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Abstract

Automated speech and language analysis (ASLA) is a promising approach to capture early 

markers of neurodegenerative diseases. Yet, its potential remains underexploited in research and 

translational settings, partly due to the lack of a unified tool for data collection, encryption, 

processing, download, and visualization. Here we introduce the Toolkit to Examine Lifelike 

Language (TELL) v.1.0.0, a web-based app designed to bridge such a gap. First, we overview 

general aspects of its development, including safeguards for dealing with patient health 

information. Second, we list the steps to access and use the app. Third, we specify its data 

collection protocol, including a linguistic profile survey and 11 audio recording tasks. Fourth, 

we describe the outputs the app generates for researchers (downloadable files) and for clinicians 

(real-time metrics). Fifth, we survey published findings obtained through its tasks and metrics. 

Sixth, we refer to TELL’s current limitations and prospects for expansion. Overall, with its 

current and planned features, TELL aims to facilitate ASLA for research and clinical aims in 

the neurodegeneration arena. Reviewers can gain access to TELL by visiting its website (https://
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tellapp.org/), clicking on the ‘Access TELL’ button on the homepage, and entering the following 

username (tell.examiner+BRM@gmail.com) and password (BRMreviewer1!). A demo version can 

be accessed here: https://demo.sci.tellapp.org/.
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translational science

Introduction

The growth of neurodegenerative disorders is a prime public health concern. Currently 

incurable, Alzheimer’s disease, Parkinson’s disease, and frontotemporal dementia, among 

other conditions, are major causes of disability and death in high-income (Alzheimer’s 

Association, 2021; GBD 2017 US Neurological Disorders Collaborators, 2021) and low-

income (Parra et al., 2018) countries. Their prevalence will likely double or triple by 2050 

(Dorsey et al., 2018; Nichols et al., 2022), increasing caregiver burden (Cheng, 2017) and 

generating global costs of roughly USD 17 trillion (Nandi et al., 2022). The scenario is 

even direr in underserved world regions, given the dearth of equipment and staff needed for 

gold-standard diagnostic practices (Chávez-Fumagalli et al., 2021; Parra et al., 2018, 2023). 

Accordingly, a call has been raised to complement mainstream approaches with objective, 

affordable, and scalable digital innovations (Laske et al., 2015).

Automated speech and language analysis (ASLA) tools meet these imperatives. Participants 

are simply required to speak, producing acoustic (e.g., prosodic) and linguistic (e.g., 

semantic) features that can be automatically extracted from audio recordings and their 

transcriptions, respectively. The ensuing multidimensional datasets can be analyzed via 

inferential statistics or machine learning methods to fulfil central clinical aims (de la Fuente 

Garcia et al., 2020; Fraser et al., 2014, 2016; Luz et al., 2021; Nevler et al., 2019; Orimaye 

et al., 2017, 2018), such as differentiating among disorders (Cho et al., 2021; Sanz et al., 

2022) and disease phenotypes (García et al., 2021, 2022a), predicting symptom severity 

(Al-Hameed et al., 2019; Eyigoz et al., 2020a; García et al., 2016) and brain atrophy patterns 

(Ash et al., 2013, 2019; Nevler et al., 2019), and identifying autopsy-confirmed pathology 

years before death (García et al., 2022b). Accordingly, ASLA has been noted as a promising 

resource to favor robust, equitable assessments of neurodegenerative diseases (de la Fuente 

Garcia et al., 2020; García et al., 2023; Laske et al., 2015).

However, the potential of ASLA remains underexploited in research and translational 

settings. First, investigation protocols are highly heterogeneous in terms of tasks, stimuli, 

procedures, and accompanying sociodemographic and linguistic profile data (Boschi et al., 

2017; de la Fuente Garcia et al., 2020). Moreover, centralized systems are missing for 

harmonized data encryption, labeling, and storage. These issues undermine comparability 

and integration of findings across sites, precluding generalizability tests. Second, underlying 

technologies are unavailable for actual clinical use. Free resources abound for data 

preprocessing, analysis, and visualization, such as openSMILE (a toolkit capturing acoustic 

features like cepstral coefficients and formant frequencies) (Eyben et al., 2010) or 
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FreeLing (a language analysis tool suite providing morphological analysis and parsing 

functions, among others) (Padró & Stanilovsky, 2012). Nevertheless, their operation requires 

conditions that most clinicians lack, including software-specific knowledge, programming 

abilities, or substantial time for study –e.g., openSMILE and FreeLing presuppose Python 

and C++ skills, respectively. Finally, both research and translational efforts need to meet 

patient health information (PHI) standards. Briefly, optimal leveraging of ASLA for 

discovering and implementing novel markers requires the development of unified, user-

friendly, regulation-compliant tools.

The Toolkit to Examine Lifelike Language (TELL) was developed to face these challenges. 

This web-based app offers an intuitive platform to collect, encrypt, analyze, download, and 

visualize speech and language data for research and clinical aims (Figure 1). It encompasses 

a linguistic profile survey and several tasks with varying motoric and cognitive demands, all 

proven to elicit discriminate verbal behavior in Alzheimer’s and Parkinson’s disease, among 

other conditions (García et al., 2021; 2022a; Sanz et al., 2022). Audio data and automated 

transcriptions are (i) made available for download and offline analysis, and (ii) automatically 

analyzed and plotted for clinical use –with diverse metrics sensitive to different brain 

disorders, disease presentations, and levels of severity (Al-Hameed et al., 2019; Cho et al., 

2021; Eyigoz et al., 2020a; García et al., 2016, 2021, 2022b; Sanz et al., 2022). Also, TELL 

follows core PHI regulations, guaranteeing adequate treatment of protected health data.

In this paper, we introduce TELL v.1.0.0 and its key features, including PHI provisions. 

First, we outline basic aspects of the app’s development and steps for accessing it. Next, 

we describe the data collection protocol, which includes a linguistic profile survey and 

11 audio recording tasks. We then detail TELL’s outputs, namely: downloadable files 

for researchers and real-time metrics for clinicians. Also, we review published research 

findings based on the app’s tasks and metrics. Moreover, we acknowledge its current 

limitations and highlight its prospects for future development. To conclude, we summarize 

TELL’s contributions to the global quest for early markers of neurodegenerative diseases. 

Reviewers can gain access to TELL by visiting its website (https://tellapp.org/), clicking 

on the ‘Access TELL’ button on the homepage, and entering the following username 

(tell.examiner+BRM@gmail.com) and password (BRMreviewer1!). A demo version can be 

accessed here: https://demo.sci.tellapp.org/.

Development and General Features

TELL was developed by experts in neurolinguistics, brain health, and data science. It was 

built by leveraging open-access tools (e.g., Django and React) and custom code (e.g., 

the acoustic metrics detailed in Table 2) provided by Sigmind, a digital health service 

provider specialized in solutions for neuropsychiatric disorders, including computerized 

clinical histories and speech analytics. The app is meant to favor culturally diverse, well-

powered ASLA research across several neurodegenerative disorders. Its current version 

(v.1.0.0) was designed to be operated by examiners (researchers or clinicians) rather than by 

examinees (patients, healthy controls). It is entirely web-based, thus requiring no downloads 

or installations. It runs on multiple devices and is optimized for Google Chrome.
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The app is hosted on a cloud computing platform and is built on a REST architecture, 

which offers flexible resources for building distributed systems (Webber et al., 2010). Its 

backend consists in a Django project that uses several libraries –including Django Rest 

Framework, a powerful and flexible toolkit for building application programming interfaces 

(APIs). The backend is deployed on Amazon Web Services (AWS) ElasticBeanstalk, whose 

orchestration simplifies the deployment process and enables swift scalability. TELL’s 

intuitive, user-friendly front-end is implemented on AWS Amplify, a development platform 

for web applications, mobile apps, and backends.

Data storage is based on an Amazon RDS PostgreSQL database, a reliable solution for 

handling PHI. Audio files are stored in AWS S3, a highly secure and scalable object storage 

service that enables TELL to store and retrieve any amount of data from anywhere on 

the web. PHI is secured via multiple layers of encryption at different levels using AWS 

Key Management Service. This ensures that PHI is kept confidential and secure, both in 

storage and during transmission over networks. In this sense, TELL was built following the 

Health Insurance Portability and Accountability Act (HIPAA), ensuring the confidentiality, 

integrity, and availability of PHI through various administrative, physical, and technical 

safeguards. These include regular risk assessments (conducted to identify and address 

potential security issues) as well as data backup and disaster recovery plans (implemented to 

guarantee the non-vulnerability of PHI). Importantly, access to PHI is limited to authorized 

personnel, who must complete HIPAA compliance training and follow strict controls and 

authorizations in their use of the app.

TELL’s underlying modular structure allows for continual updates of its algorithms, tasks, 

and metrics. Front-end functions are intuitive and require minimal user intervention. 

These are currently available in English, Spanish, Portuguese, and French, with new 

languages being added based on project-specific requirements. Its tasks and metrics have 

been validated by our team and other laboratories, in populations from both high-income 

countries (e.g., United States, Germany, Czech Republic) and low/middle-income countries 

(e.g., Argentina, Chile, Colombia) (Eyigoz et al., 2020a; García et al., 2016, 2021, 2022a, 

2022b; Sanz et al., 2022). Access, details, news, and publications are provided on the app’s 

website (https://tellapp.org/). Key functions of its current version are detailed below.

Accessing the App

Access to TELL is requested through the website’s contact form (https://tellapp.org/

contact/). This guarantees the efficiency of all functions, which run on paid online services 

with a usage cap. Users simply need to contact the TELL team, describe the project in 

which they will use the app, specify how many sessions will be required, and commit to 

open science practices for collaborative research. They will then receive an e-mail with a 

username and link to activate their account and create a personalized password. The app 

can then be accessed by clicking on the “Access TELL” button on the website’s homepage 

(https://tellapp.org/). See Figure 2.

We note that TELL is provided by a commercial company (TELL Toolkit SA), as required 

to manage the funds secured for its initial development. Yet, ours is a basic and translational 
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research initiative, offered at no cost for scientific investigation (free research licenses 

are issued with no enrolment or subscription fees). Although commercial exploits are 

beyond TELL’s central scientific motivation, funds will be pursued to cover the costs of 

its underlying technologies (Amazon Web Services, Google resources, and an Open AI API 

with a usage cap) and to support its further development. Indeed, it is because of such costs 

that the tool requires setting up accounts (otherwise, we would face the risk of financial 

unviability due to more requests than we can pay for). This simple process allows us to 

ensure that TELL users will have optimal access to all functions for the entirety of their 

projects.

Data Collection

Creating Participants

Upon accessing TELL, users can create new participants by entering their names or 

identification codes (Figure 3). Participant information can be entered in specific fields, 

and relevant files (e.g., neuropsychological tests) can be uploaded as attachments for future 

reference. Participants are listed alphabetically and they can be browsed in a search field. 

Each participant name is accompanied by two icons, granting access to a linguistic profile 

survey and the speech recording protocol.

Linguistic Profile Survey

TELL’s linguistic profile survey (Figure 4) is an adaptation and extension of the Bilingual 

Language Profile (Faroqi-Shah et al., 2018; Gertken et al., 2014). The survey comprises 18 

items tapping on four dimensions, namely: language history (e.g., languages used, schooling 

in each), use (e.g., time using each language), proficiency (in speaking, understanding, 

writing, and reading), and perceived difficulties (e.g., age of speech difficulty onset). 

Depending on the item, responses are entered in open-ended fields, through multiple-option 

menus or via Likert scales. Once the survey is complete, a .csv file is automatically 

produced with all responses presented in successive columns. The survey is currently 

available in English, Spanish, Portuguese, and French. Administration time ranges from 

5 to 10 minutes, depending on the participant’s condition and disease severity.

Speech Recording Protocol

Users can access the speech recording protocol in each available language. Since acquisition 

conditions may vary widely across settings, the protocol begins with recommendations that 

follow and extend recent guidelines (Busquet et al., 2023) to optimize data quality and 

comparability across locations:

1. Sit in a quiet room with no distractions, facing the microphone head on.

2. Mute all phones and remove all noise sources from the room.

3. If available, use a condenser unidirectional microphone with pop filters.

4. Speak close to the microphone, keeping the same distance across tasks.

5. If using a headset, make sure the microphone does not touch your face or facial 

hair.
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6. Remove any jewelry or accessories that might make noise as you speak.

7. Speak with your normal pace and volume.

Upon reading these instructions, users must grant permission for the app to access the 

device’s microphone. The protocol comprises successive speech tasks. They all follow the 

same structure, with a title and instructions on top, a stimulus in the middle (when required), 

and a ‘record’ button at the bottom. Examiners must read the instructions to the participants, 

ensure that they have understood their indications, and then press ‘record’. For most tasks, 

a minimum of 30 seconds is required before the recording can be interrupted, with no 

upper bound. Once the participant finishes the task, the examiner can save the recording 

by pressing the ‘record’ button again, which also triggers the following task. Tasks can be 

skipped at the examiner’s discretion.

TELL comprises 11 tasks, which can be used or skipped at will (Table 1). Two spontaneous 
speech tasks require enrollees to describe (a) a typical day and (b) a pleasant memory, 

yielding varied acoustic and linguistic patterns based on the participant’s individual 

experience (Boschi et al., 2017). Semi-spontaneous speech tasks involve describing (c) 

pictures of daily scenes and narrating (d) an audio story as well as (e) a silent animated film 

–eliciting partly predictable patterns (Boschi et al., 2017), with higher executive/memory 

demands for the narration tasks. Non-spontaneous speech tasks require (f) reading a 

paragraph (which restricts acoustic and linguistic variation and lowers executive demands) 

(Rusz et al., 2013), (g) repeating the syllables /pataka/ (to assess diadochokinetic skills), 

and (h) uttering the vowel /a/ until breath runs out (to test for vocal stability). Two 

complementary tasks have participants (i) speak about the uses of a wheel-less car (to assess 

creative thinking) and (j) describe their experience of the disease (to identify condition-

specific patterns in their account of daily functionality). Finally, participants are asked to (k) 

record 15 seconds of silence, to capture background noise for removal from other tasks. All 

these tasks have been reported in studies on diseases as diverse as Alzheimer’s disease and 

Parkinson’s disease (García et al., 2021, 2022b; Sanz et al., 2022). Yet, users can choose to 

administer all of them or any specific subset depending on their goals and hypotheses.

Except for reading, which uses specific texts for each language, every task employs the same 

cross-culturally adequate stimuli for all currently available languages (English, Spanish, 

Portuguese, and French). Depending on the participant’s condition and disease severity, the 

full protocol takes between 15 and 25 minutes to complete. Figure 5 illustrates the speech 

recording interface based on the video retelling task.

Audio files are recorded as Wave (.wav) files, a single-channel format with an ideal 

sampling rate of 44.1 Hz and an ideal bit-depth of 24 bits –two conditions that are 

supported by most modern devices. While recordings’ characteristics can vary depending on 

factors like microphone quality and environmental conditions, .wav files are uncompressed, 

meaning that no information is loss during the coding process. Such files are temporarily 

stored in virtual memory before being sent to the TELL backend. Once encrypted and 

transmitted, audios (and, with them, all unencrypted PHI) are automatically deleted from 

the device and stored as a highly durable object in an encrypted S3 bucket in the backend 

(encryption ensures that audio files remain confidential and protected from unauthorized 
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access). Additionally, TELL regularly performs backups of its S3 buckets to ensure that 

all data is recoverable in the event of malfunction or data loss. Audio-based transcriptions 

are made through Whisper (v. 9.67.1), Open AI’s cutting-edge speech recognition service 

(Radford et al., 2023). Whisper employs a transformer neural network model to convert 

audio signals into written words, yielding high transcription accuracy in varying recording 

conditions. The resulting texts can be subject to multiple preprocessing and processing steps, 

depending on research needs. Whisper code is hosted on our own servers.

Audio preprocessing

The audio preprocessing pipeline consists of four steps: (1) common channel normalization, 

(2) loudness normalization, (3) denoising, and (4) voice activity detection (VAD). 

Common channel normalization is performed with the ExSound eXchange library (https://

sox.sourceforge.net/) to standardize different audio acquisition conditions. The resulting 

output serves as a lower bound of acceptable audio quality. Normalization consists of the 

following steps: conversion to .wav format, conversion to mono (single channel), encoding 

in GSM FULL RATE with a bit rate of 13 kbps, resampling to 16 kHz (Favaro et al., 2023; 

Haulcy & Glass, 2020), and compression with a factor of 8 and bandpass filtering from 200 

Hz to 3.4 kHz (Arias-Vergara et al., 2019). The bandpass filter emulates the characteristics 

of narrowband transmissions, which is sufficient to represent the main harmonics of human 

speech (Cox et al., 2009). Since Python cannot handle 13-bit audio, files are decoded back to 

16 bits using ExSound eXchange.

Loudness normalization is performed to ensure that all audio files have equivalent sound 

intensities, compensating for variations caused during signal acquisition, such as the position 

of the recording device relative to the interviewee (Haulcy & Glass, 2020; Luz et al., 

2020). A normalization filter from the FFmpeg multimedia framework (https://ffmpeg.org/

ffmpeg.html) is used, following the EBU R128 standard (Favaro et al., 2023).

Denoising (background noise reduction) is applied to significantly decrease the level of 

any external noise present in the recording (Luz et al., 2020). This is achieved through a 

speech enhancement signal optimization model that combines two sequentially processed 

models: one that operates on full-band spectra and another that processes the audio in 

sub-bands. This approach leverages and integrates the advantages of both methods (Hao, 

2021). The complete model, known as FullSubNet (https://github.com/Audio-WestlakeU/

FullSubNet), combines the full-band and sub-band models and has been pretrained using 

neural networks with datasets containing "clean" speech (free from background noise) and 

datasets of dynamically mixed noise signals (Li et al., 2023).

The VAD calculates the probability that a given audio segment corresponds to human 

speech. This is achieved by separating audio into segments that contain speech and 

segments that contain silence (or non-speech) (Haulcy & Glass, 2020; Hecker et al., 2022). 

Additionally, it enables the analysis of different metrics derived from these two types of 

segments, such as the average duration of voiced segments and the number of pauses, 

among others. The Silero VAD model (https://github.com/snakers4/silero-vad) is used for 

this segmentation process.
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Output for research and clinical purposes

Each task includes calculations of audio-derived features (including timing and pitch-related 

features) and transcript-derived features (predominant words, affective valence, emotional 

magnitude). These features are listed in Table 2. Together with the survey responses, these 

make up the full set of data offered by the app. The source code for all features is available 

at https://github.com/telltoolkit/TELL_source_code

TELL v.1.0.0 includes three timing features: speech rate (words per minute), silence 

duration (median of the duration of all silence segments), and silent pauses per word. Speech 

and silence segments are established through a voice activity detector running on pyannote 

1.1.0 (Bredin et al., 2020). This algorithm is based on a Sinc + LSTM neural network whose 

output indicates the probability that an audio segment includes a speech signal. The output is 

binarized to determine which portions of the recording are phonated or silent utilizing onset 

and offset probability thresholds and values of segments’ minimum durations. Speech rate 

is computed as the number of words in the transcription divided by the total speech time 

in minutes (upon removal of silent segments). Silence duration is the mean of the silence 

segments. The calculation of silences per word is computed as the number of silent segments 

divided by the number of words.

The app also calculates recordings’ main pitch and pitch variations. Pitch is computed with 

openSMILE using eGeMAPSv02 recipe via sub-harmonic-sampling and Viterbi smoothing 

(Eyben et al., 2010). The signal has a sampling rate of 100 Hz and takes minimum and 

maximum values of 30 and 500 Hz, respectively. Main pitch and pitch variations consist in 

the mean and standard deviation (in Hz) of all voiced segments, respectively. The pitch time 

series is conserved in the data pipeline if needed.

On-the-fly computations are also performed on the audio transcripts. Predominant words in 

a transcription are displayed through a word cloud, in which each item’s size is proportional 

to its frequency. Our pipeline captures all words, irrespective of their category, and retains 

their specific form without lemmatization. Affective valence and emotional magnitude are 

measured via analyzeSentiment (https://cloud.google.com/natural-language/docs/analyzing-

sentiment?hl=en), a sentiment analysis algorithm within Google’s Cloud Natural Language 

API. This multilingual tool was trained on a large collection of texts from the General 

Inquirer corpus as well as corpora with manually labeled sentiment scores, such the 

SentiWordNet lexicon, the Amazon product reviews corpus, and the Stanford Sentiment 

Treebank. Affective valence and emotional magnitude are derived for any input text 

through term frequency-inverse document frequency (a statistical measure that quantifies the 

importance of a word in a document) combined with part-of-speech tagging and a module 

to recognize words with strong sentiment. Based on this information, the affective valence 

metric quantifies each text’s emotional content on a continuous scale from −1 to 1, texts 

being mostly negative if close to −1, neutral if close to 0, and mostly positive if close to 1. 

For its part, the emotional magnitude metric provides the absolute value of the amount of 

emotion expressed in the text, regardless of its polarity. Texts with a value close to 0 express 

no emotional content, with increasingly higher values indicating greater emotionality.
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TELL allows users to download data for offline research purposes (Figure 6). All responses 

to the linguistic profile survey are made available in a .csv file. Then, data from the 

speech protocol can be downloaded for each task separately or as a bulk for the whole 

protocol. This includes (i) raw audio recordings (.wav files, as detailed above), automated 

transcriptions (via Open AI’s Whisper), and a .csv file containing basic speech and 

language metrics (described in the following section). Files are anonymized and labeled 

with a standardized name for easy access (e.g., participant_code_story_retelling.wav). Note 

that .wav files are lossless (surpassing the quality of compressed formats, such as .mp3) and 

supported by a vast array of hardware and software options.

Moreover, metrics are graphically depicted for quick, intuitive revision by examiners (Figure 

7), and they are accompanied by brief and extended explanations, suggested papers, and 

interpretive notes based on descriptions of benchmark control data. Acoustic measures 

further allow tracking longitudinal changes through charts that plot variations in time. Note 

that many of these metrics are not available for the syllable repetition and the sustained 

vowel tasks, as they do not involve actual linguistic production. Also, no metric is available 

for the silence recoding task, intended solely for offline detection of acoustic conditions in 

the recording environment.

Applications and Validations

The metrics included in TELL have been validated through multiple studies from our team 

and others. For example, speech timing features, including speech rate, discriminate persons 

with nonfluent and logopenic variant primary progressive aphasia from healthy persons 

(Ballard et al., 2014; Cordella et al., 2019; Nevler et al., 2019). Moreover, this feature 

distinguishes nonfluent from semantic variant primary progressive aphasia patients, and even 

predicts the former’s underlying pathology several years before death (García et al., 2022b). 

Also, speech rate correlates with the volume of the hippocampus and other core atrophy 

regions in Alzheimer’s disease (Jonell et al., 2021; Riley et al., 2005), and with superior/

inferior frontal atrophy in frontotemporal dementia (Ballard et al., 2014; Cordella et al., 

2019; Nevler et al., 2019). Also, abnormalities of pitch and pause are central for identifying 

persons with Parkinson’s disease and discriminating between those with and without mild 

cognitive impairment (García et al., 2021). Pitch-related alterations, such as narrowed 

range of fundamental frequency, differentiate nonfluent variant primary progressive aphasia 

patients from both healthy controls and semantic variant primary progressive aphasia 

patients, while also predicting left inferior frontal atrophy (the neuroanatomical epicenter 

of the syndrome) (Nevler et al., 2019). Reduced pitch is also sensitive to behavioral variant 

frontotemporal dementia in early disease stages (Nevler et al., 2017). In addition, reduced 

word counts are key contributors to machine learning models for predicting Alzheimer’s 

disease onset (Eyigoz et al., 2020b), identifying persons at risk for this disorder (Fraser 

et al., 2019), and differentiating between Alzheimer’s disease patients with and without 

vascular pathology (Rentoumi et al., 2014).

Of note, identification of neurodegenerative diseases becomes even higher (often surpassing 

90% accuracy) when multiple acoustic and linguistic features are combined rather than 

analyzed in isolation (Fraser et al., 2014; Nevler et al., 2019; Zimmerer et al., 2020). Beyond 
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the metrics currently embedded in TELL, additional developments in the field of ASLA 

have proven useful for characterizing, differentiating, phenotyping, and monitoring diverse 

neurodegenerative disorders, paving the way for powerful updates (Al-Hameed et al., 2019; 

Ash et al., 2013, 2019; Ballard et al., 2014; Cho et al., 2021; Cordella et al., 2019; Eyigoz 

et al., 2020a; Ferrante et al., accepted; García et al., 2016, 2021, 2022a; Faroqi-Shah et al., 

2020; Fraser et al., 2014; Nevler et al., 2017, 2019; Norel et al., 2020; Rusz & Tykalová, 

2021; Themistocleous et al., 2021).

Note that TELL, like ASLA tools in general, does not and cannot replace mainstream 

diagnostic or prognostic procedures. The contribution of speech and language metrics 

lies in their capacity to reveal markers that can be combined with others to favor 

early detection of disease-related changes. This is a key objective in the global fight 

against neurodegeneration, given that timely detection can reduce affective burden, increase 

planning time for neuroprotective changes (Dubois et al., 2016; Isaacson et al., 2018, 

2019), optimize pathology-targeted therapies (several compounds are in phase 2/3 trials) 

(Cummings et al., 2020), and generate financial savings (fostering routine over emergency 

care) (Alzheimer’s Association, 2021; GBD 2017 US Neurological Disorders Collaborators, 

2021). In addition to its research applications, then, TELL can support relevant actions in the 

clinical arena.

Current Limitations and Future Developments

TELL cannot be reliably used with browsers other than Google Chrome. Moreover, some 

of its metrics require multiple recordings to generate visual results. These issues will be 

addressed in future versions. Additional developments include the implementation of novel 

fine-grained metrics validated in recent research and superior speech-to-text algorithms 

(indeed, Whisper is not trained on patient populations and transcription errors are common 

for persons with motor speech difficulties, non-Anglophone individuals, and speakers of 

particular dialects). We are also planning to streamline our front end and to include pre-

trained models for classifying participants into healthy and pathological neurocognitive 

profiles. Furthermore, new technologies will be explored to replace TELL’s current paid 

underlying technologies with open-source tools. This will allow for more direct access to 

the tool while enabling academic users to work directly with experimental code within the 

platform (e.g., via a plugin architecture or other alternatives).

Further challenges concern the potential biases introduced by variable recording conditions 

(ranging from varying devices and noise sources to inconsistent mouth-to-microphone 

proximity) (Busquet et al., 2023). These can be minimized through machine learning 

models for bias correction (Busquet et al., 2023) or with state-of-the-art preprocessing 

pipelines, including common resampling, amplitude normalization, denoising, and channel 

standardization, as reported in recent works (García et al., 2021; Pérez-Toro et al., 2022). 

Future versions of TELL will incorporate these steps into its built-in audio processing 

algorithms to enhance comparability despite inconsistent acquisition settings. These 

developments, in addition to the recommendations in the “Speech Recording Protocol” 

section and strategic items included in the app’s survey (questions on device type, use of 
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face mask, smoking habits, and throat surgery), should enable strict controls of variance 

sources for multicentric studies.

Another limitation relates to longitudinal tracking. Some of the app’s tasks may be 

efficiently reused for specific measures across time points (e.g., speech rate in the 

paragraph reading task). Yet, data from other combinations of tasks and metrics may be 

affected by learning or familiarization effects (e.g., counts of predominant words in picture 

description tasks). This could be mitigated by including several randomizable materials 

(e.g., pictures) with consistent core properties (e.g., emotionality), as proposed by the 

Ghent Semi-spontaneous Speech Paradigm (Van Der Donckt et al., 2023). We will initiate 

stimulus validation efforts for future versions of TELL to include multiple, well controlled, 

randomizable stimuli for at least some of its tasks (e.g., picture description, video narration). 

This will increase data reliability for longitudinal research and patient monitoring.

Finally, while TELL is initially focused on neurodegenerative disorders, we are aware 

that ASLA can capture powerful markers in other populations. For example, speech and 

language markers allow classifying persons with different psychiatric conditions (Agurto 

et al., 2020; Bedi et al., 2014; Mota et al., 2012, 2014) as well as tracking the severity 

(Mota et al., 2017) and predicting the onset (Bedi et al., 2015) of psychotic symptoms. 

Also, specific features distinguish between children with and without neurodevelopmental 

conditions, such autism spectrum disorder (MacFarlane et al., 2022). Future versions of 

TELL will incorporate tasks and metrics tailored to these groups, expanding its reach for 

both academic and clinical purposes.

Concluding Remarks

The plea for scalable and equitable cognitive markers is central in the agenda of 

neurodegeneration research. Digital tools, thus, become critical for the generation and 

application of relevant discoveries. TELL aims to support these missions by facilitating 

ASLA to scientists and clinicians. Its current version, as described here, is our first (and 

certainly not our last) step in this direction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
TELL’s Basic Workflow. The app offers a linguistic profile survey and a speech protocol, 

whose outputs can be downloaded for research purposes and visualized in real time for 

clinical uses.
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Figure 2. 
Accessing TELL. Users can access the app through its website’s homepage upon 

registration.
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Figure 3. 
Participant List. Participants are saved and listed prior to data collection. They can be 

searched by name or other metadata and, once located, immediate access can be gained to 

their survey and recording data.
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Figure 4. 
TELL’s Language Profile Survey. A simple instrument provides self-report data on language 

history, use, proficiency, and perceived difficulties.
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Figure 5. 
TELL’s Speech Recording Interface. Each task includes a title, an instruction, and a ‘record’ 

button. These elements are accompanied by specific stimuli in certain tasks (as in ‘video 

narration’, shown here).
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Figure 6. 
TELL’s Task Summary and Data Download Menus. The prompts and outputs of each task 

are jointly presented in a menu for quick overview and download.
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Figure 7. 
Examples of Data Visualization. The figure illustrates the graphs generated for the (A) 

‘predominant words’ metric and (B) several audio-derived metrics. The latter are identified 

by different colors on a single plot. The specific value of each point in each variable is 

revealed by placing the mouse (or a finger, in the case of touch-screens) on the data point. 

Note that, while the figure illustrates successive assessments through weekly measurements, 

longitudinal differences in neurodegenerative diseases may likely require several months to 

become evident.
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Table 1

Tasks Included in TELL v.1.0.0.

Task Instructions Stimulus Minimum
time

Typical day Describe what your daily routine is like. Tell me everything you do in a typical day, from 
when you wake up to when you go to sleep. Provide as much detail as you can. None 30 sec

Pleasant 
memory

Think of a pleasant memory in your life. It can be a trip, a special moment, a celebration, 
or anything that you remember with joy. Describe it in as much detail as you can. None 30 sec

Picture 
description

Look at this picture carefully and, as you look at it, describe the situation in as much detail 
as you can. You can start wherever you want.

Pictures of 
daily scenes 30 sec

Story retelling You will now hear a short story. Then I will ask you to narrate it in your own words. 
Provide as much detail as possible. Recorded story 30 sec

Paragraph 
reading

Start recording and read the following paragraph. Read it normally, from beginning to end. 
When you are done, click the ‘Record’ button again to stop the recording.

Written 
paragraph 30 sec

Sustained vowel Say the vowel ‘A’ continuously, for as long as you can, until your breath runs out. When 
you are done, click again on the ‘Record’ button to stop the recording. None None

Syllables Repeat the syllables ‘PATAKA’ for as long as you can, until you run out of breath. When 
you are done, click the ‘Record’ button again to stop the recording. None None

Video narration Watch the following video. Then describe the story of the video. Mention all the details 
you can.

Animated silent 
film 30 sec

Car without 
wheels

Answer the following question: what could a car without wheels be used for? List as many 
uses as you can. Let your imagination run wild and describe all the ideas that come to 

mind.

Picture of a 
wheel-less car 30 sec

Testimony What is it like living with your disease? What changes have you had in your life because 
of it? None 30 sec

Silence 
recording

Lastly, let’s do a silent recording. Just press ‘Record’ and say nothing. Stop the recording 
after 15 seconds. None 15 sec
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Table 2

Metrics Included in TELL v.1.0.0. The app includes eight metrics validated in abundant works.

Metric Source Description References

Speech rate Audio and 
transcript

This metric captures speech production timing. High values may be linked 
to disinhibition, fluent aphasias or manic episodes. Low values could indicate 

motor speech disorders.

García et al. (2021)
García et al. (2022b)
Meilán et al. (2014)

Silence duration Audio

This metric reflects the length of silences between sentences, words, or 
word segments. Silences with abnormally long duration are observed in 

neurodegenerative and neuropsychiatric conditions. Sudden shorter silences may 
be associated with hypomanic episodes.

García et al. (2021)
García et al. (2022b)
Singh et al. (2001)

Silences per word Audio and 
transcript

This metric represents the proportion of non-speech segments to lexical items. It 
captures how often people pause during speech, providing insights on fluency.

García et al. (2021)
García et al. (2022b)
Meilán et al. (2014)

Main pitch Audio This metric quantifies the fundamental pitch of vocal fold vibration, with lower 
values associated to motor speech or affective anomalies.

Agurto et al. (2020)
Nevler et al. (2017)
Nevler et al. (2019)

Pitch variation Audio Pitch varies considerably in normal speech. Decrease in this variation might 
reflect motor, cognitive, or affective deficits.

Bowen et al. (2013)
García et al. (2021)
Wang et al. (2019)

Predominant 
words Transcript

The size of each word represents how many times it was said in the recording. 
The larger the word, the more frequent it was. Hence, its associated concept is 

predominant in speech.
Dodge et al. (2015)

Affective valence Transcript Values express negativity if close to −1, neutrality if close to 0, and positivity if 
close to 1.

Ellis et al. (2015)
Macoir et al. (2019)

Paek (2021)

Emotional 
magnitude Transcript

Values close to 0 express null emotionality. The higher the value, the greater 
the emotionality. Persons with Alzheimer’s and Parkinson’s disease tend to have 

more neutral values.

Carrillo et al. (2018)
Paek (2021)

Pell et al. (2006)
Tosto et al. (2011)
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