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Abstract: In DCE-MRI, the degree of contrast uptake in normal fibroglandular tissue, i.e., background
parenchymal enhancement (BPE), is a crucial biomarker linked to breast cancer risk and treatment
outcome. In accordance with the Breast Imaging Reporting & Data System (BI-RADS), it should be
visually classified into four classes. The susceptibility of such an assessment to inter-reader variability
highlights the urgent need for a standardized classification algorithm. In this retrospective study,
the first post-contrast subtraction images for 27 healthy female subjects were included. The BPE was
classified slice-wise by two expert radiologists. The extraction of radiomic features from segmented
BPE was followed by dataset splitting and dimensionality reduction. The latent representations
were then utilized as inputs to a deep neural network classifying BPE into BI-RADS classes. The
network’s predictions were elucidated at the radiomic feature level with Shapley values. The deep
neural network achieved a BPE classification accuracy of 84 ± 2% (p-value < 0.00001). Most of
the misclassifications involved adjacent classes. Different radiomic features were decisive for the
prediction of each BPE class underlying the complexity of the decision boundaries. A highly precise
and explainable pipeline for BPE classification was achieved without user- or algorithm-dependent
radiomic feature selection.

Keywords: breast cancer risk; breast dynamic contrast-enhanced MRI; background parenchymal
enhancement; BI-RADS-compliant BPE classification; deep neural networks; radiomics; explainable
AI; Shapley values

1. Introduction

Magnetic Resonance Imaging (MRI) with Dynamic Contrast Enhancement (DCE) is a
key imaging modality in breast diagnostics. It is indicated for opportunistic screening in
female patients at high risk, for diagnostics, treatment planning, and monitoring, as well
as for the treatment outcome assessment [1–5]. The European Society of Breast Imaging
has recently updated the recommendation guidelines indicating that female patients with
extremely dense breast tissue should undergo screening DCE-MRI examination on a regular
basis [6], adding a further area of indications for this diagnostic approach.

During the DCE-MRI examination, a contrast agent is injected and its uptake by the
normal fibroglandular tissue (FGT), i.e., Background Parenchymal Enhancement (BPE), may
occur. BPE is an essential biomarker in precision medicine, as it is suggested to be correlated
with breast cancer risk, as well as with breast cancer treatment outcome [7,8]. Moreover, it
also can affect diagnostic accuracy by covering lesions (false negative) or being mistaken
for them (false positive) [9]. Therefore, according to the current Breast Imaging Reporting
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& Data System (BI-RADS) atlas developed by the American College of Radiology, both FGT
and BPE should be visually classified into four categories [10]. For FGT, these categories
are as follows: almost entirely fat, scattered, heterogeneous, and extreme, while for BPE they
are minimal, mild, moderate, and marked. It is essential to specify these categories in the
radiological report to assist in decision-making for a given patient. The reported inter-reader
agreements for the visual classification of BPE range from fair (Cohen’s kappa κ = 0.28 [11],
κ = 0.36 [12]) via substantial (κ = 0.61 [13], κ = 0.78 [14]) to almost perfect (κ = 0.83 [15],
κ = 0.93 [16]).

In our previous work [17], we developed FGT and BPE deep learning segmentation
models and correlated the obtained volumetric measures with the classes assigned by the
radiologists. Our results suggested that a standardized assessment of FGT can be solely
based on volumetric measures, whereas in the case of BPE an additional model taking into
account voxels’ intensity distribution and morphology is needed for a reliable classification.

Radiomics has shown potential in several breast cancer applications, including in
distinguishing benign from malignant lesions, predicting axillary lymph node status,
identifying molecular subtypes, predicting chemotherapy response, and estimating survival
outcomes [18,19]. Radiomics was also used in the context of BPE assessment, in which the
radiomics features were extracted from segmented contrast uptake and served as an input
for a tree-based classification model [13]. Additionally, deep learning architectures have
been employed for both two-class [20] and four-class BI-RADS compliant classifications, in
which the direct classification of MRI images was performed by a Convolutional Neural
Network (CNN) [14]. Those approaches demonstrated the suitability of radiomics and
deep learning tools for the BPE classification task. However, higher classification accuracy
is needed for a full integration into the clinical routine.

Building upon these insights, the main objective of this study was to develop an
automated algorithmic pipeline for a (i) highly accurate and (ii) explainable BI-RADS-
compliant BPE classification by combining the strengths of radiomics and deep learning.

2. Materials and Methods
2.1. MRI Datasets

This retrospective study was approved by the local ethics committee. The dataset
was curated by searching in the Picture Archiving and Communication System (PACS) of
our institution through examinations acquired between September 2013 and October 2015.
The inclusion criteria were the following: (a) age above 18 years, (b) absence of implants,
and (c) lack of artefacts. The resulting dataset was included in a prior article evaluating
the feasibility of obtaining BPE class directly from MRI slices with the use of CNN [14].
The resulting model had an overall accuracy of 75%. However, it presented a relatively
high misclassification rate between moderate and mild BPE class. In this work, we aimed
to evaluate a different approach based on radiomics and deep learning to improve the
performance in the discrimination of each BPE class. In this study, we used a subset of the
dataset consisting of the first post-contrast subtraction images from MRI-DCE sequences
for 27 healthy female subjects, resulting in 2403 slices. The examinations were acquired
with a 3.0 T Siemens scanner.

Additionally, an external test set was employed to validate the developed pipeline,
which comprised a subset of the public EA1141 dataset containing abbreviated breast MRI
data [21]. From this dataset, examinations performed with 3.0 T Siemens scanners of healthy
female subjects (BI-RADS 1) were selected. Subsequently, two examinations per each BPE
class, assigned volumetrically, were chosen, resulting in 1082 slices depicting breasts.

For detailed information about MRI imaging parameters of both datasets, see the
Supplementary Material.

The BPE was classified slice-wise by two consenting radiologists, each with more than
five years of breast imaging experience. Their classification serves as a gold standard in
this research.
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2.2. Explainable BPE Classification Pipeline

The steps involved in the pipeline are illustrated in Figure 1 and described below:
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DNN and the training set after PCA transformation[24]. In this way, base values for each 
BPE class were obtained. These correspond to “the average model output over the training 
dataset” [25]. Next, the explainer was applied to each slice from the test set. For a slice, 
four arrays with Shapley values were obtained, explaining the DNN output for each BPE 
class (φ1–φ4, in Figure 1). As the first four PCs served as an input to the DNN, each array 
consisted of four elements quantifying the impact of each PC on the given prediction. 

Figure 1. Schematic representation of the major steps in the explainable BPE classification pipeline:
the upper row depicts the steps involved in the BPE classification, whereas the lower one illustrates
the steps for obtaining local and global explainability of the feature importance. Abbreviations:
Laplacian of Gaussian (LoG), Local Binary Pattern applied in 2D (LBP2D), Gray Level Cooccurrence
Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length Matrix (GLRLM),
Neighboring Gray Tone Difference Matrix (NGTDM), Gray Level Dependence Matrix (GLDM).

(a) BPE Segmentation. The BPE was segmented in a semi-automatic way in a 3D slicer [22]
using a grow from seeds algorithm as well as thresholding.

(b) Radiomic feature extraction. Prior to slice-wise feature extraction, the volumes were
normalized. PyRadiomics v. 3.0.1 was used for the extraction of radiomic features [23].
The resampling was performed with a Bspline interpolator, [1, 1] resampled pixel
spacing, a pad distance of 10 and enabled pre-crop. The bin width for discretization
was set to 20 and the voxel array shift to 300. First post-contrast subtraction MRI
images with corresponding BPE masks served as the input for the radiomic toolbox:
first order, shape, and texture features were extracted from each slice in its original
form, as well as from the same slice after the application of different filters (cf. Figure 1).
For each slice, 1192 features were obtained.

(c) Train–validation–test split. In the first step, the dataset was split into two parts. The
first part, containing approximately 80% of the data, was utilized for hyperparameter
optimization through 5-fold cross-validation (CV). The optimized hyperparameters
were then applied to train the final model, with the first part of the data serving as both
the training and the validation sets (comprising 62% and 19% of slices, respectively)
and the second part serving as an outer test set (comprising 19% of slices), cf. Figure S1.
The initial split as well as the CV splits were performed randomly in a patient-stratified
manner. As the distribution of the BPE classes in the dataset is imbalanced, the initial
split was performed with the requirement that in each set, each BPE class had to be
represented by a minimum of 10% slices with respect to all the slices contained in
this set. For the cross validation, the requirement had to be lowered to a minimum of
2% slices.
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(d) Feature pre-processing and PCA. Feature standardization followed by PCA was performed
for each training set, with the validation and the test sets being transformed accordingly.

(e) Deep Neural Network: training and evaluation. A fully connected deep neural network
(DNN) was built using sequential blocks consisting of dense layers, followed by batch
normalization and dropout layers from the tensorflow.keras library. Hyperparameter
tuning using different numbers of Principal Components (PCs) as input, different
number of blocks with varying number of neurons and dropout rates, and different
learning rates was performed (cf. Supporting Table S1). To ensure comparability, the
random seed was fixed globally, and the weights were initialized with the use of the
glorot uniform method and the biases at the value of zero. To compensate for the class
imbalance, a weighted categorical cross-entropy loss was used. Each training run
was performed for 150 epochs, and a model characterized by the lowest validation
loss was chosen for the performance evaluation: confusion matrix and accuracy were
calculated for the test set. For each parameter set, the mean and the standard deviation
of accuracy of CV splits were calculated. Additionally, the confusion matrices were
reviewed for false positive and false negative rates. The best parameter set was chosen,
and the training was repeated for 10 runs without a fixed global random seed.
Average accuracy and standard deviation were calculated for the resulting 10 models
and p-value was computed using Student’s t-test (accuracy > 0.25). To evaluate a
single model, bootstrap resampling with replacement was performed on the obtained
predictions for a test set (n = 10,000). Accuracy and Cohen’s kappa (κ) scores were
obtained for each resample and average values were calculated together with 95%
confidence intervals (CI). p-values were determined utilizing Student’s t-test.
The best performance was achieved for a deep neural network taking the first four
PCs as input, with four blocks, each having 512, 256, 128, and 64 neurons in the dense
layer, respectively. The dropout rate was equal to 0.45. The Adam optimizer with
a learning rate of 0.0001 was applied. The training was performed in batches, each
containing 50 samples.

(f) Explainability. From the trained final models, two were chosen for detailed analysis
with a focus on the explainability and its robustness. The results obtained for one of
them are presented in the main text (including an evaluation on the external test set),
whereas for the second one the results can be found in the Supplementary Material.
The next sections describe the analysis in detail.

2.3. Shapley Values

The initialization of the SHAP Kernel Explainer was performed with the trained DNN
and the training set after PCA transformation [24]. In this way, base values for each BPE
class were obtained. These correspond to “the average model output over the training
dataset” [25]. Next, the explainer was applied to each slice from the test set. For a slice,
four arrays with Shapley values were obtained, explaining the DNN output for each BPE
class (φ1–φ4, in Figure 1). As the first four PCs served as an input to the DNN, each array
consisted of four elements quantifying the impact of each PC on the given prediction.

2.4. Shapley-Scaled Vectors

Depending on the predicted class, a corresponding array with Shapley values was
chosen. These served as scaling factors for PCA coefficients. Subsequently, the 4D Euclidean
vector length in the PCA space for each radiomic feature was calculated. For the vector
length calculation, the following equations were used:

PCj =
n

∑
i=1

φijXi (1)
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∣∣∣∣−−→VXi

∣∣∣∣ =
√√√√ 4

∑
j=1

φ 2
i (2)

∣∣∣∣−−−−−−→VXi_SHAP

∣∣∣∣ =
√√√√ 4

∑
j=1

αj φ 2
i (3)

−−−−−−→
VXi_SHAP orientation =

4

∑
j=1

αj φi (4)

Xi—radiomic feature;
PCj—principal component;
φij—coe f f icient associated with Xi and PCj;
αj—Shapley value f or PCj.

Firstly, the contribution of each radiomic feature to each PC was retrieved from the
PCA fit on the training set using Equation (1). The Euclidean vector’s length associated
with each radiomic feature in 4D was calculated subsequently with the use of Equation (2).
To assess the importance of each radiomic feature, the coefficients associated with each PC
were multiplied by the corresponding Shapley value and served to calculate the Shapley-
scaled 4D vector’s length for each feature (Equation (3)). In addition to the evaluation
of radiomic feature importance by the length of the Shapley-scaled vector, the vector
orientation in the feature space can be assessed by the summation of all Shapley-scaled
coefficients (Equation (4)).

2.5. Local Explainability

Within the feature family (cf. Figure 1), one feature type can be extracted from a slice,
not only after applying different filters but also after different mathematical transforma-
tions. For example, the Gray Level Non-Uniformity feature was extracted after calculating
GLRLM, GLDM, and GLSZM matrices. Thus, to explain the DNN predictions, firstly, the
length values of the Shapley-scaled vectors were sorted by the feature type together with
the corresponding orientation values (cf. Figure S2a). As in most cases, the vector length
and orientation values were similar within one feature type; in the next step, their averaging
was performed, followed by scaling the length values to the [0, 1] range to facilitate the
comparability (cf. Figure S2b). In the last step, all vector length values below the 75th
percentile with the corresponding orientation values were excluded.

2.6. Global Explainability

For the global explainability, the test set was divided into four subsets according to
the BPE class predicted by the DNN. Depending on the predicted class, corresponding
Shapley values were chosen as scaling factors for PCA coefficients. Within each class, those
scaled coefficients were averaged and used for calculating the Shapley-scaled vector lengths
associated with each feature. As in the case of a single slice, averaging per feature type,
rescaling to the [0, 1] range (cf. Figure S3), and the exclusion of vector lengths below the
75th percentile were performed.

3. Results
3.1. BPE Classification

Figure 2a depicts the first two PCs for each set; a gradual transition from the minimal
through mild, moderate to marked class is observed. Hyperparameter tuning resulted in
the choice of the first four PCs as input for DNN training. These PCs explained 78% of
the variance in the training set (Figure 2b). The DNN modes trained with the best set
of hyperparameters achieved an accuracy of 84 ± 2% (p-value < 0.00001). The model
chosen for detailed analysis classified the test set with 88% accuracy (84–91%, 95% CI;
p-value < 0.00001), with 93% (85–98%, 95% CI; p-value < 0.00001) of misclassifications
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occurring between the adjacent classes (cf. confusion matrix in Figure 2c). The plot of latent
representations of the slices contained in the test set revealed that the misclassified slices
have their latent representations mostly in the transition regions between the classes (cf.
Figure S4). The model achieved almost perfect agreement with the consensus characterized
by κ = 0.83 (0.79–0.87, 95% CI; p-value < 0.00001).
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Figure 2. BPE classification: (a) The Principal Component Analysis (PCA) was performed on
the training set, with the validation and test sets transformed accordingly. The first two Principal
Components (PCs) of the extracted radiomic features present a gradual transition from the lowest
to the highest BPE class. (b) The cumulative explained variance ratio in the first four PCs amounts
to 0.78. These PCs were used for the training and validation of the deep neural network. (c) The
confusion matrix for the test set.

The performance of the second DNN model trained with the same parameters but
initialized with a different set of random weights and biases is shown in Figures S5 and S6.
The model achieved very similar performance with an accuracy of 86% (83–90%, 95% CI;
p-value < 0.00001) with 92% (84–98%, 95% CI; p-value < 0.00001) misclassification involving
adjacent classes and κ = 0.82 (0.77–0.86, 95% CI; p-value < 0.00001).

The model reported in the main text, used for evaluating the external test set, achieved
an accuracy of 72% (69–75% CI; p-value < 0.00001) with 55% (49–61%, p < 0.00001) misclassifi-
cations occurring between adjacent classes and κ = 0.49 (0.44–0.53, 95% CI; p-value < 0.00001).
The corresponding confusion matrix is presented in Figure S7.

3.2. Explainability of the BPE Classification

An example of the explainability of the DNN predictions for a single MRI slice, con-
tained in a test set and classified by the two radiologists and the DNN as BPE-moderate, is
illustrated in Figure 3. The DNN classified this slice as BPE-moderate with a probability
of 0.79. In the presented case, components PC1, PC2, and PC4 contribute to the proba-
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bility increase, with PC1 having the highest impact, while PC3 decreases the probability
(cf. Figure 3b).
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Figure 3. Local explainability of BPE classification: (a) A single axial 1st subtraction MRI slice
classified as BPE-moderate. (b) A SHAP Kernel Explainer [24] was used to obtain the contribution
of each PC to the prediction made by the DNN for this slice. These contributions, i.e., Shapley
values, are illustrated in the form of a force plot. (c) The PCA coefficients were scaled by the
corresponding Shapley values, and the Shapley-scaled 4D vector length for each radiomic feature
was calculated. The histogram depicts the distribution of those length values. (d) The biplot depicts a
point describing radiomic features for the MRI slice in the PCA space together with the five longest
Shapley-scaled vectors contained in the last bin of the histogram projected onto 2D space. (e) The
most important radiomic feature types for the DNN prediction, i.e., described by the longest Shapley-
scaled vectors. The vector length (1st column) and orientation values (2nd column) are color-coded
(details in the Explainability of the BPE Classification section). Abbreviation: Informational Measure
of Correlation 2 (IMC2).

To explain the DNN predictions at the level of radiomic features, the PCA coefficients
were scaled by the corresponding Shapley values and served for the calculation of the
Shapley-scaled 4D vector’s length and orientation values associated with each radiomic
feature following the procedure described in Materials and Methods. Figure 3c illustrates a
histogram of the obtained Shapley-scaled vector length values. The five longest vectors,
contained in the last bin and projected onto 2D space, are shown in Figure 3d together
with a single point corresponding to the representation of radiomic features extracted from
the MRI slice in the PCA space. The most impactful radiomic feature types for the DNN
prediction are illustrated in Figure 3e. The same analysis was performed for the whole test
set, divided into subsets according to the predicted BPE class. The results are illustrated
in Figure 4.
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The second DNN model trained with the same parameters but initialized with a
different set of random weights and biases featured a similar probability for BPE-moderate
class, i.e., 0.78, for the same single MRI slice, the same features associated with the five
longest Shapley-scaled vectors, and the same most impactful feature types had similar
vector lengths and orientation values (cf. Figures 3 and S5). Global explainability is
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characterized by a very similar pattern of feature types with length values above the 75th
percentile (cf. Figures 4 and S6).

4. Discussion

As outlined in the introduction, this study aimed to achieve two primary objectives:
(i) developing an algorithmic pipeline for an accurate BI-RADS-compliant BPE classifica-
tion, and (ii) ensuring the pipeline’s explainability.

The first goal was realized by developing a dedicated pipeline (Figure 1). BPE classifica-
tion was reached with an accuracy of 88% (84–91%, 95% CI; p-value < 0.00001) (cf. Figure 2c)
and the model achieved almost perfect agreement with the consensus: κ = 0.83 (0.79–0.87,
95% CI; p-value < 0.00001). While the inherent subjectivity of the visual BPE assessment
presents a limitation, the model’s alignment with the gold standard of the consenting
expert radiologists, each with more than 5 years of experience in breast imaging, suggests
its potential to contribute to the standardization of BPE assessment. Furthermore, in the
study by Nam et al. [13], the reported accuracies are 66% and 67% with κ = 0.475 and
κ = 0.501 for BPE segmented manually and automatically, respectively. In the study by
Borkowski et al. [14], the accuracy amounted to 75% with κ = 0.815 ± 0.13. Although
direct comparison between the studies is not possible due to variability in the datasets and
utilized approaches, the pipeline presented here achieved promising results.

The second aim was accomplished by combining the PCA coefficients with Shapley
values and subsequent calculations of the Shapley-scaled vector length value for each
radiomic feature, associated with its importance.

We have demonstrated the explainability with an example of a single slice classi-
fied by the radiologists and the DNN as BPE-moderate (cf. Figure 3a). We have shown
that the analysis of feature relevance can be performed at the level of radiomic features
(cf. Figure 3d) or at the level of radiomic feature types (cf. Figure 3e). Within the radiomic
feature level, we have identified the five most impactful radiomic features related to the
longest vectors. All of these are associated with the application of the edge-enhancing
Laplacian of a Gaussian filter with a coarseness-determining sigma parameter equal to
2 or 3 mm (Figure 3d). The filter application was followed by the calculation of Entropy
and Uniformity as well as by GLDM transformation with the subsequent calculation of
Dependence Entropy. While entropy-based features constitute a measure of randomness in
the gray-level intensity values within region of interest (ROI), Uniformity quantifies the
homogeneity of the pixel intensity values. In the presented case, the vectors associated
with entropy-based features are oriented in the direction of negative values, while the
Uniformity vector is oriented in the direction of positive values in 2D (cf. Figure 3e) as well
as in 4D (cf. Supporting Table S2). Noteworthily, the Shapley-scaled vector length value
distribution is negatively skewed (cf. Figure 3c), with many vectors having similar length
values to the ones described above. For this reason, to gain a more exhaustive analysis of
the feature importance, we performed an analysis on the level of radiomic feature types,
containing the same radiomic features obtained after the application of various filters and,
in some cases, different mathematical transformations (cf. Materials and Methods). For
the single MRI slice, the negatively oriented Entropy and the positively oriented Unifor-
mity were the most decisive first-order feature types (cf. Figure 3e). The entropy-based
features, i.e., Dependence Entropy, Joint Entropy, Run Entropy, Sum Entropy, and Zone
Entropy, were among the most impactful texture feature types, together with Gray Level
Non-Uniformity Normalized. The entropy-based feature types are negatively oriented, i.e.,
towards homogeneity in the intensity values. In contrast, the Gray Level Non-Uniformity
Normalized feature type is positively oriented, i.e., towards a non-uniformity of intensity
values. This shows that a complex interplay of gray-level quantifying features is decisive
for the BPE classification for this slice.

To gain a broader understanding of the feature importance, the explainability approach
for the single slice was scaled up for the whole test set in the context of each BPE class
(cf. Material and Methods). For 134 slices predicted as BPE-minimal, Run Entropy and Zone
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Entropy feature types were characterized by the longest Shapley-scaled vectors, which
were negatively oriented, i.e., towards gray-level homogeneity, which is expected from
the visual assessment of the minimal enhancement. The BPE-mild class was predicted for
105 slices. Here, not only quantitative texture measures of Gray Level Non-Uniformity
but also descriptors of the 2D size and shape of the ROI (Perimeter) play a fundamental
role in the classification of the slices. From the test set, 105 slices were predicted as BPE-
moderate. As in the case of a single slice (cf. Figure 3e), there was an interplay between
entropy-based feature types oriented towards gray-level homogeneity and Gray Level
Non-Uniformity Normalized feature type oriented towards gray-level heterogeneity. For
the 104 MRI slices predicted as BPE-marked, positively oriented Run Entropy and Zone
Entropy had on average the highest impact on these predictions, demonstrating that in
the case of the highest enhancement, uniformity in the intensity values also plays a crucial
role. Following on from the above discussion, different feature types are decisive for the
DNN predictions for each BPE class, reflecting that BPE classification is a task with complex
decision boundaries to be found in the feature space.

Noteworthily, our pipeline granting both; high accuracy and explainability did not
involve a radiomic feature selection step, commonly included in radiomic-based classi-
fication approaches and realized with various algorithms [26–29]. As demonstrated by
A. Demircioğlu, the feature selection step can introduce a bias, which makes identifying
radiomic features as biomarker candidates very challenging [28]. In our approach, PCA is
performed directly on the extracted radiomic features, with the PCs serving as an input
to DNN. The number of those PCs needs to be chosen based on the explained variance
ratio in conjunction with the classifier performance, to find the balance between retaining
relevant information for feature explainability and discarding the noise.

Our analysis demonstrates that different feature types are decisive for the DNN
predictions of the single BPE classes, which reflects that the BPE classification is a task with
complex decision boundaries to be found in the feature space. All three feature families,
first-order, shape, and texture, strongly influence the DNN prediction of the BPE class in
the case of a single MRI slice and in the case of slices contained in the test set.

The main limitation of the study stems from the limited number of patients, originating
from the restricted time of human experts to precisely segment the intricate BPE structures.
Additionally, the training data came solely from one scanner at a single institution. The
preliminary validation performed with the external dataset of eight examinations acquired
with various parameters yielded promising results and underlined the necessity of enrich-
ing the training set with data originating from different scanners. Plans are underway to
expand the annotations for the EA1141 dataset, which also includes data from GE, Philips,
and Merge Healthcare scanners. To ensure a balanced dataset, annotations will be made
for 100 patients, considering both the manufacturer and the magnetic field strength of the
scanners. Subsequently, an external validation using 50 examinations from our partner
institutions will be performed. Due to the time-intensive nature of this task, the retraining
and validation processes are expected to be completed by the end of 2024.

5. Conclusions

In summary, we have developed a BI-RADS compliant and explainable pipeline for
classifying the contrast uptake in breast tissue during the DCE-MRI breast examination.
Our deep learning model achieved an almost perfect agreement with the consensus of
breast imaging experts and an accuracy of 88% (84–91%, 95% CI; p-value < 0.00001), mainly
misclassifying adjacent classes. In the next step, multicenter studies will be performed to
validate the pipeline performance for datasets acquired with different imaging protocols
and timing of the post-contrast acquisitions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering11060556/s1, Supplementary Materials and Meth-
ods: MRI image acquisition; Figure S1: The distribution of BPE classes in the dataset as well as
in final training, validation, and test sets; Figure S2: Local explainability of the BPE classification;
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Figure S3: Global explainability of the BPE classification; Figure S4: The 3D latent representations
of the slices contained in the test set; Figure S5: Reproducibility of local explainability of the BPE
classification; Figure S6: Reproducibility of global explainability of the BPE classification; Figure S7:
Evaluation of the model reported in the main text on the external dataset; Table S1: Hyperparameter
tuning; Table S2. Shapley-scaled PCA coefficients, vector length, and orientation values associated
with radiomic features shown in the biplot in Figure 3d of the main text.
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