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Simple Summary: Conifers are vital for both ecological and economic reasons, offering valuable
insights into land plant evolution. Molecular phylogenetics plays a significant role in studying
evolution, but research on conifers using large-scale data from multiple nuclear genes has been
limited. Target enrichment sequencing has emerged as a crucial method in phylogenomic studies.
However, a specific bait set for conifers is missing. The REMcon probe set targets around 100 single-copy
nuclear loci for family- and species-level phylogenetic studies of conifers. High target recovery and
read coverage were observed for the REMcon when tested on 69 species, including conifers and other
gymnosperm taxa. Phylogenetic analysis based on the DNA sequences generated from REMcon
recovered the existing understanding of conifer relationships. The REMcon bait set will be beneficial
in generating large-scale nuclear data consistently for any conifer lineage.

Abstract: Conifers are an ecologically and economically important seed plant group that can provide
significant insights into the evolution of land plants. Molecular phylogenetics has developed as
an important approach in evolutionary studies, although there have been relatively few studies
of conifers that employ large-scale data sourced from multiple nuclear genes. Target enrichment
sequencing (target capture, exon capture, or Hyb-Seq) has developed as a key approach in modern
phylogenomic studies. However, until now, there has been no bait set that specifically targets
the entire conifer clade. REMcon is a target sequence capture probe set intended for family- and
species-level phylogenetic studies of conifers that target c. 100 single-copy nuclear loci. We tested the
REMcon probe set using 69 species, including 44 conifer genera across six families and four other
gymnosperm taxa, to evaluate the efficiency of target capture to efficiently generate comparable
DNA sequence data across conifers. The recovery of target loci was high, with, on average, 94% of
the targeted regions recovered across samples with high read coverage. A phylogenetic analysis of
these data produced a well-supported topology that is consistent with the current understanding of
relationships among conifers. The REMcon bait set will be useful in generating relatively large-scale
nuclear data sets consistently for any conifer lineage.

Keywords: conifers; gymnosperms; target capture sequencing; probe design; phylogenomics

1. Introduction

Conifers are the largest extant group among gymnosperms, with more than 722 species
in 72 genera and 7 families, e.g., Araucariaceae, Cupressaceae, Pinaceae, Podocarpaceae,
Sciadopityaceae, Cephalotaxaceae, and Taxaceae [1–3]. They are of great economic, ecologi-
cal, and evolutionary significance, comprising approximately 39% of the world’s forests,
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and have a fossil record spanning more than 300 million years [4–7]. The complete under-
standing of conifer diversity, trait evolutions, genetic structure, and evolutionary history
is still poorly explored [3,5,6]. Molecular phylogenetic studies play an important role
in understanding the mode and tempo of evolution amongst conifers, but to date, most
studies have applied a limited range of markers, principally a small number of chloroplast
loci plus nuclear ribosomal DNA regions typically generated by direct amplicon sequenc-
ing (e.g., [5,8–12]). These studies have leveraged DNA direct amplicon sequencing data
generated from these loci for phylogenetic and evolutionary analyses. Further complicating
the study of molecular evolution in this major land plant lineage is the large genome size
and overall complexity of conifer genomes [13,14], leaving a notable gap in the exploration
of conifers using large-scale data. Target enrichment by hybridization capture (e.g., hyb-seq;
Weitemier et al. 2014) [15] provides an efficient and cost-effective approach for generating
DNA sequence data for a large number of single and low-copy nuclear gene regions across
multiple samples.

Target enrichment approaches (File S1) have become the method of choice for many
systematics, phylogenetic, and evolutionary studies in plants [16–21], in part fostered by
the availability of ‘universal’ probe sets that can recover a common set of genes across broad
evolutionary timescales. These include angiosperm-specific probe sets that target hundreds
of nuclear genes [17,22] and one recently developed to enrich more than 400 nuclear genes
across flagellate land plants [18]. While there are bait kits developed specifically for specific
conifer families (e.g., Pinaceae; [23]), we are not aware of a conifer-specific bait set that
targets the entire clade.

Here we present a new molecular toolkit (REMcon) which, based upon published tran-
scriptomic (The 1000 Plant Transcriptomes Initiative, 1KP; [24]) and genomic data [25,26],
uses RNA baits to target approximately 100 low-copy nuclear genes across conifers. In the
present study, we demonstrate the universality and application of these new molecular
tools for reconstructing phylogenetic relationships among conifers based on a broad sample
of gymnosperm taxa. The approach typically recovers conservative coding regions plus
more variable non-coding regions that flank the exons and has application for evolutionary
analyses among closely related species, as we will demonstrate in an upcoming study of
the Podocarpus ‘Australis’ clade (Khan et al., in prep) of family Podocarpaceae [6,27,28].

2. Materials and Methods
2.1. Probe Design

Target enrichment probes were designed using genes selected from Duarte et al. (2010) [29],
who identified a set of orthologous low-copy nuclear genes shared across angiosperms
(Arabidopsis, Populus, Vitis and Oryza). For each of the selected genes, we extracted the
putatively orthologous coding sequence (CDS) from the spruce (Picea abies, Pinaceae:
https://plantgenie.org/, accessed on 4 April 2021) and western red cedar (Thuja plicata;
https://phytozome-next.jgi.doe.gov/info/Tplicata_v3_1, accessed on 14 May 2021)
genomes. These were used to retrieve putatively homologous transcript sequences for
conifers from 1KP (https://www.onekp.com, accessed on 22 April 2021) using the China
National GenBank (https://db.cngb.org, accessed on 12 April 2021) BLAST portal and
the following settings: Discontiguous Mega-Blast, expect value = 10, maximum target
sequences = 1000, selected organisms = Pinidae (taxid: 3313).

The sequences retrieved from the BLAST search for each target gene were
downloaded and made into a BLAST database in Geneious (Kearse et al. 2012;
https://www.geneious.com, accessed on 1 August 2021) [30]. We queried each BLAST
database using the Thuja plicata gene family member with exon annotations manually
added and the following settings: Discontiguous Mega-Blast, expect value = 10, maximum
target sequences = 1200, results = Hit Table, retrieve = Matching Region with Annotation.
We then extracted all sequences matching one or more exon annotations in P. abies with the
caveat that the exon was >180 bp in length to allow for bait tiling. The extracted sequences
were clustered using CD-HIT-EST ([31–33]; http://weizhong-lab.ucsd.edu/cdhit_suite,

https://plantgenie.org/
https://phytozome-next.jgi.doe.gov/info/Tplicata_v3_1
https://www.onekp.com
https://db.cngb.org
https://www.geneious.com
http://weizhong-lab.ucsd.edu/cdhit_suite
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accessed on 4 August 2021) with a sequence identity cut-off fraction of 0.88 (see [34,35]) and
a length similarity fraction of 0.2, and one representative sequence (the longest) per cluster
was selected. A total of 1,124 representative sequences (mean length 1051 nucleotides,
range 181–4416 nt) covering exons from 100 putative low-copy nuclear genes (Table 1;
Table S1) were used for bait design with 120-nt baits and ~2× flexible tiling density for a
total of 17,982 baits (see baits-Spruce [14853] for the nucleotide sequences of the baits). Bait
design and synthesis were performed by Daicel Arbor Biosciences (formerly MYcroarray;
Ann Arbor, MI, USA) in the generation of the myBaits Custom DNA-Seq kit™ Ann Arbor,
MI, USA used for target enrichment-based next-generation sequencing.

Table 1. Targeted nuclear gene regions and the length of the probe sequences.

S# Picea abies Gene Name Arabidopsis thaliana Putative
Homolog

Length of the Probe
Sequences

1 MA_10437158 AT5G06430 195

2 MA_10437143 AT1G12370 480

3 MA_10437077 AT5G02250 621

4 MA_10437070 AT5G10920 720

5 MA_10436603 AT1G03750 945

6 MA_10436489 AT4G37510 878

7 MA_10435966 AT4G38890 822

8 MA_10435879 AT2G33630 613

9 MA_10435851 AT5G04520 510

10 MA_10435433 AT2G44760 426

11 MA_10435005 AT2G40570 787

12 MA_10434812 AT1G36310 1088

13 MA_10434753 AT1G49380 539

14 MA_10433768 AT2G31955 942

15 MA_10433107 AT5G64150 825

16 MA_10432498 AT1G74640 453

17 MA_10431375 AT2G24830 321

18 MA_10430781 AT4G35910 432

19 MA_10429426 AT1G30070 240

20 MA_10428930 AT1G15390 256

21 MA_10428614 AT2G34640 259

22 MA_10428345 AT1G57770.1 315

23 MA_10428134 AT2G04560 273

24 MA_10427767 AT1G21370 291

25 MA_10427729 AT5G67530 1224

26 MA_10427590 AT1G17160 480

27 MA_10427203 AT2G36740 543

28 MA_10426631 AT4G36390 1533

29 MA_10426581 AT2G33450 231

30 MA_10426376 AT2G38270 504

31 MA_9578808 AT4G18372 387

32 MA_9514062 AT5G20220 315

33 MA_9503281 AT1G48175 257
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Table 1. Cont.

S# Picea abies Gene Name Arabidopsis thaliana Putative
Homolog

Length of the Probe
Sequences

34 MA_8815984 AT2G346401 693

35 MA_8715484 AT4G38020 501

36 MA_8687206 AT4G26980 408

37 MA_8286794 AT3G17170 342

38 MA_8140147 AT2G28605 480

39 MA_7890741 AT2G44660 783

40 MA_5587080 AT4G20060 447

41 MA_957334 AT1G05055 462

42 MA_945784 AT5G06410 380

43 MA_939779 AT4G27390 468

44 MA_938037 AT5G49570 580

45 MA_894439_ AT2G30100 1306

46 MA_824260 AT4G28020 441

47 MA_762004 AT1G28560 675

48 MA_759516 AT5G08720 461

49 MA_749379 AT4G11980 201

50 MA_587488 AT4G01040 377

51 MA_546546 AT4G17760 252

52 MA_537299 AT5G54840 264

53 MA_458270 AT5G06830 690

54 MA_388031 AT2G20330 486

55 MA_341112 AT5G11980 276

56 MA_332596 AT2G34460 333

57 MA_314789 AT1G56345.1 603

58 MA_261436 AT4G33030 1290

59 MA_253636 AT3G51050 768

60 MA_225872 AT5G14260 456

61 MA_224167 AT2G20790 900

62 MA_199851 AT3G01660 350

63 MA_196209 AT4G36530 273

64 MA_187402 AT4G31460 471

65 MA_173127 AT4G28740 548

66 MA_159115 AT2G27600 1191

67 MA_159115 AT4G27600 1056

68 MA_127668 AT3G15290 465

69 MA_123340 AT2G19870 1137

70 MA_121485 AT1G02410 749

71 MA_121026 AT1G08460 570

72 MA_106933 AT2G266801 636

73 MA_104872 AT3G26580 507
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Table 1. Cont.

S# Picea abies Gene Name Arabidopsis thaliana Putative
Homolog

Length of the Probe
Sequences

74 MA_99242 AT4G29070 412

75 MA_98424 AT1G07130 558

76 MA_95157 AT5G09820 292

77 MA_83545 AT5G65860 514

78 MA_78599 AT2G40760 252

79 MA_73742 AT2G21840 939

80 MA_73742 AT1G21840 939

81 MA_67861 AT2G26680 369

82 MA_66902 AT2G36145 234

83 MA_66902 AT2G34145 234

84 MA_63465 AT3G24315 290

85 MA_61548 AT1G65030 681

86 MA_55048 AT5G19130 858

87 MA_43083 AT5G48330 717

88 MA_41847 AT3G03790 303

89 MA_35149 AT3G02300 431

90 MA_34295 AT1G43580 378

91 MA_30194 AT5G16210 369

92 MA_29076 AT3G57910 513

93 MA_26068 AT2G37560 414

94 MA_25177 AT1G07970 472

95 MA_24252 AT4G24090 600

96 MA_19954 AT2G02590 414

97 MA_11407 AT3G47860 312

98 MA_10909 AT2G04270 318

99 MA_6888 AT3G24080 2286

100 MA_4586 AT2G22650 303

2.2. Taxon Selection

A total of 44 conifer genera representing six families, three species of Cycadales,
and Gingko biloba (69 taxa) were included to evaluate the efficiency of target capture
across conifers and more widely among gymnosperms. Most plant specimens were freshly
collected from the living collections held at the Botanic Gardens of South Australia and
dried in silica gel, and some were sampled from preserved specimens held at the State
Herbarium of South Australia (Table S2).

2.3. DNA Extraction, Library Preparation, Hybrid Capture and Sequencing

For DNA extractions, about 15 mg of silica gel dried leaf material per sample was
used, and homogenized in a Omni ruptor (Omni International, Kennesaw, GA, USA) using
ceramic beads. DNA was extracted using the Qiagen Plant Mini kit, QIAGEN, Germantown,
MD, USA and normalized 2 ng/uL before proceeding to library preparation, which follows
the steps outlined in Waycott et al. [36] for their nuclear bait set. Hybrid capture was
performed following the manual provided by myBaits with a hybridization temperature
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of 65 ◦C and 150 bp paired-end sequencing was performed at the Australian Genome
Research Facility (AGRF), Melbourne, Australia on an Illumina NovaSeq S1 flow cell.

2.4. Bioinformatics Analyses

High-throughput paired-end reads were de-multiplexed and quality trimmed
(using a Phred score threshold of 20) using CLC Genomics Workbench (v. 20;
https://www.qiagenbioinformatics.com/, accessed on 22 April 2022). The Sequence
Capture Processor pipeline SECAPR v 2.2.3: Andermann et al. [37],
http://antonellilab.github.io/seqcap_processor/, accessed on 24 April 2022) was used to
generate nuclear DNA sequence data sets from the trimmed reads. First, the reads from
each sample were assembled de novo using SPAdes [38] with default kmer values. Contigs
matching the reference Thuja plicata reference sequences (i.e., annotated exons, see above)
were extracted from the de novo assemblies with LASTZ v. 1.04 [39] using a target length
of 0.5 and a similarity fraction of 0.75 (i.e., 50% of the contig has to overlap with the target
gene and be no less than 75% similar). The ‘keep paralogs’ flag was activated and deacti-
vated to assess the extent of paralogy in the data. SECAPR identifies paralogs as multiple
overlapping contigs matching a target sequence, keeping the longest contig if the ‘keep
paralogs’ flag is activated. The extracted contigs were aligned per locus to produce multiple
sequence alignments (MSA) using MAFFT [40]. The aligned contigs were subsequently
used for a reference-based assembly using the BWA read mapper v.0.7.16a-r1181 [41], and the
‘sample specific’ flag, i.e., each sample is extracted from the alignment and mapped separately.
Consensus sequences per sample from subsequent read mappings were again aligned using
MAFFT to produce MSAs for each targeted gene region. The approach developed by Yang
and Smith [42] and modified with containerization for target capture data (Jackson et al. [43];
https://github.com/chrisjackson-pellicle/Yang-and-Smith-paralogy-resolution, accessed on
29 April 2022) was used to resolve groups of orthologous sequences (orthology inference)
from targeted gene regions. Following various filtering steps, the approach uses phyloge-
netic tree-based methods and the pruning of duplicated taxa from rooted phylogenies to
resolve orthologous groups of sequences. In this study, de novo contigs for each sample
from the SECAPR pipeline (above) were first imported into Geneious Prime (v. 2022.0.1;
(https://www.geneious.com, accessed on 24 May 2022) and made into a Blast database.
This database was queried using the extracted contigs from an outgroup (Ginkgo biloba)
matching the targeted gene regions in P. abies. The contigs from Ginkgo were annotated
with the CDS from P. abies, and the coding region(s) were queried against the Blast database
using blast-n with a maximum expected value of 1e-10 and maximum hits set to 1000. The
Blast output was filtered using a minimum coverage fraction (query coverage of at least
0.4) to remove poorly aligned and short sequence fragments [42]. The resulting contigs
were then used as input into the Yang-and-Smith-paralogy-resolution pipeline [43]. We
used the monophyletic outgroups (MO) method to identify ortholog groups using refer-
ence genes from Gingko biloba as the outgroup. For downstream analyses, we retained
alignments with >10 individuals in order to reduce the influence of missing data in tree
inference. The aligned ortholog groups were concatenated, and a phylogeny was generated
using IQ-tree 2 [44] using model finder [45] to estimate the optimum partitioning scheme
and partition-specific nucleotide substitution model (MFP+MERGE flag activated) and
1000 ultrafast bootstrap [46] replicates to assess branch support.

3. Results and Discussion

The retrieval of target loci across the conifers was high, with, on average, 94% of the
targeted gene regions recovered per sample (range 53–100), and 27 loci were recovered
across all samples (Table 2). For the recovered loci, read coverage (read depth/position, av-
eraged across loci) was also high, averaging c.146 across the included taxa with a maximum
of 622 in Chamaecyparis pisifera and a minimum of c. 6 in Agathis robusta (Figure 1—coverage
heatmap). In general, the recovery of genes across the six conifer families was relatively
consistent, and with the exception of Araucariaceae, the mean number of loci captured per

https://www.qiagenbioinformatics.com/
http://antonellilab.github.io/seqcap_processor/
https://github.com/chrisjackson-pellicle/Yang-and-Smith-paralogy-resolution
https://www.geneious.com
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family exceeds 90 (Table 2). The lower mean value for Araucariaceae (87 loci) is influenced
by the poor recovery for Agathis robusta (57 loci), which is likely a consequence of DNA
quality and/or issues with the library construction, given that target recovery amongst
close relatives (e.g., Agathis microstachya, 94 loci) was high (Figure 1, Table S2). There was
a lower recovery of target genes for the non-coniferous gymnosperm species (c. 80% of
genes recovered across the four samples), although this is not unexpected given that these
were not specifically targeted in the probe design. Furthermore, the identity of the target
sequences (here, sourced from Thuja) could influence locus recovery with increasing evolu-
tionary distance, and an approach similar to McLay et al. [47] may be valuable in increasing
target locus recovery from specific lineages.

Table 2. Recovery of targeted gene regions, including potentially paralogous loci, across conifer
families and four non-conifer gymnosperms. Locus recovery is averaged across samples (n), and the
minimum and maximum recovery per sample is indicated.

Families N Average Locus Recovery Min Max

Araucariaceae 5 85 53 97

Cupressaceae 22 98 89 100

Pinaceae 11 96 95 90

Podocarpaceae 26 93 76 97

Sciadopityaceae 1 95 - -

Taxaceae 3 97 96 97

Non conifer
Gymnosperms 4 81 75 92Biology 2024, 13, 361 7 of 12 
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proportion of putative paralogs among samples from this family. However, the relatively 
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also important drivers of genome size evolution. 

Figure 1. Heatmap showing gene recovery and read depth across samples. The gene recovery
includes samples that were flagged as potentially paralogous using the SECAPR pipeline. Sample
abbreviations as in Table S1.

Overall, there was a large number of putatively paralogous gene copies recovered at
most loci (c. 36% of loci/sample, averaged across all samples) but this was highly variable
among taxa (Prumnopitys andina, Podocarpaceae: c. 13% of recovered loci; Sciadopitys
verticillata, Sciadopityaceae: 80% of recovered loci) (Figure 2; Table S2). The extent of
paralogy might reflect the generally large genome size of conifers, which is also highly
variable, with at least an order of magnitude difference between the smallest and the largest
conifer genomes [14]. Polyploidy is a major driver of genome size evolution amongst
angiosperms, although until recently [48,49], this phenomenon was thought to be relatively
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rare among conifers (e.g., [13,50,51]). In addition, conifer genome size evolution has been
attributed to other factors, such as a high copy number of long transposable elements
(e.g., [25]). The distribution of paralogs in our data supports the view that genome size, per
se, is only partly related to the frequency of duplicated genes. For instance, Podocarpaceae
has the smallest average genome size [14] and the smallest proportion of paralogs in our
data. On the other hand, Pinaceae generally have large genomes, and we found a large
proportion of putative paralogs among samples from this family. However, the relatively
large genome size among Araucariaceae is not strongly associated with a high number of
paralogous genes in our data (Figure 2), suggesting that factors other than gene duplication
(e.g., transposable elements, larger introns, and abundant pseudogenes; [13,25,48] are also
important drivers of genome size evolution.
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Figure 2. Box and whisker plots showing the recovery of paralogs (number of paralogous
genes/sample) by family. Abbreviations: Ar., Araucariaceae; Cu., Cupressaceae; Pi., Pinaceae;
Po., Podocarpaceae; Ta., Taxaceae; Sc., Sciadopityaceae. X = Mean, Middle horizontal bar = Median,
and the lower bounds of the box are the 75 and 25 quartiles.

Of the 100 targeted gene regions, 90 were recovered for Gingko, and these were in-
cluded in the paralogy resolution analyses. Orthology inference recovered 98 MO ortholog
groups and 95 with more than 10 samples included, which were retained for phylogenetic
inference. The concatenated length of the 95 loci was an average of c. 48,770 bp with
an aligned length of c. 74,179 bp and approximately 34% missing values. The average
aligned length of the individual loci was c. 780 bp and ranged from 440–1691 bp. The
concatenated alignment includes 47,469 (c. 64%) variable positions, of which 36,350 (c. 49%)
are parsimony informative and 44,818 (c. 60%) variable and 34,411 (c. 46%) parsimony
informative characters within the conifer clade. The maximum likelihood topology inferred
from these data is shown in Figure 3. Of the 65 clades recovered, only 7 have a bootstrap
support value < 100, and of these, only 3 received less than 80% support (Figure 3). The
inferred topology is generally in agreement with our current understanding of conifer
relationships (e.g., [2,3,5]), while the poorly supported nodes are associated with short
branches and may be inherently difficult to resolve (e.g., [52–54]). For example, the relation-
ships within the Prumnopityoid clade of Podocarpaceae, and in particular the placement
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of Halocarpus, were found to be unstable in the recent analyses of Chen et al. [55] using a
large transcriptome data set of c. 1000 nuclear and c. 40 chloroplast gene regions and is
poorly resolved here (Figure 3).
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4. Conclusions

In conclusion, we present a conifer-specific hybrid-capture bait set that has been
shown to perform well in terms of the consistency of locus recovery across a broad range
of gymnosperms, and these data can be applied to credibly resolve deep phylogenetic rela-
tionships within the conifer clade. As part of ongoing studies (Khan et al. in prep) [6,27,28],
we have found the REMcon bait set to be similarly successful in resolving relationships
among closely related species groups within Podocarpaceae. The REMcon bait set offers an
efficient and relatively cost-effective approach that fills an important gap in conifer and
gymnosperm phylogenomics. This hybrid-capture bait set has exciting future applications,
including the resolution of complex phylogenetic relationships, population, and compara-
tive genomics, providing valuable insights into the evolution and conservation of conifers
and other gymnosperms.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/biology13060361/s1, Table S1: Details of targeted genes;
Table S2: Sample details; Table S3: Recovery of targeted gene regions across conifer familes and
four non conifer gymnosperms. Locus recovery is averaged across samples (n) and the minimum
and maximum recovery per seample is indicated. Figure S1: Paralogs/Family; File S1: HybCap76
NEBnext Podocarp03 half plate.
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