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Abstract: Despite the consensus that early identification leads to better outcomes for individuals
with autism spectrum disorder (ASD), recent research reveals that the average age of diagnosis in
the Greek population is approximately six years. However, this age of diagnosis is delayed by an
additional two years for families from lower-income or minority backgrounds. These disparities
result in adverse impacts on intervention outcomes, which are further burdened by the often time-
consuming and labor-intensive language assessments for children with ASD. There is a crucial
need for tools that increase access to early assessment and diagnosis that will be rigorous and
objective. The current study leverages the capabilities of artificial intelligence to develop a reliable and
practical model for distinguishing children with ASD from typically-developing peers based on their
narrative and vocabulary skills. We applied natural language processing-based extraction techniques
to automatically acquire language features (narrative and vocabulary skills) from storytelling in
68 children with ASD and 52 typically-developing children, and then trained machine learning models
on the children’s combined narrative and expressive vocabulary data to generate behavioral targets
that effectively differentiate ASD from typically-developing children. According to the findings, the
model could distinguish ASD from typically-developing children, achieving an accuracy of 96%.
Specifically, out of the models used, hist gradient boosting and XGBoost showed slightly superior
performance compared to the decision trees and gradient boosting models, particularly regarding
accuracy and F1 score. These results bode well for the deployment of machine learning technology
for children with ASD, especially those with limited access to early identification services.

Keywords: autism spectrum disorder; narrative production; expressive vocabulary; machine learning;
natural language processing; early diagnosis

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that impairs social
communication and language development in children, hindering children’s social and
academic well-being [1–3]. ASD prevalence is on the rise, particularly in Europe and the
USA [4–6]. Hence, early diagnosis is of paramount importance to enable timely therapy
interventions that enhance development, language, and communication in children with
ASD, underscoring the critical need for diagnosis before the age of three [7–9].

Despite the urgent need for early diagnosis, ASD screening often depends on teacher
and parent familiarity with symptoms, leading to delayed diagnoses. Consequently, a
growing number of children seek consultation in adolescence, which can have detrimental
effects on intervention efficacy [10]. Also, ASD assessment is a complex, stressful, and
time-consuming process for the child. It depends on clinical expertise in administration and
scoring, which can hinder objective diagnostic outcomes. Thus, families with children with
ASD lacking access to specialists or knowledge to navigate the clinical and administrative
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process are especially disadvantaged [11–13]. This study aims to provide a quick and easy
machine learning (ML) model for the early screening of individuals with ASD, which can
potentially be applied for the early screening and identification of children with ASD.

This study investigates the narrative production and expressive vocabulary skills
of Greek-speaking children with ASD. In Greece, the median age of ASD diagnosis is
approximately seven years, with a further two-year delay for lower-income families resid-
ing in remote, rural areas [14]. Around 75% of ASD diagnoses occur after the age of six
years, while less than 25% are made during preschool age. Several factors contribute to
delayed autism diagnosis in Greece, including limited awareness of ASD symptoms among
caregivers and a lack of understanding regarding subtle language impairments, which can
be early indicators of autism [15]. Also, Greek caregivers of children with ASD exhibit the
lowest average scores in language symptom endorsement compared to caregivers in Italy,
Japan, Poland, and the USA [16].

1.1. Narrative Performance in ASD

Research in the language development of children with ASD provides testable predic-
tions regarding the language features that may be severely impacted during early child
language acquisition [17]. For instance, several studies have demonstrated that a substan-
tial proportion of children with ASD exhibit significant delays in expressive vocabulary
skills, primarily attributed to limited verbal imitations and gestures for initiating joint at-
tention [18–22]. Language assessment of children with ASD has historically included tools
whose administration is usually time-consuming, thus hindering the early identification of
effective intervention goals [23].

The elicitation of coherent discourse through picture-based narrative tasks has been a
widespread practice of language assessment in young children, since narratives represent a
universal form of discourse not being subject to the cultural biases commonly seen in stan-
dardized language tests [19,23–26]. Furthermore, narratives can be very informative about
a wide range of language skills, ranging from the use of lexical and morphosyntactic aspects
of language (also known as microstructure), to the quality of the overall story structure,
including the use of cohesive ties and affective language, such as internal state terms, also
known as constituting the story’s macrostructure [25,27,28]. Children with ASD exhibit more
marked weaknesses than typically-developing (TD) peers in both the micro- and macro-level
of the story’s organization, and especially in language elements with strong pragmatic import,
such as pronouns, affective terms, and figurative language [29–31]. Differences between ASD
and TD peers in narrative performance have so far been reflected in children with ASD’s
lower semantic quality [32], lower production of internal state terms [25,33], and limited
number of causal conjunctions (e.g., with, because) used for the instantiation of relations
between story events [24]. Existing evidence also suggests that pragmatic limitations in
ASD cannot be overcome by good lexical and syntactic language skills [3,26], which gives
added value to the use of narration as a language assessment task for children with ASD.

While narrative sampling provides valuable insights into the language characteristics
of ASD and should be a standard diagnostic tool, its widespread adoption is hindered.
Currently, analyzing narrative production in children with ASD remains time-consuming
and labor-intensive. Eliciting the narrative, manually coding, annotating, and analyzing
utterances often requires specialized expertise. Furthermore, variability in coding methods
and the potential for subjective interpretations have contributed to inconsistent findings
regarding the specific nature of language weaknesses in ASD [34]. Moreover, while it is
generally understood that basic research on the language characteristics of ASD should
translate into applied research to develop tools for early diagnosis, more than two thirds
of funding worldwide is still directed towards basic research [35,36]. Despite a surge in
research on language in ASD worldwide over the past two decades, and a strong focus
on early diagnosis, there has been minimal change in the proportion of applied research
dedicated to directly enhancing diagnostic tools for this neurodevelopmental condition.
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While quantitative measures derived from individual language paradigms have been
linked to ASD specifiers, like the co-occurrence of ASD and syntactic impairment [23,26,37–39],
there is a critical need for objective, automated assessments of children with ASD’s language
skills and rigorous cross-disciplinary methodologies to provide reliable markers of ASD for
early assessment and diagnosis. Therefore, the identification of reliable markers of ASD in
language and the early detection of ASD require novel technologies and ML paradigms
capable of generating behavioral targets that effectively differentiate ASD from non-ASD
features in children.

1.2. The Current Study

The aim of this study is to tackle the critical need for the accurate and early diagno-
sis of ASD by developing a reliable and practical ML model applied to ASD children’s
narrative and vocabulary data. Unlike traditional methods that can be subjective and
time-consuming, requiring lengthy evaluations, an ML approach offers the potential for
standardized, rapid, and widely applicable screening [40]. For example, in our previous
research, we have demonstrated that combined natural language processing (NLP) and ML
pipelines have the potential to identify Swedish patients with mild cognitive impairment
and Alzheimer’s disease from healthy controls [41,42] and also subtype patients with pri-
mary progressive aphasia into PPA variants (non-fluent PPA, semantic PPA, and logopenic
PPA) using an ML model [40]. Also, we had demonstrated that NLP, automated part-of-
speech (POS) tagging, and syntactic parsing can enable the identification of agrammatism
in patients with the non-fluent variant of PPA [43].

Implementing ML approaches to language data in ASD could equip educators, clin-
icians, and others with a powerful tool to identify children at risk for ASD, ultimately
facilitating earlier access to crucial interventions. An ML-based tool is crucial for educators
and clinicians because it addresses several challenges they face in the classroom and in
clinical settings when working with children with ASD. Educators often encounter diverse
learning needs among their students, including variations in communication abilities. Iden-
tifying children at risk for ASD, who may require additional support, can be challenging
due to the broad spectrum of symptoms [13,44] and the overlap with other developmental
conditions [45].

Additionally, educators may struggle to access timely assessments and interventions,
leading to delays in addressing ASD students’ needs effectively. By providing educators
and clinicians with an artificial intelligence (AI)-based screening tool that analyzes language
profiles for early identification of ASD, we will be able to streamline the referral process,
ensuring that children receive appropriate interventions promptly. This will not only
support the individualized learning needs of children with ASD but will also promote a
more inclusive and supportive learning environment for all children with ASD attending
mainstream schools. Finally, by focusing on narrative and expressive vocabulary skills, the
proposed model targets key areas of communication often affected in ASD [26,32,46,47].
In the current study, we offer a novel comprehensive ML framework to identify narrative
production and expressive vocabulary as domains that distinguish children with ASD from
age-matched TD children.

Research in markers of ASD cross-linguistically indicates a pertinent need for an objec-
tive and easy-to-apply method for discerning children with ASD from TD children. Modern
AI technologies can offer both automatic language biomarkers of ASD, namely language
features that characterize individuals with ASD, and reliable classification models towards
this direction. Despite the acknowledgment of AI’s potential in leveraging biomarkers for
a data-driven approach to ASD classification [48], the predominant reliance on behavioral
observation data remains a challenge. Unlike genetics and neuroimaging scans, which
follow established protocols for collection and analysis, behavioral observational data
encounter difficulties in capturing the dynamic changes in an individual’s behavior [49].
While AI is increasingly being employed to autonomously interpret information from the
environment, the combination of AI and behavioral data holds promise in overcoming
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the challenges associated with data collection during the screening and diagnostic phases.
Notably, despite individual studies focusing on specific AI methods in ASD [50,51], a study
of AI technology that would distinguish children with ASD from TD peers by placing
emphasis on behavioral aspects of children’s performance, such as narrative production
and vocabulary, is currently lacking. This study aims to leverage the capabilities of AI to
develop a reliable and practical model for distinguishing children with ASD from TD peers
based on their narrative and expressive vocabulary skills. This approach could potentially
offer a valuable tool for early and accurate diagnosis, facilitating timely interventions and
support for children with ASD.

2. Materials and Methods
2.1. Participants

The study included in total 68 children with ASD (53 males) and 52 TD children
(41 males). The children with ASD were recruited from the geographical region of Macedo-
nia in northern Greece, and were referred by Centers for Differential Diagnosis, Assessment,
Counseling, and Evaluation (KEDASY) that constitute the official state centers responsible for
the diagnosis and assessment of autism and other developmental disorders in Greece. All
children received a formal clinical diagnosis of autism at preschool age at a KEDASY on the
basis of the DSM-V and ICD-10 criteria [52,53], as well as a record review conducted by teams
with diverse expertise (psychiatrist, clinical psychologist, specialized educator, social worker,
speech language pathologist). Finally, the Autism Diagnostic Interview—Revised [54] was
administered to children diagnosed with ASD. Children with coexisting intellectual and
language difficulties were excluded from the sample. The children with ASD attended
mainstream classes in public schools. TD children were selected for normal hearing; no
speech, emotional, or behavioral problems; and no observed neurological, articulation, and
phonological deficits. They were all recruited from mainstream public schools in northern
Greece. Experimental data were collected following children’s parents’ formal written
consent. Children’s Full-Scale IQ (FSIQ) scores were estimated using the Greek version
of the Wechsler Intelligence Scale for Children, 5th Edition [55], Greek version by [56].
Table 1 below presents the mean age and the FSIQ scores of each group. The mean ages
and standard deviations, as well as the age ranges in Table 1, represent the children’s years
and months. The two groups did not differ in either age, χ2 = 5.477, p = 0.571, or FSIQ,
χ2 = 9.369, p = 0.195. All study procedures were conducted in accordance with the Declara-
tion of Helsinki and approved by the institutional review board (IRB) and ethics committee
of the Aristotle University of Thessaloniki (IRB protocol number: 39928).

Table 1. ASD and TD children’s demographic characteristics (means, standard deviations in paren-
theses, and ranges).

Group Age FSIQ

ASD 8;7 (4.6)
4;2–10;7

84.1 (18.1)
71–120

TD 8;4 (4.3)
4;2–10;6

82.7 (17.6)
72–121

Notes: ASD = autism spectrum disorder; TD = typically-developing; FSIQ = Full-Scale IQ.

2.2. Procedure

Narrative production. We analyzed the narrative (telling) productions of each child
in the four pictured stories of the Multilingual Assessment Instrument for Narratives [57],
Greek version by [58]; retrievable from https://main.leibniz-zas.de/ (accessed on 3 Septem-
ber 2014). The four stories were comparable in terms of both stimuli (i.e., picture-based
sequences) and story structure complexity. Children were seated individually in a quiet
room in front of a computer workstation and opposite the examiner (third author). The
parents of the children were not allowed in the room to eliminate as many distractions as
possible. The children were informed by the examiner that she has never seen the stories

https://main.leibniz-zas.de/
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before, and that they should carefully view the pictures in order to be able to tell a story in
their own words. The six-picture sequence was visible to the children while telling the story
and was only removed after the child finished speaking. The children received no prompts
from the examiner and there was no time limit set. Immediately following the telling of
the story, the children were given specific feedback on their participation (e.g., “You did
a great job of telling the story”; “Thanks for being such a good storyteller”). Children’s
storytellings were digitally recorded on an Olympus DS-30 Digital Stereo Voice Recorder.
The narratives were then manually transcribed at the word level by the third author. All
transcripts were then checked by the second author, reaching high inter-rater reliability
(r = 0.95). The transcripts were next fed into the AI system.

Expressive vocabulary. The children’s expressive vocabulary in Greek was assessed
through an expressive vocabulary test, which has been standardized for 3- to 10-year-old
Greek-speaking monolingual children [59]; adaptation from [60]. It includes 50 black-and-
white pictures of common objects that each child was asked to name individually. Each
correct answer earns one point, with a maximum score of 50. The test was terminated when
the participant failed to respond correctly to five consecutive trials. The administration of
the task lasted approximately 10 min for each child.

2.3. Machine Learning

We developed a robust computational modeling approach by integrating several
pipelines for the automatic analysis of the narrative data and the development of the ML
models for the classification. First, we manually transcribed the four speech recordings
from both groups (ASD and TD) by the second and third author. Next, we utilized NLP
techniques to extract relevant linguistic features from the transcripts. Finally, we developed
and implemented various ML models to identify patterns within the linguistic data. This
section details the steps involved in this process.

2.4. Feature Engineering

We combined measures from NLP analysis and embedding measures from a Bidirec-
tional Encoder Representations from Transformers (BERT) language model [61]. These
would serve as numerical inputs to build classification or prediction models. Researchers
might focus on specific subgroups to identify those most helpful for a task (like distinguish-
ing children with ASD from TD peers).

1. NLP analysis. We employed Open Brain AI [62] to elicit measures from the text
transcripts. These measures include the following information. We evaluated both
count measures and word ratio measures that represent the proportion of a specific
feature relative to overall text length (word count). This helps control for differences
in the length of text samples. The analysis included the following language features
in children’s narratives:

i. Grammatical Features. We included information about the word classes (parts
of speech), e.g., counts of adjectives, adverbs, nouns, pronouns, verbs, proper
nouns, determiners, and numerals. We also included two types of engineered
measures, namely, content and function words. Content words constitute a
group measure of words with significant meaning (nouns, verbs, adjectives,
some adverbs) while function words constitute a group measure of words with
primarily grammatical roles (conjunctions, articles, pronouns);

ii. Syntactic and Dependency Relations. We included information such as counts
of adjectival modifiers, nominal subjects, direct objects, clausal complements,
and prepositional modifiers, as well as conjunctions, such as counts of coordi-
nating conjunctions and subordinating conjunctions;

iii. Focusing on Grammatical Elements. We included count measures of auxiliaries,
particles, and case markers;

iv. Semantic Features. We included count measures of named entities, such as
semantic references to persons and locations. We also included count measures
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of other semantic categories, such as counts of events, time references, date
references, and quantities;

v. Text Complexity and Style. We included information on word counts, including
measures of character and syllable usage. Also, we provided information on
vocabulary richness and diversity, such as the type–token ratio (TTR), corrected
TTR, the summer index, word density, Maas’s TTR, Mean Segmental_TRR,
and Herdan’s c [62].

2. BERT embeddings. We extracted BERT embeddings from textual data using the
“nlpaueb/bert-base-greek-uncased-v1” model [63]. This deep learning-based feature
extraction aimed to capture complex patterns and semantic information from the text,
which often need to be discernible through traditional NLP analysis. The resulting
embeddings were combined with other numerical features from the dataset, creating
a comprehensive feature set.

2.5. Addressing Data Scarcity and Imbalance

Recognizing the limitations posed by the small size of our dataset, we employed
random over-sampling (ROS), a powerful novel computational approach to balance the
classes [64,65]. This approach helped mitigate the model’s bias towards the majority class,
a common issue in imbalanced datasets. Additionally, the group five-fold cross-validation
was utilized with “child id” as the grouping factor to avoid data leakage and provide a
more reliable assessment of model performance. A median-based imputation strategy was
adopted to tackle the issue of missing values. This step ensured that our models received a
complete dataset, which is crucial for accurate prediction. Furthermore, we standardized
the non-BERT features to ensure uniformity in scale.

2.6. Model Comparison and Selection

As each ML model captures different types of information on a certain dataset, it is
critical to determine the one that provides the best outcomes through a rigorous model
comparison approach. We included gradient boosting, decision trees, hist gradient boosting,
and XGBoost.

1. Gradient boosting is an ensemble learning method that combines multiple weak
learners to make predictions. It is a sequential algorithm, which means that it builds
one weak learner at a time, using the information from the previous weak learners to
improve the next weak learner. Gradient boosting is a viable choice for problems with
a lot of data, and the features are high-dimensional [66,67];

2. Decision trees are tree-like structures representing a series of decisions and their
possible consequences. They are used for classification and regression tasks. Decision
trees are a viable choice for problems where the data is easily interpretable and a few
key features are essential for making predictions [66–68];

3. Hist gradient boosting is a variant of gradient boosting that uses histograms to
represent the features. This makes it more efficient than gradient boosting, especially
for problems with a lot of data and high-dimensional features [69];

4. XGBoost is a widespread implementation of gradient boosting known for its speed
and accuracy. It uses several techniques to improve the performance of gradient
boosting, such as using a more efficient tree-splitting algorithm and regularization to
prevent overfitting [70].

Table 2 summarizes the characteristics of each of these ML models.
Achieving an optimal model performance hinges on selecting the most effective

configuration of hyperparameters for each one of these models. A grid search with cross-
validation was implemented to evaluate and compare the performance of the different
ML models by finding the optimal hyperparameters for each model using grid search and
calculating the evaluation metrics.
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Table 2. Characteristics of each of the ML models employed.

Model Type Characteristics

Gradient Boosting Ensemble Sequential, combines multiple weak learners
Decision Trees Tree-like structure Interpretable, key features important

Hist Gradient Boosting Variant of gradient boosting Uses histograms to represent features, efficient
XGBoost Implementation of gradient boosting Speed, accuracy, techniques to improve performance

The grid search offers a systematic approach to evaluate the hyperparameters of the
models. Specifically, we employed GridSearchCV, a scikit-learn function that automates
an exhaustive hyperparameter search [66,67]. First, we specified the hyperparameters of
the models with possible values. This creates a grid of all possible combinations. Grid-
SearchCV iterates through each combination in the grid. Each combination splits data into
training and validation sets and trains a model instance with the current hyperparameter
combination after evaluating the model’s performance on the validation set using accuracy
measures. After assessing all combinations, GridSearchCV identifies the hyperparameter
combination that yields the best performance on the validation set. This combination is
considered the “best model” based on the explored search space.

The hyperparameters are essentially control knobs that influence the learning process
of a model. They are distinct from model parameters, which are learned from the training
data. Depending on the measures, we evaluated different hyperparameters, such as the
learning rate, which controls the step size taken by the model during training, impact-
ing the speed and convergence of learning, and the number of trees (in random forests),
which determines the model complexity and potential for overfitting. The grid search
employs an exhaustive evaluation strategy to identify the optimal hyperparameter configu-
ration. The grid search offers a systematic way to identify well-performing hyperparameter
configurations, particularly when the search space is of manageable dimensionality.

Subsequently, the ML models were evaluated by assessing the following performance
metrics, namely, their accuracy, F1 score, precision, recall, ROC AUC, and Cohen’s kappa.
These metrics provide a multi-faceted assessment of each model’s predictive power and
its ability to handle specific complexities like class imbalance. Additionally, ROC AUCs
(area under the receiver operating characteristics curves) were generated, offering a vi-
sual representation of each model’s capacity to discriminate between classes at various
classification thresholds.

3. Results

The ML models were trained on the ASD and TD children. The findings show that
narrative production combined with expressive vocabulary distinguishes ASD from TD
children, achieving an accuracy of around 96% (see Figure 1, Table 3). This highlights the
role of language in informing diagnosis of ASD. All four models performed well on this
binary classification task, with hist gradient boosting and XGBoost showing marginally
better performance across most metrics. The best model choice might depend on the specific
application and the cost of false positives versus false negatives. For instance, a model with
higher recall might be preferred in ASD diagnosis (where missing a positive case could
be critical). On the other hand, in a spam detection scenario (where false positives could
be more disruptive than false negatives), a model with higher precision might be more
desirable (Figure 2).

Hist gradient boosting and XGBoost showed slightly superior performance compared
to the decision trees and gradient boosting models, particularly regarding accuracy and F1
score. This is due to their advanced algorithms, which effectively analyze complex data
patterns. The perfect precision (1.0) for hist gradient boosting and XGBoost indicates that
they are extremely likely to be correct when these models predict a positive class. The
ROC AUC values were high for all models (see Figure 1), particularly for hist gradient
boosting and XGBoost, reinforcing their ability to distinguish between ASD and TD children.
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The consistent recall across all models suggests they are equally effective at identifying
positive cases.

More specifically, the accuracy indicates the proportion of correct predictions (both
true positives and true negatives). An accuracy of 0.95 for the decision trees and gradient
boosting models and 0.975 for the hist gradient boosting and XGBoost models indicate a
high level of overall correctness in distinguishing between ASD and TD children based on
the narrative production and expressive vocabulary performances.
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Hist Gradient Boosting 0.975 0.974359 0.9675
XGBoost 0.975 0.974359 0.9600
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The F1 score is the harmonic mean of precision and recall, balancing these two metrics.
A high F1 score, as seen across all models (ranging from 0.95 to approximately 0.974),
suggests a good balance between precision and recall, and corroborates the accuracy.

The ROC AUC measures the ability of a classifier to distinguish between classes and
is used as a summary of the ROC curve. Values range from 0 to 1, with a higher score
indicating better classification capabilities. The scores here ranged from 0.94375 to 0.96750,
indicating good discriminative ability for all models.

Finally, the two last measures reported the precision and the recall, both displaying a
value closer to 1, which indicates good precision and recall. Specifically, the precision is
the ratio of correctly predicted positive observations to the total predicted positives. High
precision (0.95 to 1.0) across all models indicates a low rate of false positives. The recall
measures the proportion of actual positives that were correctly identified. The consistent
recall of 0.95 for all models suggests they identify the positive class well.

4. Discussion

In this study, we employed ML model comparison techniques to identify classifiers
with high accuracy that could distinguish ASD from age-matched TD children on the
basis of the children’s narrative production and expressive vocabulary performances. The
top performing models were the hist gradient boosting and XGBoost algorithms that pro-
vided high classification accuracy, namely 96.75% and 96% accuracy, respectively, thus
robustly differentiating children with ASD from their TD peers. Moreover, an exceedingly
small number of children were misclassified, which further suggests that morphosyntac-
tic, semantic, and pragmatic measures of children’s narrative production, coupled with
expressive vocabulary, can achieve high classification accuracy for children with ASD.
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4.1. Significance of ML Classsifiers in Early Detection of ASD

This approach demonstrates the feasibility of integrating ML in educational settings
for diagnosing ASD in children. Current language assessment procedures in ASD present
significant challenges of being time-consuming, requiring extensive training for clinicians
to objectively and accurately code, analyze, and evaluate the complex language data. Early
educational and behavioral intervention is critical for improving children’s quality of life
and enhancing their social and personal development [71,72]. The resulting delays in
diagnosis can be detrimental, as early intervention with speech therapy has been shown
to have the most significant impact on ASD children’s future development and quality of
life [73]. Thus, the present study provides an automated method to screen children for ASD
which is fast in application and reliable. The high accuracy of the models suggests that they
could be used as a quick and easy assessment tool for children suspected of having ASD. A
key advantage is that the training process only needs to be performed once. Once trained,
the model can be used to evaluate many new individuals efficiently.

Our AI-based data analytics to identify ASD on the basis of the children’s narrative
and vocabulary skills may be viewed as part of a broader AI approach to improving ob-
jectivity in the early diagnosis of ASD, as well as to enhancing access to clinical services
and educational opportunities for these individuals. AI-based designs have so far mainly
capitalized on cognitive and behavioral phenotypes in children with ASD, including stereo-
typical behaviors [74], diagnostic measures such as the Autism Diagnostic Observation
Schedule (ADOS) [75], the Autism Diagnostic Interview—Revised (ADI—R) [54], or the
Childhood Autism Rating Scale (CARS) [76–78]. Interestingly, ML classifiers have been
recently developed to predict which types of teacher communication strategies are more
likely to generate positive responses in seven students with ASD in the classroom [79].
Though the collected language-based data fed into the current AI-based system have been
sourced from a relatively small sample of children (namely, 68 children with ASD and
52 TD children), we believe that they hold promise in capturing language-based markers of
ASD from the data, which may be instrumental for their potential usefulness in the early
diagnosis of ASD in children. The key potential strength of this model lies in the possibility
of stakeholders in the field of ASD (speech and language pathologists, clinicians, special
education teachers) to input specific narrative variables from high-risk young children
through the use of a tablet-based narrative elicitation application, and then obtain a de-
tailed and objective profile of the child’s language weaknesses. If this method promotes
early diagnosis of children with ASD, then such an approach could make a real difference
in autism assessment. Our study and the high accuracy of classifiers show that there is
potential for the use of a narrative-based ML model in ASD diagnosis.

The strength of the current study’s narrative-based ML model mainly lies in the fact
that the model utilized an AI approach powered by specifically utilizing NLP, employing
Open Brain AI’s NLP toolkit [62], BERT semantic embeddings, and ML to provide an
analysis of the narrative production and expressive vocabulary of 120 children with and
without ASD. Our goal was to determine if specific language measures, identified through
NLP, could effectively distinguish between ASD and TD children.

Children with ASD experience language weaknesses across multiple levels of pro-
cessing. Specific challenges include difficulties with morphosyntax (grammar), lexical
semantics (vocabulary and meaning), and phonology (sound processing) [80–82]. They
are also impaired in the semantic and pragmatic domain [3,19,26], which has cascading
negative effects on the children’s narrative microstructure and macrostructure. Language
impairments are a hallmark feature of ASD and are strongly linked to its core traits. Ana-
lyzing a child’s language profile has the potential to serve as a red flag, prompting the use
of more rigorous diagnostic tools. Unfortunately, this is not yet standard practice, leaving
the burden of seeking diagnosis largely on parents and caregivers.

To address this, our approach provided integrated pipelines for eliciting automatic
features from text transcripts. These automatic approaches facilitate both micro- and
macro-analysis of narratives, and the elicitation of automatic measures that reflect various
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language aspects of the children’s narrative production, including vocabulary, syntactic
structure, and syllabic structure (among others), that may serve to be unique markers
of ASD. By enabling early diagnosis, ML models can facilitate timely intervention and
support for children with ASD, which could have positive cascading effects on the efficacy
of interventions, as well as speech and behavioral therapies.

The advantage of using the automated multimodal approach is that each linguis-
tic analysis provides distinct information about language production in children with
ASD. The morphosyntactic features provide information about the narratives’ grammatical
structures and how children form sentences while telling a story. The approach provides
quantified textual information into the model about the usage of pronouns (e.g., using
“I” instead of “s/he”), atypical use of verb tenses or word order, and echolalia (repeating
phrases). We also integrated automated information about the lexical characteristics of
narration into the model, including impairment in appropriate vocabulary use, unusual
or idiosyncratic word usage, and difficulty producing abstract concepts. Our automated
approach has also utilized semantic and pragmatic measures mined from a Bidirectional
Encoder Representations from Transformers (BERT) AI language model. The BERT em-
bedding is a powerful language model that captures the rich contextual information about
words and their relationships within sentences. BERT embedding can identify the minute
differences in language usage that might not be apparent in simple word counts or gram-
matical analysis. Also, embeddings reflect word meanings and how they relate, potentially
revealing differences in how children with ASD use language.

4.2. Implications of Findings

Overall, the high diagnostic accuracy of the current automated multimodal approach
to ASD children’s narrative and vocabulary production could be integrated in several
complementary diagnostic tools that are already available for ASD. Ref. [83] presents an
extensive examination of psychodiagnostic tools recommended for early ASD screening,
categorized into level 1 and level 2 screeners based on their focus and age appropriateness.
Level 1 screeners are tailored for younger children, emphasizing social communication,
sensory-regulatory functions, and a broad spectrum of behaviors. In contrast, level 2 screen-
ers encompass broader age ranges and delve into specific skills such as communication,
social interaction, play, and behavioral patterns. Integrating a narrative evaluation into
this diagnostic framework could serve as a complementary tool alongside established
instruments like the ADOS [75] or the ADI—R [54]. While the latter tools scrutinize specific
behaviors and interactions linked to ASD diagnosis, narrative assessment offers nuanced
insights into a child’s language development, social communication, and narrative abil-
ities. This integration could enrich diagnostic assessments by providing a more holistic
understanding of early ASD indicators.

4.3. Limitations and Future Research

The primary limitation of this study has been the inclusion of children across a wide
age range (4–10 years), which could potentially mask the model’s accuracy at specific devel-
opmental stages. Studies with larger samples of children in specific age groups (e.g., early
childhood, middle childhood) would enable researchers to determine when these language-
focused ML models are most accurate. This information would be invaluable for optimizing
their use in a clinical setting. Also, it would be important to investigate if any other fac-
tors could also affect the classification models, including the children’s socioeconomic
status. Also, exploring the model’s performance across different IQ profiles within the ASD
population could further refine its applicability for diverse diagnostic contexts.

Building upon the current work, in our future research, we plan to develop even more
precise and age-appropriate AI-powered tools supporting ASD diagnosis. Specifically, we
plan to replicate the study with larger sample sizes and ASD children representing a wider
range of socioeconomic backgrounds, intellectual abilities, and cultural/linguistic experi-
ences. We will also assess whether the model’s accuracy holds true when targeting other
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language domains, such as pragmatics (social use of language), receptive language (under-
standing), as well as language expressions that are related to children’s socio-cognitive and
theory of mind skills (e.g., emotion recognition of story characters, production of epistemic
verbs like “believe” and “think”) [84]. Finally, the ML models employed here will be tested
for their efficacy and efficiency as AI tools within a school setting for early ASD screening,
since a further objective is to examine how information from these language assessments
can be leveraged by educators and speech therapists to personalize interventions and
educational support for children with ASD.

5. Conclusions

In this study, we employed ML algorithms to analyze children’s narrative production
and expressive vocabulary, aiming to distinguish between ASD and TD children. Our find-
ings highlight the superior performance of two algorithms, namely, hist gradient boosting
and XGBoost, which demonstrated high sensitivity and specificity in classifying children
with ASD. Given the efficiency, accessibility, and ease of administration of the narrative
production and expressive vocabulary assessments (approximately 25 min combined), our
automated approach can streamline the diagnostic process and expedite the initiation of
targeted interventions. As such, our model may represent a key step towards expediting
the diagnosis of ASD as well as accelerating the delivery of interventions at earlier and
more impactful stages of child development.
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