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Simple Summary: Both extrinsic signaling and intrinsic regulation are critical for maintaining cellular
homeostasis, and their dysregulation is often associated with tumorigenesis and human diseases. This
report outlines three distinct C. elegans tumor models resulting from mutations in conserved extrinsic
signaling pathways (e.g., Notch signaling) and intrinsic RNA-binding proteins (e.g., GLDs and PUF).
These models highlight how C. elegans Notch signaling and RNA-binding proteins contribute to
tumor initiation, progression, and suppression, depending on the cellular context. Therefore, in
addition to targeting oncogenic signaling pathways, directing attention toward RNA-binding proteins
holds great potential for a tumor-type-specific therapy approach.

Abstract: Tumor cells display abnormal growth and division, avoiding the natural process of cell
death. These cells can be benign (non-cancerous growth) or malignant (cancerous growth). Over the
past few decades, numerous in vitro or in vivo tumor models have been employed to understand
the molecular mechanisms associated with tumorigenesis in diverse regards. However, our compre-
hension of how non-tumor cells transform into tumor cells at molecular and cellular levels remains
incomplete. The nematode C. elegans has emerged as an excellent model organism for exploring
various phenomena, including tumorigenesis. Although C. elegans does not naturally develop cancer,
it serves as a valuable platform for identifying oncogenes and the underlying mechanisms within
a live organism. In this review, we describe three distinct germline tumor models in C. elegans,
highlighting their associated mechanisms and related regulators: (1) ectopic proliferation due to
aberrant activation of GLP-1/Notch signaling, (2) meiotic entry failure resulting from the loss of
GLD-1/STAR RNA-binding protein, (3) spermatogenic dedifferentiation caused by the loss of PUF-
8/PUF RNA-binding protein. Each model requires the mutations of specific genes (glp-1, gld-1, and
puf-8) and operates through distinct molecular mechanisms. Despite these differences in the origins
of tumorigenesis, the internal regulatory networks within each tumor model display shared features.
Given the conservation of many of the regulators implicated in C. elegans tumorigenesis, it is proposed
that these unique models hold significant potential for enhancing our comprehension of the broader
control mechanisms governing tumorigenesis.

Keywords: tumorigenesis; GLP-1/Notch signaling; RNA-binding proteins; GLD-1; PUF-8;
C. elegans germline

1. Introduction

Tumorigenesis, the abnormal proliferation of cells leading to tumor formation, high-
lights various capabilities of cancer cells, such as growth signal self-sufficiency, insensitivity
to anti-growth signals, apoptosis evasion, replicative potential, sustained angiogenesis, and
tissue invasion [1]. Due to the complexity and overlapping genetic changes in humans,
model organisms are crucial in studying tumorigenesis. The nematode Caenorhabditis
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elegans (C. elegans) is a good model organism for studying fundamental mechanisms of
cell proliferation and differentiation and is one possible model for studying tumorigenesis
in vivo. The transparency of C. elegans enables direct observation of cell growth and tumori-
genesis in vivo [2]. Its highly conserved genes and pathways related to tumorigenesis make
C. elegans an ideal model organism [2], especially for studying tumorigenesis in germlines
influenced by both germline and somatic signals [2].

1.1. C. elegans Germline Development

C. elegans exist as either hermaphrodites (XX) or males (XO). Hermaphrodites initially
produce a limited number of sperm during the larval stage (L4) and then switch to produc-
ing oocytes in young adult stages; they are self-fertile during adulthood. However, males
consistently produce sperm without switching to oogenesis. The germline is organized
in a simple linear pattern in both sexes, progressing from germline stem cells (GSCs) in
the distal region to maturing gametes in the proximal region (Figure 1A). Specifically, a
mesenchymal somatic cell, known as the distal tip cell (DTC), functions as a GSC niche and
plays a crucial role in GSC maintenance and the mitotic cell cycle in the distal germline [3].
Once a GSC moves away from the DTC niche, it enters the meiotic cell cycle and eventually
differentiates into sperm or oocytes (Figure 1A). In addition, C. elegans is an attractive model
organism due to the ease of generating mutant strains, genetic manipulation, phenotype
analysis, microscopy, and imaging. Therefore, the C. elegans germline has been widely used
as a model organism in various biomedical fields, including research on tumorigenesis.
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Figure 1. C. elegans germline and three distinct tumor models. (A) Schematics of adult C. elegans and
its germline. Germ cells at the distal end of the germline, including GSCs, divide mitotically (yellow).
As germ cells move proximally, they enter meiosis (green) and differentiate into either oocytes (pink)
or sperm (blue). (B) Schematics of normal hermaphrodite germline and three tumor germline models
resulting from glp-1 gain-of-function (gf), gld-1 loss-of-function (lf), or puf-8 loss-of-function mutation (lf).
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(C,D) Normal and tumor germlines. Wild-type (N2) and tumor germlines were stained with anti-
HIM-3 (meiosis marker) antibodies and DAPI (DNA marker).

1.2. Three Distinct Mechanisms of C. elegans Germline Tumorigenesis

Germline tumors observed in mutant C. elegans individuals can originate from different
sources, depending on the mechanism of tumorigenesis. In the context of C. elegans, the term
“tumorous” is used to define germlines that exhibit three distinctive features (Figure 1B):
(1) a vast excess of mitotic cells through ectopic proliferation, (2) minimal or no germ cell
differentiation due to meiotic entry failure, and (3) the generation of mitotic germ cells
through dedifferentiation. This report outlines three distinct mechanisms of tumorigenesis.

2. GLP-1/Notch-Activation-Mediated Tumorigenesis: Ectopic Proliferation
2.1. Notch Signaling

In most multicellular organisms, the Notch signaling pathway is highly conserved
and controls various cellular processes, including proliferation, differentiation, cell fate
specification, and other cellular responses [4]. Notch ligands (DSL: Delta/Serrate/LAG-2)
are expressed on the membrane of donor cells adjacent to receiving cells expressing Notch
receptors (Figure 2A). Upon interaction between the Notch receptor and a ligand, an ADAM-
family metalloprotease cleaves the exterior of the Notch receptor, followed by γ-secretase
cleaving the inner portion of the Notch receptor within the cell membrane. This Notch
intracellular domain (NICD) relocates to the nucleus, where it forms a tertiary complex
with CSL (CBF1/Suppressor of Hairless/LAG-1) transcription factors and Mastermind-like
protein (MAML-1), leading to the activation of Notch target genes. Notably, aberrant Notch
signaling can lead to uncontrolled cell growth, metastasis, and resistance to apoptosis [5],
which are associated with breast cancer, lung adenocarcinoma, hepatocellular cancer,
ovarian cancer, and colorectal cancer [5]. Therefore, understanding the precise mechanism
governing context-dependent outcomes of Notch signaling is crucial.
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Figure 2. Notch signaling and its regulators. (A) Conserved Notch signaling pathways. Upon
signaling, cleaved NICD translocates from the membrane to the nucleus. In the nucleus, NICD forms
a tertiary complex with CSL and a co-activator (MSML, Mastermind-like protein), activating the
expression of target genes. (B) C. elegans GLP-1/Notch signaling pathways. The DTC expresses
GLP-1/Notch ligands (e.g., LAG-2) and employs GLP-1/Notch signaling to promote continued
mitotic division of GSCs. (C) Positive and negative regulators of GLP-1/Notch signaling.
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2.2. C. elegans Notch Signaling and Its Core Regulators

The Notch signaling pathway and its core regulators are highly conserved in C. elegans
(Figure 2B). Two distinct Notch receptors exist in this organism: GLP-1 (GermLine
Proliferation-1) and LIN-12 (cell LINeage-12). GLP-1 is primarily found in germ cells
and plays a critical role in the maintenance and mitotic division of GSCs [3]. Conversely,
LIN-12 is predominantly present in somatic cells and is essential for determining the fate of
vulva cells during early larval development [6]. The activation of GLP-1 signaling requires
two Notch ligands: LAG-2 and APX-1 [7,8]. LAG-2 is mainly found in the DTC, which
acts as a niche for GSCs. When LAG-2 interacts with GLP-1, a cascade of cleavage events
is initiated, leading to the release of the NICD [9]. Subsequently, GLP-1(NICD) forms a
tertiary complex with LAG-1 and LAG-3, activating transcription for its target genes [9].
Two target genes, lateral signaling target (lst-1) and synthetic GLP (sygl-1), have been
extensively studied [10]. These genes function redundantly in the maintenance and mitotic
division of GSCs [10]. While a single mutation for either sygl-1 or lst-1 can sustain GSCs,
double mutations show no GSC phenotype, similar to glp-1(null) mutants [10]. Notably,
overexpression of either sygl-1 or lst-1 induces the formation of germline tumors, resem-
bling the phenotype observed in glp-1 gain-of-function (gf) mutants [11]. These findings
highlight the crucial role of two GLP-1 target genes in the maintenance and mitotic division
of GSCs.

2.3. GLP-1 Mutant Alleles

The primary distinction between the two groups of mutants lies in their germline
phenotype. Loss-of-function mutants significantly reduce GSCs, while gain-of-function
mutations form germline tumors. These glp-1 mutants have served as valuable tools to
identify genes associated with GLP-1 signaling. The representative mutant alleles are listed
in Table 1.

Table 1. The glp-1 mutant alleles.

Allele CGC Stock Phenotype Ref.

bn18 DG2389 Temperature-sensitive loss-of-function mutant [12]
q224 JK1107 Temperature-sensitive loss-of-function mutant [13]

oz112 - A ligand-independent gain-of-function mutant
characterized by the formation of germline tumors. [14]

ar202 GC833

A temperature-sensitive gain-of-function mutant
characterized by the formation of proximal (Pro)
germline tumors. This phenotype differs from that of
the glp-1(oz112) mutants. The glp-1(ar202) mutants
develop “Pro” germline tumors due to delayed initial
meiotic entry during the L4 stage at the restrictive
temperature. However, our genetic results revealed
that additional mechanisms may induce the formation
of germline tumors, even in the adult stage

[15]

2.4. Positive or Negative Regulators of GLP-1/Notch Signaling

While most glp-1(ar202) and glp-1(bn18) mutants are fertile at 15 ◦C or 20 ◦C, the
majority of glp-1(ar202) gain-of-function mutants develop germline tumors upon shifting
to 25 ◦C [15], whereas most glp-1(bn18) loss-of-function mutants exhibit defects in germline
proliferation at 25 ◦C, resulting in no germ cells [12]. These intriguing phenotypes provide
an opportunity to identify genes that positively or negatively regulate GLP-1/Notch
signaling (Figure 2C).

• CYE-1/CDK-2 cell cycle regulators: CYE-1 and CDK-2 form a complex that plays
critical roles in regulating cell cycle progression from the G1 to the S phase [16]. Fox
et al. found that germlines CYE-1 and CDK-2 are required for GLP-1/Notch-mediated
germ cell proliferation [16]. Specifically, a temperature-sensitive glp-1(bn18) loss-of-
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function mutant can maintain proliferative germ cells at 15–20 ◦C, but it loses them
at 25 ◦C [12]. Notably, RNAi-mediated depletion of CYE-1 or CDK-2 significantly
suppressed germ cell proliferation in these mutants even at 20 ◦C [16]. Additional
genetic analysis suggests that CYE-1 and CDK-2 act independently of GLP-1/Notch
signaling to promote germ cell proliferation [16].

• Subunits of the DNA polymerase alpha–primase complex: Yoon et al. found that
DIV-1 (regulatory subunit) is indispensable for GLP-1/Notch-mediated germ cell
proliferation during early larval development, whereas POLA-1 (catalytic subunit) and
two primase subunits, PRI-1 and PRI-2, play a crucial role in GLP-1/Notch-mediated
maintenance of proliferative cell fate during adulthood [17]. Robinson-Thiewes et al.
also identified POLE-1 (the catalytic subunit of DNA polymerase e) as a regulator of
germ cell proliferation [18].

• Chaperone HSP90: Lissemore et al. performed genetic screening to identify genes that
promote GLP-1/Notch signaling and found that HSP-90, a molecular chaperone, plays
an essential role in stem cell maintenance [19]. It was a novel finding demonstrating
the essential role of HSP90 in Notch signaling in development.

• Ribosomal protein S6 kinase (S6K): Roy et al. identified RSKS-1/S6K as a positive
regulator of GLP-1/Notch-signaling-mediated germline proliferation [20]. Additional
screening also found that translation-related proteins, cacn-1/Cactin, an RNA exosome
component, and a Hedgehog-related ligand may share functional relationships with
GLP-1/Notch and RSKS-1/S6K in maintaining GSCs [20].

• Bro1-domain protein: Liu and Maine identified the ego-2 (enhancer of glp-1) gene
as a positive regulator of germline proliferation that interacts genetically with the
GLP-1/Notch signaling pathway [21]. Notably, ego-2 also promotes LIN-12/Notch
signaling in somatic tissues [21]. They found that the EGO-1 protein contains a Bro1
domain, which localizes to specific endosomal compartments in other systems. Thus,
they suggest that EGO-2 may promote GLP-1/Notch signaling through am endocytic
process function [21].

• Derlin family proteins: Singh et al. demonstrated that reduced CUP-2 and DER-2
function suppresses GLP-1/Notch-mediated germline tumorigenesis [22]. CUP-2
and DER-2 are Derlin family proteins that function in endoplasmic reticulum (ER)-
associated degradation (ERAD). They also found that the suppression of GLP-1/Notch-
mediated germline tumorigenesis by the cup-2 mutation requires a proper Unfolded
Protein Response (UPR) function. Therefore, they suggest that reduced Derlin activity
may suppress GLP-1/Notch-mediated tumorigenesis through the activation of ER
stress and UPR [22].

• U/T level: Chi et al. demonstrated that C. elegans CDD-1/-2 cytidine deaminases
are involved in uridine biosynthesis [23]. Notably, worms lacking both CDD-1 and
CDD-2 exhibited germline proliferation defects, whose phenotype was rescued by
uridine/thymidine (U/T) supplementation [23]. They also suggested that U/T levels
regulate the translation of glp-1 mRNA through its 3′UTR in the distal mitotic region
at the post-transcriptional level [23].

• TRIM-NHL protein: Brenner et al. identified nhl-2 as an inhibitor of glp-1(ar202)-
mediated tumorigenesis [24]. NHL-2, a conserved TRIM-NHL protein family member,
suppresses germ cell proliferation by inhibiting two PUF RNA-binding proteins,
PUF-3 and PUF-11 [24]. They also found that CGH-1 RNA helicase and ALG-5
miRNA-associated Argonaute work with NHL-2 to inhibit glp-1(ar202)-mediated
tumorigenesis [24].

• E3 Ubiquitin ligase: Gutnik et al. reported that the splicing factor PRP-19 (a candidate
E3 ubiquitin ligase) inhibits the nuclear accumulation of the GLP-1/Notch intracellular
domain [25].

• PUF RNA-binding protein: PUF-8 is a conserved PUF RNA-binding protein that in-
hibits the translation of target mRNAs [26,27]. In C. elegans germline, PUF-8 is involved
in decisions regarding proliferation/differentiation, differentiation/dedifferentiation,
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and sperm/oocyte fates, depending on the genetic context [28]. Racher and Hansen
demonstrated that PUF-8 inhibits glp-1(ar202)-mediated tumorigenesis in the C. elegans
germline [29]. Other PUF RNA-binding proteins (FBF-1/2 and PUF-3/11) act down-
stream of GLP-1/Notch signaling and play a critical role in GLP-1/Notch-signaling-
mediated germ cell proliferation and tumorigenesis [30].

• Syndecan: Gopal et al. identified SDN-1 (a syndecan transmembrane proteoglycan) as
a positive regulator of GLP-1/Notch signaling. SDN-1 promotes GLP-1 expression
and mitotic germ cell fate by controlling a somatic TRP calcium channel [31]. This TRP
channel enhances glp-1 expression by governing the calcium-dependent binding of the
APTF-2 transcription factor [31]. Notably, the glp-1 promoter has an APTF-2 binding
site, and its transcription is directly activated by APTF-2 [31].

3. GLD-1-Loss-Mediated Tumorigenesis: Meiotic Entry Failure
3.1. STAR Family of RNA-Binding Proteins

The signal transduction activator of RNA metabolism (STAR) family of KH domain
RNA-binding proteins is a highly conserved group of proteins among eukaryotes [32]. The
STAR protein family operates at the post-transcriptional level, involved in the stability,
alternative splicing, and translational efficiency of their mRNA targets, thus influencing
downstream gene expression [33]. Although STAR proteins are highly conserved, they
exhibit variability in specific regions and specificity to certain RNA sequences in each model
organism [34]. Moreover, RNA-recognition mechanisms by STAR proteins are yet to be
explicitly defined for many models. Many STAR proteins have been identified with diverse
roles across animal models [35]. For example, the held-out wing (HOW) gene in Drosophila
is involved in embryonic cardiac development [36] and germline differentiation [37], and
the alternative splicing defective-2 (ASD-2) gene in C. elegans is involved in the develop-
mental control of alternative splicing [38,39]. STAR proteins also play an essential role in
the development of vertebrate models. Most notably, mutations and loss of function in
the quaking gene (QK1) in mice models have been shown to cause deficiencies in adult
mice astrocyte maturation [40]. Abnormal STAR proteins have also been implicated in
tumorigenesis, including lung cancer [41,42], breast cancer [43], and colorectal cancer [44].
Therefore, more research is needed to elucidate the full pleiotropic effects and mechanisms
of STAR proteins and their role in developmental maturation and tumorigenesis.

3.2. C. elegans gld-1 and Its Partners

C. elegans STAR RNA-binding protein GLD-1 (GermLine development Defective)
plays multiple critical roles in C. elegans germline development. One well-known function
is inhibiting germ cell proliferation [45,46]. Germ cells lacking GLD-1 enter the meiotic
cell cycle and revert to the mitotic cell cycle, leading to the formation of germline tumors
(Figure 1B). GLD-1 is predominantly expressed in the cytoplasm of premeiotic and pachytene
cells in the C. elegans germline [46]. GLD-1 exerts its regulatory functions by binding
to conserved sequence motifs (AGAAGC, CUACUAAC, or GAACGA) in the 5′ and 3′

UTRs of its mRNA target [47,48] (Figure 3A), thereby modulating their stability and/or
translation [49]. Several GLD-1 target mRNAs have been identified through biochemical
and functional analyses, including rme-2, gna-2 [50], lin-45, tra-2, glp-1 [51], pos-1, pal-1 [52],
cye-1, cep-1 [53], mes-3 [54], and five puf genes (puf-5, 6, 7, 8, and 10) [48,55]. RNA-IP/Chip
analysis has further identified putative GLD-1 targets, primarily involved in reproduction,
embryogenesis, cell division, and the cell cycle [49]. GLD-1 and its partner NOS-3 (a
member of the Nanos family of zinc finger proteins) act as a translational repressor to
promote meiotic prophase progression in the C. elegans germline [9,56]. Moreover, the
GLD-1/NOS-3 complex works with the GLD-2/GLD-3 complex, which promotes germline
differentiation [9,56]. Thus, the GLD-1/NOS-3 and GLD-2/GLD-3 complexes are essential
for germline differentiation, particularly through meiotic entry (Figure 3B).
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3.3. gld-1 Mutant Alleles

The gld-1 gene plays a crucial role in meiotic progression and oocyte development [45].
The formation of germline tumors in gld-1(q485) loss-of-function mutants is dependent on
the sexual fate of the germline [58]. In the gld-1(q485) loss-of-function mutant germline, germ
cells exit the meiotic prophase but return to the mitotic cell cycle in the oogenic germline,
while these germ cells can differentiate into sperm in the spermatogenic germline [58]. The
representative mutant alleles are listed in Table 2.

Table 2. The gld-1 mutant alleles.

Allele CGC Stock Phenotype Ref.

op236 TG34 Fertile but hypersensitive to CEP-1/p53-mediated apoptosis [59]
q485 JK3025 Sterile with germline tumors [45]
q268 JK3025 Sterile with germline tumors [45]
q93 JK3934 Sterile with germline tumors [45]
q343 JK1058 Small abnormal oocytes [45]

3.4. Positive or Negative Regulators of GLD-1

The regulators of GLD-1 are depicted in Figure 3B.

• GLD-2 poly(A) polymerase (PAP): GLD-2 is a cytoplasmic poly(A) polymerase [60].
It plays a critical role in meiotic entry and progression [61,62]. Thus, no functional
gametes are produced in the absence of GLD-2 [61]. Notably, the gld-1 mRNA is a
direct target of GLD-2 [63]. GLD-2 promotes meiotic entry at least in part by activating
the translation of gld-1 mRNAs [63]. Consequently, GLD-2 loss enhances the formation
of germline tumors in gld-1 loss-of-function mutant worms [61].

• FBF/PUF RNA-binding protein: C. elegans FBF/PUF proteins play a crucial role in
maintaining GSCs by regulating the expression of various target mRNAs, including the
gld-1 mRNA [64]. Since GLD-1 is essential for inhibiting proliferation and maintaining
the differentiation state of germ cells, FBF/PUF repression of gld-1 mRNAs is critical
for GSC maintenance. In addition, C. elegans PUF-8 proteins negatively regulate the
abundance of GLD-1 proteins via the inhibition of gld-2 mRNA translation [27].
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• CYE-1/CDK2: GLD-1 has CDK2 phosphorylation sites and appears to be a direct
substrate of CYE-1/CDK2 [65]. Functional analysis showed that FBF and CYE-1/CDK2
maintain GSCs by inhibiting GLD-1 abundance in the distal mitotic region through
post-transcriptional and post-translational mechanisms, respectively. Moreover, cye-1
mRNA is also a repressing target of GLD-1 [66]. Therefore, GLD-1 and CYE-1/CDK2
inhibit each other for the mitosis/meiosis balance (Figure 3B).

• Pre-mRNA splicing factor (PRP-17): Kerins et al. reported that PRP-17 and other
C. elegans splicing factor orthologs function to promote meiotic entry by positively
regulating the splicing of mRNAs of genes in the GLD-1 pathway [67].

4. PUF-8-Loss-Mediated Tumorigenesis: Spermatogenic Dedifferentiation
4.1. PUF RNA-Binding Proteins

Pumilio and FBF (PUF) proteins are highly conserved stem cell regulators that maintain
GSCs in worms and flies and have also been identified in vertebrate stem cells [28,68–72].
These proteins control mRNA translation or stability by binding to regulatory elements in
the 3′ UTR of their target mRNAs (Figure 4A). Specifically, they repress the expression of
target mRNAs by recruiting the Ccr4-Pop2-NOT deadenylase complex to trim the poly(A)
tails [73] and/or by interacting with Argonaute proteins to stall translation elongation [74]
(Figure 4A). Notably, many PUF-repressing target mRNAs repressed by PUF proteins
are shared among worms, flies, and humans, including components of cell signaling,
cell cycle regulation, and development [75]. One of the conserved target mRNAs is an
ERK MAPK mRNA [71]. PUF proteins inhibit the expression of MAPK mRNAs in both
C. elegans and human embryonic stem cells [71]. In humans, two PUF proteins, PUM1
and PUM2, have distinct roles in the self-renewal and differentiation of mesenchymal
stem cells (MSCs) [72]. PUM1 is critical for MSC self-renewal and proliferation, while
PUM2 represses the osteogenic differentiation of MSCs by inhibiting JAK2 and RUNX2
mRNAs [72]. Since cancer stem cells have similar characteristics, several studies have
highlighted the novel function of PUM1 in cancer stem cells and cancer progression [76–78].
For example, Pumilio proteins promote colorectal cancer progression by inhibiting the
expression of p21 mRNA [79]. Therefore, PUF proteins play critical roles in regulating
various cellular processes and tumorigenesis at a post-transcriptional level.
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4.2. C. elegans PUF-8

C. elegans possesses 11 PUF genes [80] (Figure 4B). Among them, PUF-8 is predom-
inantly expressed in the distal germline and plays a key role in regulating various cel-
lular processes, depending on the genetic context in the C. elegans germline [28]. For
example, PUF-8 and MEX-3 are critical for GSC proliferation [81], whereas PUF-8 and
LIP-1 promote GSC differentiation and the oogenic fate by inhibiting the MPK-1/ERK
signaling pathway [82]. PUF-8 also works with FBF-1 to promote the oogenic fate and
inhibit the spermatogenic fate [83]. The PUF-8 protein recognizes a regulatory element
[UGUAnA(U/A)A] on the 3′UTR of target mRNAs [27]. In silico analysis has identified
approximately 800 genes harboring at least one PBE in their 3′UTRs [27]. mRNA-seq
analysis revealed that 4638 genes were upregulated and 4855 genes were downregulated in
the puf-8(ok302) null mutant [84]. Notably, about 500 genes contained the PBE sequence
in both groups of genes [84]. To date, biochemical analyses, such as yeast-three hybrid,
gel shift, or RT-PCR, have verified several targets of PUF-8 regulation, including gld-2 [27],
ced-3 [85], let-60 [26], pqm-1 [84], pha-4 [84], blmp-1 [84], vhp-1 [84], and hih-30 [84]. Recent
reports also indicate that PUF-8 proteins regulate the C. elegans lifespan through pathways
involving MFF (mitochondria fission factor) and pqm-1-related lipid storage [84].

4.3. puf-8 Mutant Alleles

puf-8 loss-of-function mutants exhibit fertility at a permissive temperature (20 ◦C)
but develop partial germline tumors via dedifferentiation at a restrictive temperature
(25 ◦C) [86,87]. Specifically, abnormal spermatocytes in puf-8 loss-of-function or null mu-
tant germlines return to the mitotic cell cycle via dedifferentiation mechanisms [86,87].
Additionally, as noted in Section 2.4, puf-8 loss-of-function or null mutations can induce
germline tumors in temperature-sensitive glp-1(ar202) gain-of-function mutant germlines
even at a permissive temperature (20 ◦C) through non-dedifferentiation-mediated mecha-
nisms. The representative mutant alleles are listed in Table 3.

Table 3. The puf-8 mutant alleles.

Allele CGC Stock Phenotype Ref.

ok302 JH1521 Fertile at 20 ◦C but sterile at 25 ◦C [86]

q725 JK3231 Fertile at 20 ◦C, but some animals are sterile due to
germline tumors at 25 ◦C [87]

4.4. Positive or Negative Regulators of PUF-8

The regulators of PUF-8 are depicted in Figure 4B.

• LIP-1 dual-specificity phosphatase: puf-8(q725) mutants are self-fertile at 20 ◦C. How-
ever, at 25 ◦C, ~10% of 1-day adult puf-8(q725) mutants develop germline tumors [87].
Notably, the germline tumor phenotype of puf-8(q725) mutants is dramatically en-
hanced by the additional loss of LIP-1 (an MPK-1/ERK inhibitor) [87]. This finding
indicates that PUF-8 works with LIP-1 to inhibit dedifferentiation-mediated tumorigen-
esis by promoting the meiotic division of spermatocytes in the C. elegans germline [87].

• MPK-1/ERK MAPK: The Ras-ERK/MAP kinase signaling pathway governs many
cellular processes, such as proliferation, differentiation, cell fate decision, and sur-
vival in most eukaryotes [88]. Components of the C. elegans Ras-ERK pathway, such
as LET-60/Ras and MPK-1/ERK, are highly conserved and essential for germline
development, including meiotic progression, sperm fate specification, and oocyte
maturation [89]. Notably, the reduction in Ras-ERK MAPK signaling, either by muta-
tion or chemical inhibition, blocked the initiation of dedifferentiation in puf-8(q725);
lip-1(zh15) mutant germlines [87,90]. These findings indicate that MPK-1/ERK signal-
ing pathways are critical for puf-8(q725) dedifferentiation-mediated tumorigenesis.

• GLD-1 and GLD-2: Park et al. recently reported that PUF-8 binds specifically to
a PBE in gld-2 3′UTR and represses a GFP reporter gene carrying gld-2 3′UTR in
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the C. elegans mitotic germ cells [27]. Notably, the removal of both gld-2 and its
activating target, gld-1, significantly increased puf-8(q725) dedifferentiation-mediated
germline tumors [27]. These results indicate that GLD-1 and GLD-2 may inhibit
dedifferentiation-mediated germline tumors in a puf-8(q725) mutant germline by
promoting germ cell differentiation.

5. Conclusions

Tumorigenesis can occur through various mechanisms, such as genetic mutations,
epigenetic alterations, chromosomal abnormalities, immune system dysfunction, changes
in the tumor microenvironments, and metabolic changes. In this report, we describe three
specific tumor models: tumorigenesis mediated by (1) aberrant GLP-1/Notch activation,
(2) gld-1 loss-of-function-mediated differentiation failure, and (3) puf-8 loss-of-function-
mediated dedifferentiation (Figure 1B). Notably, each model requires the mutation of
distinct genes (glp-1, gld-1, and puf-8) and operates through different underlying mecha-
nisms. However, regulators within each tumor model exhibit shared features. For example,
a puf-8(q725) mutation initially triggers dedifferentiation-mediated tumorigenesis, further
enhanced by the additional mutation of lip-1. Interestingly, the same puf-8(q725) mutation
also induces glp-1(ar202)-mediated tumorigenesis through a different mechanism. Similarly,
a gld-1(q485) mutation initially leads to the formation of germline tumors due to differ-
entiation failure, but this mutation also enhances puf-8(q725) dedifferentiation-mediated
tumorigenesis. We also found that GLP-1/Notch signaling is involved in puf-8(q725)
dedifferentiation-mediated tumorigenesis. These observations lead us to hypothesize that
there may be shared internal regulatory networks that maintain the original tumorigenesis.
This idea also suggests specific therapies targeting both the origin of tumorigenesis and the
internal regulatory networks. Consequently, the three distinct tumor models in C. elegans
serve as valuable tools for identifying genes and developing unique therapeutics targeted
to specific tumorigenesis. This conceptual framework also provides insights into more
complex tumor models in other organisms, including humans.
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