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The common fruit fly Drosophila melanogaster provides a powerful platform to investigate the genetic, molecular, cellular, and

neural circuit mechanisms of behavior. Research in this model system has shed light on multiple aspects of brain physiology

and behavior, from fundamental neuronal function to complex behaviors. A major anatomical region that modulates

complex behaviors is the mushroom body (MB). The MB integrates multimodal sensory information and is involved in be-

haviors ranging from sensory processing/responses to learning and memory. Many genes that underlie brain disorders are

conserved, from flies to humans, and studies in Drosophila have contributed significantly to our understanding of the mech-

anisms of brain disorders. Genetic mutations that mimic human diseases—such as Fragile X syndrome, neurofibromatosis

type 1, Parkinson’s disease, and Alzheimer’s disease—affect MB structure and function, altering behavior. Studies dissecting

the effects of disease-causing mutations in the MB have identified key pathological mechanisms, and the development of a

complete connectome promises to add a comprehensive anatomical framework for disease modeling. Here, we review

Drosophila models of human neurodevelopmental and neurodegenerative disorders via the effects of their underlying mu-

tations on MB structure, function, and the resulting behavioral alterations.

Brain disorders affect a large percentage of the human population
—current estimates suggest that∼15%of people suffer fromneuro-
logical disorders (Feigin et al. 2020) and 49.5% are affected by at
least one class of mental health disorder (Merikangas et al. 2010).
Twomajor classes of brain disorders are neurodevelopmental disor-
ders and neurodegenerative disorders. Neurodevelopmental disor-
ders alter biological processes during development, often
impacting cognitive function and behavior. Such disorders affect
1%–3% of the world population (Kochinke et al. 2016). In addi-
tion, neurodegenerative disorders, characterized by progressive
loss of neurons, affect 12%–14% of the population (Feigin et al.
2020). In some cases, genetic mutations are the root cause of the
disorder. Such mutations exert complex effects on cellular signal-
ing pathways, circuit function, and systemic physiology. Given
this complexity, powerful genetic models such as Drosophila facil-
itate mechanistic dissection of disease pathophysiology. There is
significant conservation of genes and cellular functions between
flies and humans (Adams et al. 2000; Mohr and Perrimon 2019);
∼75% of known human disease-causing genes have orthologs in
Drosophila (Rubin et al. 2000). To facilitate investigation of these
conserved genes and signaling pathways, databases of human dis-
eases have been generated for Drosophila (Millburn et al. 2016).
Genetic screens and high-throughput phenotypic analyses in
Drosophila have advanced the understanding of human diseases
that result from a variety of genetic mutations.

The Drosophila mushroom body (MB) provides a robust ana-
tomical platform to dissect themechanisms underlying sensory in-
tegration/processing, complex behaviors such as learning and
memory, and the effects of human disease-causing mutations on
these processes. The MB consists of approximately 2000 intrinsic
neurons in each hemisphere, which are called Kenyon cells

(KCs). KC somata and dendrites are in the posterior brain and pro-
ject fasciculated axon bundles anteriorly. As these axon bundles
approach the front of the brain, they diverge, sending collaterals
dorsally and medially into five lobes: the α, α′, β, β′, and γ lobes
(Fig. 1A,B; Crittenden et al. 1998; Aso et al. 2014a). Along the lon-
gitudinal length of each lobe, there are multiple anatomically and
functionally distinct compartments (Fig. 1B; Tanaka et al. 2008;
Mao and Davis 2009). Each compartment receives input from dis-
crete sets of modulatory afferent neurons (such as dopaminergic
neurons) and sends their cholinergic output to discrete down-
stream output neurons (MBONs) that have different behavioral
roles (Aso et al. 2014b; Barnstedt et al. 2016). This allows sensory
information to drive different behavioral responses in a context-
dependent manner (Aso et al. 2014b). Multimodal sensory signals
are processed in the MB including visual, olfactory, gustatory,
tactile, and auditory stimuli (Wolf et al. 1998; Liu et al. 1999;
Popov et al. 2003; Kirkhart and Scott 2015; Vogt et al. 2016).
Information is processed and modified by experience to alter
learned behaviors via plasticity in the MB (Yu et al. 2005, 2006;
Séjourné et al. 2011; Perisse et al. 2013; Tomchik and Davis
2013; Boto et al. 2014, 2019; Cohn et al. 2015; Hige et al. 2015;
Yamagata et al. 2015; Berry et al. 2018; Louis et al. 2018; Handler
et al. 2019; Phan et al. 2019; Zhang et al. 2019; Bilz et al. 2020;
Baltruschat et al. 2021; Stahl et al. 2022). Along with associative
learning, the MB modulates state-dependent behaviors such as
sleep and hunger (Pitman et al. 2006; Sitaraman et al. 2015; Tsao
et al. 2018).

In this review, we will highlight major findings in two broad
categories of neurological diseases that are modeled in the
DrosophilaMB: neurodegenerative and neurodevelopmental disor-
ders. Multiple genetic mutations that drive brain disorders in
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humans affect MB structure and function. The thoroughly charac-
terized anatomy of the MB, along with its role in mediating com-
plex behaviors, makes it an outstanding platform to dissect the
mechanisms of these disorders. Complete coverage of the literature
in this area would be too vast for a single review, and readers are di-
rected to additional reviews for more information (Jaiswal et al.
2012; Şentürk and Bellen 2018; Mariano et al. 2020). Drosophila
have been used in genetic research for more than 100 y, and a
vast genetic toolkit has been developed over this time. For further
information, readers are directed to technical reviews describing
the Gal4/UAS system (and numerous derivatives/alternatives)
(Luan et al. 2020), the types of genetic screens used (Yoon 2023),
and current catalogs of RNAi and CRISPR mutations (Adams
et al. 2000; Port et al. 2020; Hu et al. 2021; Zirin et al. 2022). The
first sections of this review focus on major findings from studies
on neurodegenerative disorders, defined by a progressive loss of
susceptible neuronal populations (Dugger and Dickson 2017).
In the neurodegenerative realm, we will focus on modeling
Alzheimer’s disease (AD) and Parkinson’s disease (PD). Next, we
will cover neurodevelopmental disorders, which are defined by
their onset during a developmental period (Morris-Rosendahl
and Crocq 2020). In this realm, we will highlight research into
Fragile X syndrome (FXS) and neurofibromatosis type 1 (NF1).
Finally, we briefly discuss several other disorders modeled in
Drosophila. Throughout the review, we emphasize research that in-
volves the MB.

Alzheimer’s disease

AD is a neurodegenerative disease that typically appears late in
adulthood. The disease results in neurodegeneration, with severe
cases causing cortical shrinkage and ventricle enlargement (Fig.
2A,B). The first clue into the molecular nature of AD came from
the discovery that the amyloid beta (Aβ) peptide accumulates in
the brains of AD patients (Yoshikai et al. 1990). Aβ is generated

via cleavage of the amyloid precursor protein (APP) (Drosophila ex-
press an APP-like protein, APPL). Under nonpathological condi-
tions, this cleavage is catalyzed by α-secretase; however, under
disease-state conditions, γ-secretase/β-site APP cleaving enzyme-1
(BACE1) produces a less soluble, neurotoxic Aβ peptide: Aβ42 pep-
tide (De Strooper and Annaert 2000; O’Brien and Wong 2011; Liu
et al. 2019). Pathophysiology of AD may involve altered neuronal
excitability; accumulation of Aβ42 increases the excitability of neu-
ronal circuits associated with neuronal degeneration (Ping et al.
2015; Tabuchi et al. 2015; Kaldun et al. 2021). Loss of synaptic in-
hibition leads to the neuronal excitation of cells localized near
plaque formations (Busche et al. 2008). This potential pathophys-
iological mechanism has been modeled extensively in the MB; ex-
cess Aβ42 in theMB impairs courtship memory (Feng et al. 2018a),
aversive short-/middle-termmemory (Martin-Peña et al. 2017; Kal-
dun et al. 2021), forgetting (Kaldun et al. 2021), and middle-term
appetitive memory (Kaldun et al. 2021). Mouse models have
shown both increases in neuronal activity in some brain regions
(e.g., the hippocampus) and decreases in activity of others (e.g.,
the amygdala, which exhibits increased inhibitory transmission)
(Busche et al. 2008; Klein et al. 2014; Šišková et al. 2014). Notably,
accumulation of Aβ42 in the MB α, β, and γ lobes decreases neuro-
nal activity due to age-dependent loss of the A-type K+ channel Kv4
(Aso et al. 2009; Feng et al. 2018a). Behavioral alterations, such as
impaired courtship memory, could result from a decrease in the
odor-evoked activity of the MB (Feng et al. 2018a), where Aβ42
has aggregated (Higham et al. 2019). The loss of Kv4 activity also
affects circuits outside of the MB, including those mediating circa-
dian rhythms and flight maintenance (Ryglewski and Duch 2009;
Feng et al. 2018b; Smith et al. 2019).

Aggregation of Aβ42 is highly dependent on the specific mu-
tation(s) in the precursor peptide. Sequencing of patient-derived
mutations has pinpointed mutations responsible for early onset
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Figure 1. Diagram of mushroom body (MB) anatomy. (A) Frontal view
of the MB lobes and their compartments. A single KC innervating the γ
lobe is shown in black. The KC axon travels through multiple compart-
ments, making en passant synapses with monoaminergic (e.g., dopami-
nergic) neurons (not shown) and downstream mushroom body output
neurons (MBONs). (Inset) Expanded synaptic-scale view showing the pre-
synaptic release of acetylcholine (ACh) onto a downstream MBON, acti-
vating ACh receptors (AChRs). (dors) Dorsal, (post) posterior, (lat)
lateral. (B) Separate views of the α, β, α′, β′, and γ lobes. Each KC innervates
either the α/β lobe, the α′/β′ lobe, or the γ lobe, passing through multiple
synaptic compartments. Each numbered compartment is labeled.
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Figure 2. Alzheimer’s disease (AD) pathology in humans and in the
Drosophila AD model. (A) Diagram of a transverse section of healthy
human brain. (B) AD pathology in the human brain (contralateral view rel-
ative to A), showing atrophied cerebral cortex and enlarged ventricles
(white patches). (C ) Diagram of a wild-type Drosophila brain, showing
the MBs in green. (D) Pathology in the Drosophila R406W AD model (con-
tralateral view relative to C ). White ellipses represent vacuoles in the MB
calyx (dendritic) regions, and black ellipses represent tau accumulation
of R406W in the MB γ-lobe (axonal) and calyx (dendritic) regions.
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AD (EOAD). EOAD is characterized by a severe amalgamation of
misfolded amyloid structures identified in individuals before the
age of 65 (Nilsberth et al. 2001). One model of EOAD involves ex-
pressingmutant Aβ containing theArcticmutation (Aβ42Arc). This
mutation (APP E693G) is one of several that produces an autoso-
mal dominant form of AD. When Aβ42Arc is expressed in the
MB, the flies exhibit neuronal cell loss, visible in the dendritic re-
gion of the MB (calyx) as well as its axonal lobes (Fig. 2C,D;
Iijima et al. 2008). Further, Drosophila models of EOAD cause pro-
gressive aggregation of Aβ42, and learning andmemory deficits ap-
pear 7–9 d posteclosion. Other pathologies, such as mitochondrial
perturbations, are observed even earlier (Kaldun et al. 2021; Wang
and Davis 2021).

A second hallmark of human AD is the presence of neurofibril-
lary tangles composed of aggregated tau, amicrotubule-bindingpro-
tein. This aggregation occurs due to tau hyperphosphorylation and
subsequent dissociation of the protein from microtubules (Hutton
and Hardy 1997). Tau is critical for microtubule stability and for
proper axonal trafficking (Cowan et al. 2010). Overexpression of
wild-type tau in theDrosophilaMB does not produce a degenerative
phenotype (and Drosophila do not exhibit neurofibrillary tangles).
Nonetheless, tau hyperphosphorylation recapitulates some features
of human AD, including neuronal degradation (Wittmann et al.
2001). Modeling a form of EOAD, expression of the R406W muta-
tion in Drosophila drives axonal decay and vacuole formation
through the accumulation of hyperphosphorylated tau in choliner-
gic neurons (Fig. 2; Wittmann et al. 2001; Mershin et al. 2004).
Comparing the pathology of human AD and the R406W model,
Drosophila exhibit brain vacuoles but not neurofibrillary tangles,
and AD patients exhibit neurofibrillary tangles, but not vacuoles.
Despite these differences, a common feature is neurodegeneration,
and neurodegeneration in the R406W model is progressive with
age (Wittmann et al. 2001; Ali et al. 2012; Passarella and Goedert
2018). Further, there is impairment of learning andmemory inDro-
sophila—accumulation of tau in theMB reduces short-termolfactory
aversivememory (Mershin et al. 2004). Although overexpression as-
says identified tau as a target for neurodegenerative alterations, the
molecular mechanisms were initially unclear. Genetic modifier
screens targeting tauopathies subsequently identified a groupofpro-
teins that alter tau phosphorylation (Shulman and Feany 2003). The
PAR-1 kinase kicks off a cascade of downstream phosphorylation
events following the initial phosphorylationofDrosophila tau (Nish-
imura et al. 2004). Further, the key neurotoxic effects are localized to
the phosphorylation sites at Ser238 and Thr245 (Kosmidis et al. 2010).

A common feature of many neurodegenerative diseases is
misfolding and accumulation of proteins (Colla 2019). The unfold-
ed protein response (UPR) is activated to restore proper endoplas-
mic reticulum (ER) homeostasis by increasing folding capacity
(Walter and Ron 2011). This response is primarily due to a loss of
Ca2+ homeostasis within the cell (Torres et al. 2010). There are
three downstream components of the UPR pathway, inositol-
requiring enzyme 1 (IRE1), PPKR-like endoplasmic reticulum ki-
nase (PERK), and activating transcription factor (ATF6) (Mou
et al. 2020) TheUPR stress response of both IRE1 and PERK increase
autophagy by increasing expression of autophagy receptors
SQSTM1/p62, NBR1, and BNIP3L/NIX levels (Adolph et al. 2013;
Deegan et al. 2015). Because of ER stress, PERK increases apoptotic
response and translational arrest by activating eLF2α (Lin et al.
2007; Urra et al. 2013).

As understanding of AD pathology has increased, the range
of potential therapeutic targets has expanded. Genetic screens in
Drosophila have uncovered a range of mechanisms underlying
AD dysfunction, involving oxidative stress, JNK signaling, and
apolipoprotein D (Bowers et al. 2011; Hopkins 2013; Briston and
Hicks 2018). These findings point to oxidative stress as a major
contributor to AD pathology. Relatedly, metabolic changes, in-

cluding changes in glucose metabolism through the TCA cycle,
are potential therapeutic targets for AD (Lin and Beal 2006; Matt-
son et al. 2008; Reddy 2009; Wang et al. 2009). In Drosophila, ex-
pression of human tau drives mitochondrial elongation (along
with mitochondrial dysfunction and cell death), implicating al-
tered mitochondrial fusion/fission dynamics (DuBoff et al. 2012).
Further, aggregation of Aβ42 alters the localization of mitochon-
dria, increasing soma localization and decreasing mitochondrial
localization to dendritic and axonal regions. This process involves
a cAMP/PKA-dependent mechanism (Iijima-Ando et al. 2009).
Translocation of mitochondria away from the axons and dendrites
depletes local ATP sources that are used to generate cAMP, limits
themobilization of synaptic vesicles to the cleft for neurotransmis-
sion, and reduces synaptic strength (Verstreken et al. 2005). This
neuropathological response is already present on the first day after
eclosion, whenmitochondria exhibit an increased number and al-
tered morphology (Wang and Davis 2021).

An array of potential therapeutic treatments to rescue physio-
logical, morphological, and behavioral responses have been ex-
plored using the MB as a test bed. Initial studies focused on the
inhibition of the cleavage pathway for Aβ42 through the utiliza-
tion of γ-secretase inhibitors (Chakraborty et al. 2011). Recent stud-
ies have focused on decreasing neuronal excitability induced by
AD. Aβ42Arc expression induces sleep fragmentation, implicating
sleep disruption and alteration of excitability in sleep-regulating
circuits as a potential ADmechanism (Tabuchi et al. 2015; Gerstner
et al. 2017). To ameliorate the alteration in neuronal excitability,
gaboxadol and levetiracetam have been tested. Application of
these drugs in flies expressing Aβ42Arc rescues memory deficits
through reduction of circuitry excitability (Kaldun et al. 2021).
Most recently, clinical trials have been initiated within individuals
that suffer from Down syndrome, a population with the greatest
risk of EOAD. The triplicate copy of Chromosome 21 may increase
AD risk due to an extra copy of the DYRK1A kinase, which hyper-
phosphorylates tau (Ryoo et al. 2007). Administration of aDYRK1A
inhibitor decreases the amount of phosphorylated tau,while rescu-
ing both sleep andmemory deficits in Drosophila (Zhu et al. 2022).
Although a number of pathological mechanisms have been identi-
fied in AD, the genetic architecture underlying the disease is com-
plex (Andrews et al. 2023). Future research will likely include more
genetic sequencing of patients, as well as mechanistic studies and
screens in animal models.

Parkinson’s disease

PD is the most common movement disorder, characterized by the
progressive loss of dopaminergic neurons in the nigrostriatal path-
way (Fig. 3A,B) and concomitant motor dysfunction (Schrag et al.
2015). Locomotor deficits in PD include resting tremors, impaired
movement initiation, and general instability (Whitworth 2011).
The disease often drives accumulation of α-synuclein (α-syn) into
globular structures referred to as Lewy bodies (Spillantini et al.
1997). Some cases of PD result from mutations in a single gene,
though most result from a complex interaction of genetic and en-
vironmental factors (Selvaraj and Piramanayagam 2019). PD is
modeled in Drosophila by depleting dopaminergic neurons via
several approaches: inhibition of the mitochondrial respiratory
transport chain (using the drug rotenone) (Betarbet et al. 2000),
inducing oxidative stress (using paraquat) (Przedborski and Ischir-
opoulos 2005), or transgenically expressing α-syn (Feany and
Bender 2000). Although Drosophila do not express an endogenous
α-syn gene, transgenic expression of human α-syn recapitulates the
central features of the disorder (progressive loss of dopaminergic
neurons and locomotor dysfunction) (Feany and Bender 2000).
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Several subsets of dopaminergic neurons exhibit degenera-
tion or morphological alterations inDrosophila PDmodels, includ-
ing PPL1, PPL2, PAM, PPM1/2, PPM3, and PAL dopaminergic
neurons (Fig. 3C,D). Among these, the PPL1, PPL2, and PAM neu-
rons innervate the MB, modulating locomotion and learning
(Claridge-Chang et al. 2009; Liu et al. 2012; Aso et al. 2014a; Galili
et al. 2014; Cassari et al. 2015; Boto et al. 2019). To examinemotor
aberrations induced by α-syn aggregation and identify key dopami-
nergic clusters, a range of behavioral assays have been used, includ-
ing startle-induced negative geotaxis (Riemensperger et al. 2013).
This approach identified 15 protocerebral anterior medial (PAM)
neurons, whichdirectly innervate the β′ lobe, as crucial for locomo-
tor alterations (Riemensperger et al. 2013). Pathophysiological
changes to this circuitry involve neuronal hyperexcitability that
progresses in an age-dependent manner; this diminishes connec-
tivity between PAM neurons and KCs (Riemensperger et al.
2013). Correspondingly, α-syn aggregation causes the loss of neu-
rons in the PPL1 and PPM1/2 clusters (Narwal et al. 2024).

The most common form of heritable PD results from muta-
tions in the leucine-rich repeat kinase (LRRK2) (Paisán-Ruíz et al.
2004; Zimprich et al. 2004; Rajput et al. 2006; Ross et al. 2006). A
hallmark of this form of PD is sleep deficiency (Berg et al. 2005).
Expression of human LRRK2 (hLLRK2) in the MBs leads to a frag-
mentation in sleep that can be attenuated by melatonin (Sun
et al. 2016). Furthermore, melatonin can also rescue long-term
memory deficits induced by hLRRk2 expression (Ran et al. 2018).
The pathological changes that produce PD-like behavioral out-
comes likely involve changes in multiple signaling cascades in-
cluding AKT, PTEN, and JNK (Mehdi et al. 2016). Expression of
hLLRK2 leads to the degeneration of dopaminergic neurons local-
ized to the PPL1 and PPM1/2 clusters (Islam et al. 2016).

The second most common form of inherited PD is due to a
mutation in the PTEN-induced putative kinase (PINK1) (Kasten
et al. 2018). Inmammals, the hallmark of PD caused by PINK1mu-
tations is increased energetic demand within the dopaminergic
neurons of the substantial nigra (Bolam and Pissadaki 2012). The
increased energetic demand suggests that PINK1 mutations affect
mitochondrial function (Pilsl and Winklhofer 2012). Neurons are
lost in the PPL1, PPL2, PPM 1/2, and PPM3 clusters (Pirooznia
et al. 2020; Zárate et al. 2022). In Drosophila, PINK1 binds directly
to the mitochondrial protein PGAM5 to activate mitochondrial
degradation followed by cell loss (Imai et al. 2010). PINK1 muta-
tions can be exacerbated with the loss of PGAM5 (Ishida et al.
2012). PGAM5 increases mitochondrial turnover and fission
events (Yu et al. 2020). Although there are additional Drosophila
models of PD, we focus here on those that affect the MB.
Mutations in hLRRK2, PINK1, α-syn, and Parkin also result in the
loss of dopaminergic neurons that do not innervate the MB
(MacLeod et al. 2013; Fellgett et al. 2021; Narwal et al. 2024).
Examples of affected areas include dopaminergic neurons inner-
vating the central complex (Dumitrescu et al. 2023) and subeso-
phageal ganglion (Cording et al. 2017).

Emerging research has begun to unravel the roles of apoptosis
and the UPR (Martinez et al. 2019). Accumulation of α-syn within
the ER creates a stress-like response, activating the UPR (Walter and
Ron 2011). In Drosophila, the response to the accumulation of
α-syn involves hyperactivation of the IRE1 (Yan et al. 2019).
Alternatively, the ATF6 pathway, which plays a role in the libera-
tion of proteases, is inhibited through α-syn accumulation, causing
dopaminergic neuronal death (Egawa et al. 2011). Unlike ATF6, the
attenuation of PERK, which has been shown to cause apoptosis,
can rescue the loss of PPL1 neurons in the Pink1 background
(Popovic et al. 2023).

The primary treatment for PD, the administration of levodopa
(L-DOPA)—a precursor to dopamine—has been used since the
early 1970s (Tolosa et al. 1998). However, long-term exposure to
high doses of L-DOPA can lead to a drug-induced dyskinesia
(Parkinson Study Group 2000). Importantly, the effect of PD on
monoaminergic pathways involves more than the loss of dopami-
nergic neurons. InDrosophila, L-DOPA decreases the innervation of
the α/α′ lobes by serotonergic dorsal paired medial (DPM) neurons
(Niens et al. 2017). Furthermore, the loss of PPL2 neurons that in-
nervate the MB dendrites (among other brain regions) can be res-
cued by increasing serotonergic activity (Zárate et al. 2022).
Overall, research in Drosophila has shed light on the molecular
mechanisms that potentially drive the pathophysiology of PD
(Shukla et al. 2014; Maitra et al. 2019; Ma et al. 2022; Zhang
et al. 2023). Examining these molecular mechanisms within the
well-defined anatomical context of the MB and its associated dop-
aminergic circuitry provides a platform to test novel therapeutic
strategies for PD. Moving forward, these will likely include target-
ing α-syn receptors, autophagy-mediated pathways, and/or niacin
targets (Rai et al. 2021).

Fragile X syndrome

FXS is a monogenetic inherited disorder (affecting ∼1 in 6000
births) caused by an expansion in the CGG trinucleotide repeat
in the 5′-untranslated region of the FMR1 gene. Up to 55 repeats
are present in normal individuals, and this expands to more than
200 in severely affected individuals (Willemsen et al. 2011). The
number of CGG repeats affects FMR1 transcription, with longer re-
peats decreasing the amount of FMR protein (FMRP) (Schwemmle
et al. 1997). FMRP is a major regulator of mRNA, modulating
mRNA transport, stabilization, and translation (Bagni and
Greenough 2005; Bassell and Warren 2008). FXS causes a range
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Figure 3. Parkinson’s disease (PD) pathology in humans and in the
Drosophila PD model. (A) Diagram of the human midbrain in transverse
section, with the substantia nigra in black. (B) PD diminishes the substantia
nigra (light brown) (contralateral view relative to A). (C ) Diagram of
dopaminergic neurons in wild-type Drosophila. Green circles represent
dopaminergic neurons. (D) In the Pink1 Drosophila model of PD, dopami-
nergic neurons are lost in the PPL1, PPL2, and PPM1,2,3 clusters (contra-
lateral view relative to C). Healthy neurons are shown in green and black
circles represent neurons lost in the PD model.
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of symptoms, including developmental delays, learning disabili-
ties, social and behavioral problems, impaired executive function,
attention-deficit/hyperactivity disorder, sleep disturbances, intel-
lectual disability, and anxiety (Crowe and Hay 1990; Fisch et al.
2002; Loesch et al. 2004; Scharf et al. 2015). Morphological alter-
ations in the brain include aberrant dendritic spine morphology
(Fig. 4A,B; Irwin et al. 2000).

TheDrosophila FMR1 gene (dFMR1) has high sequence homol-
ogy with the human variant, including a conserved pair of KH do-
mains (Wan et al. 2000). Loss-of-function mutations in dFMR1
alter circadian rhythms, courtship behaviors, and synaptic branch-
ing (Dockendorff et al. 2002). These mutations also alter MB mor-
phology. In dFMR1mutants, the KC axons that form theMB β-lobe
aberrantly cross the midline of the brain (Fig. 4C,D), merging with
the β lobe in the contralateral hemisphere (Michel et al. 2004). The
dendritic branching pattern of the KCs is also altered by the addi-
tion of higher-order branches and supernumerary dendritic
process formation (Pan et al. 2004). Long-term memory is depen-
dent on dFMR1 expression (Dockendorff et al. 2002; McBride
et al. 2005; Kanellopoulos et al. 2012). These morphological aber-
rations likely contribute to the deficits in learning. dFMR1mutants
also exhibit increases in synaptic boutons along the axons with in-
creases in synaptic vesicle area. These phenotypes are likely due to
either hyperactivity or inhibition of exocytotic events (Pan et al.
2004). Interestingly, dFMR1 heterozygotes have normal MBs but
still show impaired long-termmemory (Kanellopoulos et al. 2012).

Some FXS phenotypes may result from alterations in cAMP/
PKA signaling. Human blood cell samples from FXS patients pro-
vided an early indication that FMRP could regulate the cAMP/
PKA pathway (Berry-Kravis and Huttenlocher 1992). cAMP/PKA
signaling plays a role in both memory acquisition and consolida-
tion (Zars et al. 2000; Blum et al. 2009), and FMRP decreases
cAMP generation following stimulation of adenylyl cyclases
(Kelley et al. 2007). To examine the role of cAMP/PKA in a develop-
mental/anatomical context, several studies investigated the role of
FMRP in PKA regulation in the MB. PKA dynamically regulates the
actin cytoskeleton to ensure proper neuronal growth (Lin et al.
2005; Cingolani and Goda 2008; Zhu et al. 2015). Localization of

PKA is an important factor in its developmental effects; A-kinase
anchor proteins (AKAPs) localize and regulate PKA activity
(Smith et al. 2017; Wild and Dell’Acqua 2018). The Drosophila
AKAP homolog, Rugose, interacts with PKA in the MB γ lobe and
modulates short-term memory (Zhao et al. 2013). In FXS models,
loss of FMRP down-regulates the expression of Rugose. This decreas-
es PKA activity and alters F-actin assembly in the MB γ lobe (Sears
et al. 2019). Patient-derived mutations have revealed other previ-
ously undefined roles of the arginine–glycine–glycine (RGG)
domain of FMRP. For instance, a negative self-regulatory feedback
loop suppresses FMRP levels due to PKA activation (Sears and
Broadie 2020).

The role of FMRP in the maturation and pruning of dendrites
was first identified in amousemodel, where the loss of FMRP led to
increases in spine lengths and decreases in pruning identified in
pyramidal neurons (Comery et al. 1997). Similarly, in dendritic ar-
borization (multidendritic) neurons of Drosophila larvae, loss of
FMR1 increases higher-order dendritic arborizations (Lee et al.
2003). One factor associated with increases in spine density is
the activation of metabotropic glutamate receptors (mGluRs),
which leads to the increase of FMRP in postsynaptic dendrites.
Loss of FMRP generates an excessive number of long and thin den-
drites (Fig. 4; Weiler and Greenough 1999). Similar to the mouse
model, the MB possesses mGluRs localized to the dendrites within
the calyces (Devaud et al. 2008). dFMR1mutants exhibit increased
mGluR expression, which leads to learning deficits that can be res-
cued through knockdownor pharmacological inhibitionofmGluR
(Kanellopoulos et al. 2012). Interestingly, increasing cAMP levels
by inhibiting the phosphodiesterase also rescues mGluR-mediated
learning deficits (Kanellopoulos et al. 2012; Choi et al. 2016).

Although therapeutic targeting of mGluR5 has shown prom-
ising results in rodents, clinical trials in humans have yet to pro-
duce an FDA-approved therapy. This is likely a consequence of
the multitude of FXS symptoms (Scharf et al. 2015). Currently,
symptoms are individually targeted, increasing the risk of side ef-
fects. Because the syndrome is monogenetic, much current re-
search on potential therapeutics focuses on methods to increase
endogenous FMR1 expression.

Neurofibromatosis type 1

NF1 results from loss-of-functionmutations in theNF1 gene in hu-
mans, which encodes a protein called neurofibromin (Nf1). This
disorder affects ∼1 in 3500 individuals (Evans et al. 2010; Hirbe
and Gutmann 2014; Uusitalo et al. 2015). Although it is monoge-
netic in origin, genetic modifiers influence NF1 symptoms (Easton
et al. 1993). Symptoms include the formation of tumors/cancers as
well as an increased incidence of brain disorders. These include
attention-deficit/hyperactivity disorder, autism spectrum disorder
(ASD), learning disabilities, sleep disturbances, and others (North
et al. 1994, 1995; Ferner et al. 1996;Wang et al. 2021). TheNf1 pro-
tein contains a central Ras-GTPase-activating protein-related
domain (GRD), which negatively regulates Ras activity (Martin
et al. 1990). In addition to modulating Ras signaling, loss of Nf1
also reduces cAMP/PKA levels and impacts G protein–coupled re-
ceptor signal transduction (Guo et al. 1997; Hannan et al. 2006;
Ho et al. 2007; Anastasaki and Gutmann 2014; Xie et al. 2016).
Importantly, Drosophila express an Nf1 ortholog, which shares
60% amino acid homology and conserved Ras GAP functionality
with humans (The et al. 1997; Williams et al. 2001; Walker et al.
2006). TheDrosophilaNF1modelmimics a range of morphological
and behavioral features of NF1, including increasedmetabolic rate,
reduced body size, altered circadian rhythms, decreased sleep,
changes in social behavior, increased grooming, and altered synap-
tic transmission (The et al. 1997; Williams et al. 2001; Bai and
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Figure 4. Fragile X syndrome (FXS) pathology in humans and in the
Drosophila FXS model. (A) Diagram of dendritic spines in healthy
humans. (B) Effects of FXS on dendritic spine morphology in humans.
(C) Diagram of wild-type Drosophila MBs, showing the α/β lobes (in
blue). The midline of the brain is marked with an arrow—note that the β
lobes do not cross the midline. (dors) Dorsal, (post) posterior, (lat)
lateral. (D) Pathology in the Drosophila FXS model. The β lobes overgrow,
crossing the midline and infiltrating the contralateral lobe (arrow).
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Sehgal 2015; King et al. 2016, 2020; Bai et al. 2018; Moscato et al.
2020; Botero et al. 2021; Dyson et al. 2022; Brown et al. 2023). Nf1
deficiency alters behaviors through effects on different sets of neu-
rons (Guo et al. 2000; Buchanan and Davis 2010; King et al. 2020;
Moscato et al. 2020; Georganta et al. 2021; Dyson et al. 2022),
which are detailed further below.

Drosophila nf1mutants show impaired learning andmemory,
particularly in olfactory classical conditioning (a commonly used
associative learning paradigm) (Guo et al. 2000; Ho et al. 2007;
Buchanan and Davis 2010; Gouzi et al. 2011; Qin et al. 2012;
Georganta et al. 2021). This is reminiscent of NF1 in humans,
which increases the incidence of learning disabilities (North et al.
1995). Learning and memory deficits in Drosophila result from al-
terations in MB function, with contributions from several cell
types. In KCs, Nf1 is required for the acquisition of olfactory asso-
ciative memory (Buchanan and Davis 2010). Rescue of wild-type
Nf1 protein in a subset of MB neurons—the α/β neurons—restores
normal memory (Buchanan and Davis 2010). Further, Nf1 inter-
acts with cAMP/PKA signaling in the MB (Buchanan and Davis
2010). In addition to the KCs, Nf1 modulates memory via actions
in a set of inhibitory GABAergic neurons that innervate the MB.
Loss of Nf1 increases GABAergic circuits innervating the MB, con-
tributing to learning deficits (Georganta et al. 2021). Rescuing Nf1
expression in these circuits restores normal memory (Georganta
et al. 2021). This occurs via regulation of Ras in theGABAergic neu-
rons, and signaling upstream of Ras contributes as well. The recep-
tor tyrosine kinase anaplastic lymphoma kinase (Alk) is an
upstream regulator of Ras that colocalizes with Nf1 in the nervous
system and modulates the Nf1 learning phenotype (Gouzi et al.
2011; Bai and Sehgal 2015; Georganta et al. 2021). Thus, learning
and memory are modulated by both cAMP and Ras signaling (Guo
et al. 1997; Ho et al. 2007), with cAMP-dependent effects in KCs
(Buchanan and Davis 2010) and Ras-dependent effects in the
GABAergic neurons that innervate the MB (Georganta et al.
2021). This represents one example in which Nf1 deficiency in
one set of cells can act via Ras and potentially affect another set
of cells via cAMP/PKA signaling to produce a phenotype (Geor-
ganta et al. 2021). A similar interaction of different signaling path-
ways across cell types regulates the growth phenotype inDrosophila
nf1 mutants (Walker et al. 2006) and optic glioma growth in mice
(Pan et al. 2021).

Nf1 regulates circadian rhythms and sleep via its function in
theMB. Loss of Nf1 disrupts the normal circadian rhythms of loco-
motor activity in Drosophila, along with reducing sleep (Williams
et al. 2001; Bai and Sehgal 2015; Bai et al. 2018). Mutations in
Alk also alter sleep because of effects in the MB, where Alk and
Nf1 interact (Bai and Sehgal 2015). Circadian rhythms drive oscil-
lations in gene expression in the MB, which are dependent on Nf1
and cAMP/PKA signaling (Almeida et al. 2021). Nf1 also acts down-
stream from the circadian clock and outside the MB, with the pars
intercerebralis being onemajor site of action (Bai et al. 2018). In ad-
dition to its effect on sleep quantity, Nf1 modulates sleep quality
(sleep depth) and the interaction of sleep with metabolic state
(Brown et al. 2023). Like many other animals, flies exhibit a set
of sleep states (Hendricks et al. 2000; Shaw et al. 2000). Loss of
Nf1 fragments sleep and prevents flies from entering deep sleep
(Brown et al. 2023). Further, it alters the interaction of sleep with
metabolic state. When animals sleep, they normally suppress their
metabolic rate. Yet flies with Nf1 mutations do not exhibit this
suppression of metabolism during sleep (Brown et al. 2023). The
sleep–metabolism interaction is not known to map to the MB.
Yet reminiscent of the learning deficits, it relies on GABAergic
circuitry. Nf1 is required in neurons that express the GABAA recep-
tor Rdl, suggesting that circuitry immediately postsynaptic
to GABAergic circuits regulates sleep–metabolism interactions
(Brown et al. 2023).

Related to the learning and sleep phenotypes described above,
loss of Nf1 in flies drives ASD-like behavioral changes, such as in-
creased grooming (King et al. 2016, 2020) and altered social behav-
ior (Moscato et al. 2020). Although the focus of this review is on
MB effects, it is noteworthy that Nf1 modulates ASD-like pheno-
types via actions outside theMB. In addition to those noted above,
the grooming phenotype maps to cholinergic, Oct–Tyr receptor-
expressing neurons in the ventral nerve cord (King et al. 2020).
This effect is Ras-dependent and includes a developmental contri-
bution (King et al. 2020). Additionally, social behavior alterations
result fromNf1 function in adult chemosensory cells (ppk23+ neu-
rons) and are also Ras-dependent (Moscato et al. 2020). Thus, the
loss of Nf1 alters different behaviors via actions on different cir-
cuits. In some cases, the effects are likely additive across multiple
neurons/circuits (King et al. 2020).

Therapeutic development to date has focused intensively on
the mitogen-activated protein kinase (MAPK) signaling pathway
(Ras/MEK/ERK). This pathway is important for some phenotypes
in the Drosophila NF1 model. Increases in phospho-ERK accompa-
ny Nf1-dependent changes in body size, synaptic growth, and
learning (Walker and Bernards 2014; Georganta et al. 2021).
Metabolic alterations in nf1 mutants are dependent on Ras and
likely involve ERK (Botero et al. 2021). In addition to MEK/ERK,
other signaling pathways downstream from Ras are dysregulated
inNF1 (Anastasaki et al. 2022). Among these,mTor has been impli-
cated in other animal models of NF1, including modulating mem-
ory (in mammals) via effects on presynaptic neurotransmitter
release (Asati et al. 2016; Choi et al. 2016).Whether/how this path-
way contributes to Drosophila phenotypes is currently unknown.
Future studies will be needed to understand how signaling path-
ways such as cAMP/PKA and PI3K/AKT/mTor modulate NF1 phe-
notypes, as well as how these pathways interact with MAPK
signaling (such interactions occur in other model systems/pheno-
types) (Anastasaki and Gutmann 2014). Ras signaling alterations
also contribute to the circadian rhythm, grooming, and social
behavior phenotypes (Williams et al. 2001; King et al. 2020;
Moscato et al. 2020).

Molecular dissection of the signaling pathways downstream
from Ras and cAMP will likely aid the development of therapeutic
strategies. Similar to FXS, current treatments for NF1 are palliative
and symptom-specific. Some patients experience multiple symp-
toms, and no single treatment addresses all of them (Walker and
Upadhyaya 2018). A pharmacological inhibitor of MEK, selumeti-
nib, is used to treat pediatric plexiform neurofibromas (effects of
this pharmacological intervention have not been tested in
Drosophila) (Gross et al. 2020). Another strategy involves the use
of statins to inhibit Ras. Lovastatin, an HMG-CoA reductase, im-
proves learning and attention in mice (Li et al. 2005). Another
HMG-CoA reductase, simvastatin, rescues quantal size deficits at
the Drosophila neuromuscular junction (Dyson et al. 2023).
However, statins have not shown efficacy in clinical trials with
children suffering from NF1 (Li et al. 2005; Payne et al. 2016).
New approaches to treating NF1 may involve small molecules fo-
cusing on the regulation of Ras and/or cAMP signaling pathways
(Walker and Upadhyaya 2018), as well as molecules targeting
downstream effects on neuronal excitability (Pan et al. 2021;
Dyson et al. 2023).

Other diseases modeled in the MB

Although this review focuses on four commonly studied diseases
that alter the MB circuit, other diseases have been modeled as
well. For instance, Angelman syndrome is a rare neurodevelop-
mental disorder that is characterized by delayed development, sei-
zures, and intellectual disabilities. The disease is caused by
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mutations in Ube3a, which encodes a ubiquitin ligase (Kishino
et al. 1997). Although the loss of the Drosophila homolog, dube3a,
does not induce seizures, significant deficits were identified in
long-term memory, climbing, and circadian rhythms (Wu et al.
2008). Similar to FXS, the fusing of β lobes is present along with
the loss of α lobes in dube3a mutants (Chakraborty et al. 2015).
Outside of theMB,mutant larvae exhibitmorphological character-
istics that are shared with mammals, including alterations in den-
dritic arborizations (Dindot et al. 2008; Lu et al. 2009). These
dendritic alterations appear to be cell autonomous, and are depen-
dent on expression level (Lu et al. 2009). In larval dendritic arbor-
ization (multidendritic) sensory neurons, Ube3a is responsible for
proper pruning (Furusawa et al. 2023). The transport of Ube3a to
presynaptic dendritic terminals is dependent on the kinesinmotor
and functions by maintaining the BMP signaling (Furusawa et al.
2023). For further information on Angelman syndrome, see
Maranga et al. (2020).

Another well-defined class of neurodegenerative disorders
that has been modeled includes the polyglutamine (polyQ)
diseases. There are nine different polyQ diseases, including Hun-
tington’s, spinocerebellar ataxia types 1, 2, 3, 6, 7, and 17, spino-
bulbar muscular atrophy, and dentatorubral–pallidoluysian
atrophy (Xu et al. 2015). Each of these is caused by a CAG repeat
leading to a glutamine track forming somewhere in the protein-
coding region of the gene (Macdonald et al. 1993). The number
of these repeats varies significantly across the different diseases
(Koide et al. 1994; Deka et al. 1995; Ikeuchi et al. 1995a,b; Komure
et al. 1995). These polyQ repeats lead to a protein aggregation for-
mation that precedes neurodegeneration. Amultitude of transgen-
ic models corresponding to each of the nine polyQ diseases have
been generated as tools to identify the underlying pathophysiolo-
gy (Fernandez-Funez et al. 2000; Chan et al. 2002; Takeyama et al.
2002; Warrick et al. 2005; Pandey et al. 2007; Nedelsky et al. 2010;
Nisoli et al. 2010; Napoletano et al. 2011). Althoughmany screens
use S2 cells, or the eye, to investigate aggregation/neurodegenera-
tion, significant loss in the α, β, and γ lobes of the MB has also
been observed (Agrawal et al. 2005; Zhang et al. 2010; Song et al.
2013; Tandon and Sarkar 2023). This selective degradation is also
found in the human neuropathology of each of the nine diseases
(Tandon et al. 2024). For an extensive review on polyQ current re-
search and therapeutics, see Tandon et al. (2024).

Overview and outlook

The Drosophila MB has functioned as a key source to identify the
fundamental mechanisms of several distinct neurological disor-
ders. The insights garnered from the model have shed light on
the etiological identification of aberrated molecular mechanisms
underlying multiple aspects of disease states. Although current ge-
netic sequencing has identifiedmanymonogeneticmutations that
cause disorders, many associated risk factors have yet to be discov-
ered. Advancements in patient-derived sequencing will further
personalize the therapeutic potential associated with many risk
factors. These advancements, coupled with a comprehensive
Drosophila connectome (Scheffer et al. 2020), will enable further
dissection of how diseases alter biology (Scheffer et al. 2020).
Further genetic studies are necessary to identify and characterize
the full breadth of pathways that underlie and modulate brain dis-
orders, and the MB provides an anatomical node to examine their
effects on anatomy and complex behavior. From the forward ge-
netic approaches that have identified foundational gene function
to developmental and behavioral studies and detailed circuit stud-
ies, significant contributions have been made into disease mecha-
nisms at the genetic, molecular, cellular, circuit, and behavioral
levels. These discoveries are likely to continue and accelerate as

fundamental nervous system function is more thoroughly
dissected.
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