the vegetation patterns of populations of Tillandsia landbeckii. This plant survives in the hyperarid 
landscapes of the Atacama Desert in Chile and Peru. This plant has no functional roots and lives on slopes in 
extreme environmental conditions. Tillandsia landbeckii survives thanks to the fog the plants trap with their 
dense aerial structure. We used remote sensing image analysis and mathematical modelling to address the spa-
tiotemporal evolution of banded vegetation patterns and their orientation.

Using remote sensing data analysis, we constructed histograms showing the angular deviation between the 
prevailing wind direction in which the fog flows and the banded vegetation pattern. We identified three main 
directions, one perpendicular to the prevailing wind and two inclined at about 7 ◦ , coexisting in the same area. We 
have shown that the preferred direction of banded vegetation patterns is due to fog flow rather than topography.

Using the interaction-redistribution model with nonreciprocal effects mediated by non-local facilitative and 
competitive interactions between plants, we showed evidence of oblique banded vegetation patterns. The origin 
of the nonreciprocal interaction lies in the flow of fog along the prevailing wind. This effect influences seed 
dispersal and can favour plant reproduction in the wind direction. Starting from the full integrodifferential 
model, we have reduced it to a simpler model, the partial-differential model. This reduction is valid in the weak 
gradient limit, where a large-wavelength pattern formation occurs. We have provided evidence of horizontal and 
oblique vegetation patterns through numerical simulations of both models. From the simplified model, we have 
performed a linear stability analysis, which shows that the spectrum of unstable Fourier modes is discrete due to 
the Dirichlet boundary conditions along the fog direction. A nonlinear analysis is also performed, which allows 
for establishing a normal form associated with horizontal and oblique banded vegetation patterns. This analysis 
allows us to obtain a bifurcation diagram and access the stability of the three nonlinear solutions.

Our theoretical description predicts a scenario where coexistence exists far from the transition between the 
vegetation pattern and uniform vegetation cover state (see Fig. 6). Therefore, the observation of both pattern 

Figure 6.   Bifurcation diagram of horizontal and oblique banded vegetation patterns. The top row shows 
projections of the phase portrait for the oblique ( O) and horizontal ( H) banded patterns amplitudes. The 
uniform state corresponds to the origin of the phase portrait, which is represented by a black dot. The first 
pattern to arise is the horizontal one, depicted as the blue dot, emerging from the homogeneous state. Increasing 
the bifurcation parameter, µ̂ , the oblique pattern (orange dot) emerges from the homogeneous state, as observed 
in (b). Note that, at first, this pattern is unstable, and through the appearance of the mixed pattern (white 
dot), the pattern becomes stable, as shown in (c). As a result, (d) illustrates the full phase space for the oblique 
and horizontal banded pattern amplitudes. This dynamic is represented in panel (e) as a bifurcation diagram. 
Moving forward µ̂ , first arises the horizontal pattern in a supercritical way (blue curve), then the oblique pattern 
emerges supercritically. The solid and dashed lines account for stable and unstable states. The panel (f), is the 
bifurcation diagram obtained by numerical simulation of Eq. (2) by κ = 0.3 , d = 0.3 , α = 0.5 , and γ = 2 , 
showing the same behaviour of panel (e).
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orientations, meaning bistability, is a manifestation of environmental stress on the system. The presence of dif-
ferent orientation domains within the same vegetation patch generates defects. The dynamics of these defects 
in vegetation self-organization and their ecological consequences remain poorly understood. Studies in this 
direction are in progress.

By employing a straightforward modelling approach and analysing remotely sensed images, we were able to 
discern oblique and horizontal bands with overlapping domains of stability. This was achieved by studying the 
relationship between the orientation of Tillandsia landbeckii populations and the topographical gradient and 
dominant wind direction. In particular, our modelling approach, supported by field observations, suggests that 
topography does not play a role in the stabilisation of oblique banded vegetation patterns. Note that most spatio-
temporal modelling approaches for dryland ecosystems use periodic boundary conditions. Here we explore 
the use of more realistic boundary conditions that capture the spatial confinement of vegetation patterns and 
show that this has an effect on the threshold that dictates the appearance of oblique vegetation stripes, which is 
influenced by the size of spatial confinement (cf. Fig. 7).

Materials and methods
Boundary conditions
To justify the Dirichlet boundary conditions that we use along the fog direction, we consider the satellite image 
as shown in Fig. 7a. The landscape is formed by a dominant species of Tillandasia landbeckii vegetation patterns. 
This pattern is confined in space, forming a localised vegetation pattern.

Image acquisition and processing
Satellite images are obtained thanks to the Google Earth software 67. They are processed using the FIJI (ImageJ) 
open software71. As illustrated in Fig. 7, the images are first transformed to grayscale (for example, averaging 
the RGB spectral bands). A Gaussian filter allows for the smoothing of imperfections due to the topography 
and plant roughness; mathematically, it corresponds to the convolution of the image with a Gaussian kernel of a 
given pixel width, in this case 1 pixel. Finally, the background is removed with the rolling ball algorithm built-in 
FIJI71, with a radius of 20 pixels.

For obtaining the banded pattern orientations, the plugin OrientationJ is used72–74. The algorithm of Orienta-
tionJ is based on the use of the structure tensor. The structure tensor is a matrix obtained from the computation of 
the gradient of the image under analysis. The image of the orientation of the pattern in radians is then obtained.

Slope and wind data acquisition
Slope information is obtained by drawing different paths in Google Earth67, which gives information on the 
altitude along the path. Then, an altitude field is reconstructed employing the QGIS software tools.

Wind information is extracted from the public database66. The wind direction information is given in inter-
vals of 30◦ , and the dominant direction for the speed angular distribution corresponds to 30◦ counterclockwise 
from the East.

Figure 7.   Tillandasia landbeckii vegetation patterns. From left to right of the top panels, the first panel is 
a satellite image from Tillandsia patches. The next one corresponds to the same picture but in greyscale. A 
Gaussian filter was used to smooth the pattern for the third image, and the background was removed. As a 
result, we obtain the last panel, but the greyscale is inverted. The bottom panel shows a horizontal spatial profile 
of the Tillandsia landbeckii pattern highlighted in the red line on the right top panel; the peaks account for 
biomass, and the minimums are bare soil.
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Correlation between pattern, slope and wind angles
Considering that every angle γi , corresponds to a pixel in the image, then every pixel can be associated with a 
vector, such as for a pixel p, p = cos(γi)x + sin(γi)y . Then, the angular difference between two vectors is the inner 
product of both, so �γi , γpattern� = cos(γi − γpattern) . The angle used to compute the correlation is perpendicular 
to γpattern . In this way, the calculation of the correlation measures how aligned the pattern propagation direction 
is with respect to the wind or slope gradient rather than how aligned the stripes of the pattern are with respect 
to the other variables mentioned before. The analysis was done in several vegetation patches, ten to be precise, 
in Coquimbo region, Chile

Data availability
The datasets analysed during the study are openly available in supplementary material within this article.
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