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Abstract: Gestational diabetes mellitus (GDM) is a hyperglycemic state that is typically diagnosed by
an oral glucose tolerance test (OGTT), which is unpleasant, time-consuming, has low reproducibility,
and results are tardy. The machine learning (ML) predictive models that have been proposed to
improve GDM diagnosis are usually based on instrumental methods that take hours to produce a
result. Near-infrared (NIR) spectroscopy is a simple, fast, and low-cost analytical technique that has
never been assessed for the prediction of GDM. This study aims to develop ML predictive models
for GDM based on NIR spectroscopy, and to evaluate their potential as early detection or alternative
screening tools according to their predictive power and duration of analysis. Serum samples from
the first trimester (before GDM diagnosis) and the second trimester (at the time of GDM diagnosis)
of pregnancy were analyzed by NIR spectroscopy. Four spectral ranges were considered, and 80
mathematical pretreatments were tested for each. NIR data-based models were built with single- and
multi-block ML techniques. Every model was subjected to double cross-validation. The best models
for first and second trimester achieved areas under the receiver operating characteristic curve of
0.5768 ± 0.0635 and 0.8836 ± 0.0259, respectively. This is the first study reporting NIR-spectroscopy-
based methods for the prediction of GDM. The developed methods allow for prediction of GDM
from 10 µL of serum in only 32 min. They are simple, fast, and have a great potential for application
in clinical practice, especially as alternative screening tools to the OGTT for GDM diagnosis.

Keywords: gestational diabetes mellitus; first trimester; second trimester; near-infrared spectroscopy;
serum samples; predictive models; machine learning

1. Introduction

Gestational diabetes mellitus (GDM) is a hyperglycemic state of variable severity that
is first diagnosed during pregnancy [1], with negative short- and long-term consequences
on both maternal and fetal health [2]. Its worldwide prevalence is 14.7%, according to the
International Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria [3],
very similar to what is reported in the Chilean population [4]. The diagnosis of this
disease is typically made by an oral glucose tolerance test (OGTT) in the second or third
trimester of pregnancy [5]. The OGTT is unpleasant [6,7], time-consuming [8,9], and has
low reproducibility [10,11]. Moreover, by the time of its use, the fetal phenotype is already
altered in GDM pregnancies [12–14]. Therefore, the diagnosis of GDM can be improved.
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Machine learning (ML) predictive modeling of biomedical relevant data is a powerful
means of meeting that goal [15,16], either as an early detection tool, or as an alternative
screening tool for OGTT.

Numerous models have been proposed to predict GDM at different stages of pregnancy.
In 2022, our research group published a literature review to summarize the methodologies,
results, and limitations of the latest ML-based work for the prediction of GDM. This review
revealed that many of the predictive models for this pregnancy disease derive from data
acquired by instrumental techniques, such as liquid or gas chromatography coupled to
mass spectrometry (LC-MS or GC-MS, respectively), nuclear magnetic resonance (NMR)
spectroscopy, and polymerase chain reaction (PCR), among others [17]. More recently, new
articles have been published in the context of GDM diagnosis based on the same techniques,
i.e., LC-MS [18–21], GC-MS [22], NMR spectroscopy [23], and PCR [24–27]. Methods based
on these techniques are very time consuming, as they require tedious sample preparation
procedures or prolonged instrumental runs. Consequently, simpler and faster strategies
should be developed.

Near-infrared (NIR) spectroscopy is an analytical technique that is based on the
absorption, emission, scattering, reflection, or diffuse reflection of light in the NIR range
of the electromagnetic spectrum, i.e., between 12,500 and 4000 cm−1 [28]. Biomolecules
are capable of interacting with NIR radiation and, therefore, an NIR spectrum constitutes
the biochemical fingerprint of a biological sample [29]. NIR spectroscopy has multiple
advantages, some of which are typical of vibrational spectroscopy, e.g., it is noninvasive,
nondestructive, reagent-free, waste-free, simple, fast, low-cost, and requires minimal
sample preparation [30]. Moreover, NIR spectroscopy is more versatile and less expensive
than other vibrational spectroscopy techniques [28]. Due to its advantageous analytical
features, this technique has been widely applied in different fields of science, including
clinical diagnostics [31,32].

NIR spectroscopy has never been used as a diagnostic support tool for GDM. Therefore,
its capability for GDM prediction at particular stages of pregnancy, such as before or at the
time of GDM diagnosis, remains unexplored. This study aims to develop ML predictive
models for GDM based on NIR spectroscopy, and to evaluate their potential as early
detection or alternative screening tools according to their predictive power and time of
analysis.

The contributions of this research are as follows:

• It tests for the first time ML models based on NIR spectroscopy as diagnostic support
tools for GDM.

• It develops and evaluates a novel, simple, and rapid bioanalytical method for early
detection and alternative screening of GDM, which avoids some of the disadvantages
of OGTT, such as its unpleasant and time-consuming nature.

• It proposes an ML model based on NIR spectra of serum, which has similar or better
predictive power than its literature counterparts, but with a shorter time of analysis,
which makes it very attractive for use as an alternative screening tool to OGTT.

• It exhibits the potential of this new technology in obstetrics and gynecology, for
example, for the prediction of other diseases and complications of pregnancy.

2. Materials and Methods

The workflow used to meet the objective of this study consisted of the following:
subject recruitment, collection of medical data and serum samples, acquisition of NIR
spectral data, and training and internal validation of the ML models.

2.1. Ethical Aspects

This work was approved by the Ethics Committee of Servicio de Salud Concepción
(17-12-88) and was carried out in accordance with the Declaration of Helsinki.
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2.2. Subjects Recruitment

First trimester pregnant women were recruited at three primary health centers in
Concepción, Chile: CESFAM Victor Manuel Fernández, CESFAM Santa Sabina, and CES-
FAM Tucapel. Recruitment was conducted between 2017 and 2019. Both primiparous and
multiparous participants were included. Individuals with pregestational diabetes or any
pregnancy alterations different than GDM were excluded. Subjects who gave their written
informed consent were included in the study and followed up until the second trimester of
pregnancy. Ultimately, 96 pregnant women participated in this work.

2.3. Medical Data Collection

A total of 28 medical variables were retrieved from CESFAM online records and
subject’s self-reported statements. The former comprised age and body mass index (BMI)
in the first trimester of gestation. The latter encompassed first trimester information,
i.e., supplement consumption, hyperemesis, and vaginal bleeding, and preconception
information, i.e., drug use, prior pregnancy diseases or complications, prior pregnancy
non-viability, fertility issues, history of polycystic ovary syndrome (PCOS), age at menarche,
the month of last period, personal morbid history, and family morbid history.

2.4. Blood Sample Collection

Blood samples were collected in the first and the second trimester of pregnancy, after fasting
(12 h) or after a 75 g glucose load (2 h). First and second trimester samples were taken before and
at the time of GDM diagnosis, respectively. They were transported to laboratory at 4 ◦C. Sera
and NaF/citrate plasma were obtained by centrifugation (10,000× g, 5 min, 4 ◦C). They were
aliquoted and stored at −80 ◦C.

2.5. NIR Spectra Acquisition

Sera were randomized before analyses. Each sample was thawed at room temperature,
homogenized, and 10 µL were deposited and dried (37 ◦C, 30 min) on a MirrIR low-e
reflective microscopic slide (Kevley Technologies, Chesterland, OH, USA). NIR spectra
(range 10,500–4000 cm−1, resolution 4 cm−1) were acquired in transflectance mode using a
FT-IR Spectrum Frontier/Spotlight 400 Microscopy System (Perkin Elmer, Waltham, MA,
USA). The acquisition time was 2 min per spectrum. Five NIR spectra, i.e., instrumental
replicates, were recorded and averaged per sample.

2.6. GDM Diagnosis, Cohorts, and Study Groups

In the second trimester of pregnancy, pregnant women were subjected to an OGTT.
This is the reference method to diagnose GDM in Chile. Fasting and post-load plasma
glucose were quantified by the hexokinase method [33]. The Chilean diagnostic criteria
were used, i.e., subjects with fasting glycemia between 100 and 125 mg/Dl, or post-load
glycemia higher than 140 mg/Dl (75 g, 2 h), were diagnosed with GDM [34]. In this study,
two cohorts were considered. Those cohorts were defined according to the availability
of first and second trimester serum samples. Of the 96 participants in the study, 49 had
only first trimester samples, 14 had only second trimester samples, and 33 had samples
from both trimesters. The first cohort of this study had first trimester serum samples, from
which NIR spectra were obtained. This cohort, from now on called the first trimester cohort,
consisted of 82 pregnant women: 15 with GDM and 67 with normal glucose tolerance
(NGT) (medical and NIR data are displayed in Dataset S1A and Dataset S1B, respectively).
The second cohort of this study had second trimester serum samples, and second trimester
NIR spectra were obtained. This cohort, from now on called the second trimester cohort,
consisted of 47 subjects: 8 with GDM and 39 with NGT (medical and NIR data are presented
in Dataset S2A and Dataset S2B, respectively).
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2.7. Classical Statistics Analyses

Qualitative medical data were compared by two-sided Fisher exact test. The normality
of quantitative medical data was evaluated by Shapiro–Wilk test. Normally distributed
parameters were compared using unpaired Student t test. Non-normally distributed param-
eters were compared using Mann–Whitney test. P values less than 0.05 were considered
statistically significant. These analyses were carried out using GraphPad Prism version
9.5.1 (GraphPad Software Inc, Boston, MA, USA).

2.8. ML Analyses
2.8.1. Data Pretreatment

Prior to ML analyses, qualitative medical parameters were transformed into categorical
variables. NIR spectra were also transformed from reflectance to absorbance. In addition
to the full NIR spectral range, three shorter wavenumber regions were also analyzed
separately: 10,500–7600 cm−1, 7600–5100 cm−1, and 5100–4000 cm−1. For each spectral
range, 80 different combinations of mathematical transformations were tested, including
Savitzky–Golay smoothing or first/second derivative with varying filter width, standard
normal variate scattering correction, weighted least squares baseline correction, and 2-norm
normalization. The order in which these transformations were applied was based on recent
specialized literature [35,36]. Medical and NIR data were preprocessed by autoscaling and
mean centering, respectively.

2.8.2. Single- and Multi-Block Analyses

For single-block analyses, pretreated data were analyzed by partial least squares linear
discriminant analysis (PLS-LDA). PLS-LDA was chosen due to its ability to deal with a large
number of highly collinear predictors, therefore allowing us to overcome the limitations
connected to the use of linear discriminant analysis (LDA) on this type of data. This was
accomplished by formulating the classification problem in terms of regression, so that the
partial least squares (PLS) algorithm could be used for calculating the solution. PLS allow
for the calculation of multivariate regression models in the presence of an ill-conditioned
predictor matrix X. The X matrix is compressed into a set of scores T, having maximum
covariance, with the response y to be predicted through a weight matrix R:

T = XR (1)

The response is then regressed on the scores, according to the following:

ŷ = Tq (2)

where ŷ is the vector collecting the predicted responses and the coefficients q are called the
y-loadings. By combining Equations (1) and (2), it can be shown that the regression model
can be expressed in terms of the original variables:

ŷ = XRq = Xb (3)

The regression coefficients b being given by Rq. To use a regression model for classifi-
cation, it is necessary to use a binary-coded response, where the value 1 corresponds to
GDM and 0 to NGT. PLS regression is then used to relate the binary-coded y to the spectral
data X, as summarized by Equations (1)–(3). However, since the predicted response ŷ is
real-valued, it is necessary to define a threshold value ythres, so that if the predicted response
is higher than the threshold then the individual is predicted as GDM, whereas if it is lower,
they are predicted as NGT. In the present study, the threshold was calculated by applying
LDA to ŷ.

For multi-block analyses, pretreated data were analyzed by sequential and orthog-
onalized PLS-LDA (SO-PLS-LDA). SO-PLS-LDA is a generalization of PLS-LDA to the
multi-block case, which relies on the use of sequential and orthogonalized partial least
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squares (SO-PLS) as a multi-block regression model to approximate the binary-coded re-
sponse. SO-PLS, as the name suggests, involves the sequential calculation of PLS models
between each predictor block and the response. Moreover, each block is orthogonalized
with respect to the scores of the previous PLS regressions, so that it is possible to evaluate
whether the addition of a new block brings a relevant improvement to the model or not.
For the simplest case of two predictor blocks X1 and X2, the SO-PLS-LDA algorithm can be
summarized as follows:

1. Calculate a PLS model between the binary-coded y and the first predictor block X1:
ŷ = T1q1 = X1b1.

2. Orthogonalize the second block X2 with respect to T1: X2, orth = X2 − T1
(
TT

1 T1
)−1TT

1 X2.
3. Calculate a PLS model between the residuals of the first regression e1 = y − ŷ and the

orthogonalized second predictor block X2, orth: ê1 = T2, orthq2, orth = X2, orthb2, orth.
4. The overall model can then be written as: ŷSO = X1b1 + X2, orthb2, orth, where ŷSO

collects the final predictions of the SO-PLS model.
5. The classification model is obtained by applying LDA on ŷSO.

Further details on these classification ML techniques can be found elsewhere [37].
For multi-block analyses, different block orders were tested. Every model was subjected
to double cross-validation (DCV), an intensive and robust internal validation strategy
consisting of two nested cross-validation loops. The inner loop is used for model training
and optimization, and the outer loop for model validation [38]. For DCV, the following
parameters were used: 10 segments for the inner loop, 20 segments for the outer loop,
and 50 repetitions. Models were developed using in-house written functions in MATLAB
version R2021a (The MathWorks Inc, Natick, MA, USA).

2.8.3. Evaluation of Predictive Performance

Models’ predictive performance was evaluated by means of their specificity (Sp),
sensitivity (Se), and non-error rate (NER). For the best models, the area under the receiver
operating characteristic curve (AUROC) was also determined. The mathematical definition
of these parameters can be found elsewhere [39,40]. In general terms, the specificity and
the sensitivity denote the ability to correctly classify NGT and GDM subjects, respectively.
The NER reflects the ability to correctly classify both NGT and GDM subjects, and the
AUROC represents the overall predictive performance of the model in a graphical manner.
These parameters were determined with respect to the reference method, for which figures
of merit were assumed to be maximum. Every value is presented as the average ± the
standard deviation of 50 repetitions in DCV.

2.8.4. Variable Importance and Selection

For each model, variable importance in projection (VIP) scores were obtained. Vari-
ables with average VIP scores larger than 1 were considered as relevant for model perfor-
mance [38]. This information was used for variable selection in the multi-block models,
and for biochemical interpretation in the final models.

3. Results

The results of this work are presented in order of cohorts (first and second trimester),
showing statistical description of medical variables, NIR spectra of sera, and predictive
performance of the best ML models obtained.

3.1. First Trimester Cohort
3.1.1. Description of the First Trimester Cohort

To characterize this cohort, classical statistical techniques were used. Table 1 displays
28 medical variables and compares their behavior in NGT and GDM pregnancies. In this
cohort, the prevalence of GDM was 18.3%. Only two parameters are statistically different
between the two groups: history of GDM in a prior pregnancy, and family history of
diabetes mellitus (DM). Both are more frequent in the GDM group than in the NGT group.
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Table 1. Medical variables in the first trimester cohort.

Variable Unit NGT (n = 67) GDM (n = 15) p Value All (n = 82)

Age Years 30 ± 5 32 ± 7 0.394 NS 31 ± 6

BMI Kg/m2 27.6 (23.3–31.2) 29.7 (26.6–31.6) 0.051 NS 28.0 (24.1–31.5)

Supplement consumption % 64.2 (43/67) 53.3 (8/15) 0.557 NS 62.2 (51/82)

Hyperemesis % 26.9 (18/67) 26.7 (4/15) >0.999 NS 26.8 (22/82)

Vaginal bleeding % 9.0 (6/67) 13.3 (2/15) 0.634 NS 9.8 (8/82)

Drug use before pregnancy %

Cigarettes 34.3 (23/67) 53.3 (8/15) 0.239 NS 37.8 (31/82)
Alcohol 53.7 (36/67) 60.0 (9/15) 0.777 NS 54.9 (45/82)
Other drugs 13.4 (9/67) 13.3 (2/15) >0.999 NS 13.4 (11/82)

Prior pregnancy issues %

GDM 1.5 (1/67) 33.3 (5/15) <0.001 *** 7.3 (6/82)
Hypertensive disorder 4.5 (3/67) 6.7 (1/15) 0.562 NS 4.9 (4/82)
Preterm birth 4.5 (3/67) 6.7 (1/15) 0.562 NS 4.9 (4/82)
Other 10.4 (7/67) 6.7 (1/15) >0.999 NS 9.8 (8/82)

Prior non-viable pregnancy % 20.9 (14/67) 20.0 (3/15) >0.999 NS 20.7 (17/82)

Fertility problems % 14.9 (10/67) 6.7 (1/15) 0.679 NS 13.4 (11/82)

PCOS % 25.4 (17/67) 13.3 (2/15) 0.501 NS 23.2 (19/82)

First period age Years 13 (12–14) 12 (11–13) 0.078 NS 13 (12–13)

Last period month % 0.202 NS

January 7.5 (5/67) 6.7 (1/15) 7.3 (6/82)
February 6.0 (4/67) 20.0 (3/15) 8.5 (7/82)
March 7.5 (5/67) 0.0 (0/15) 6.1 (5/82)
April 3.0 (2/67) 6.7 (1/15) 3.7 (3/82)
May 13.4 (9/67) 20.0 (3/15) 14.6 (12/82)
June 10.4 (7/67) 13.3 (2/15) 11.0 (9/82)
July 9.0 (6/67) 13.3 (2/15) 9.8 (8/82)
August 7.5 (5/67) 0.0 (0/15) 6.1 (5/82)
September 6.0 (4/67) 0.0 (0/15) 4.9 (4/82)
October 13.4 (9/67) 6.7 (1/15) 12.2 (10/82)
November 10.4 (7/67) 13.3 (2/15) 11.0 (9/82)
December 6.0 (4/67) 0.0 (0/15) 4.9 (4/82)

Personal morbid history %

Insulin resistance 3.0 (2/67) 6.7 (1/15) 0.459 NS 3.7 (3/82)
Thyroid dysfunction 4.5 (3/67) 6.7 (1/15) 0.562 NS 4.9 (4/82)
Asthma 6.0 (4/67) 0.0 (0/15) >0.999 NS 4.9 (4/82)
Other 10.4 (7/67) 20.0 (3/15) 0.380 NS 12.2 (10/82)

Family morbid history %

Insulin resistance or
prediabetes 3.0 (2/67) 6.7 (1/15) 0.459 NS 3.7 (3/82)

DM 32.8 (22/67) 66.7 (10/15) 0.020 * 39.0 (32/82)
Hypertension 41.8 (28/67) 60.0 (9/15) 0.255 NS 45.1 (37/82)
Hypothyroidism 17.9 (12/67) 33.3 (5/15) 0.287 NS 20.7 (17/82)
Hyperthyroidism 1.5 (1/67) 13.3 (2/15) 0.085 NS 3.7 (3/82)
Asthma 7.5 (5/67) 0.0 (0/15) 0.579 NS 6.1 (5/82)
Other 16.4 (11/67) 13.3 (2/15) >0.999 NS 15.9 (13/82)

NGT: normal glucose tolerance; GDM: gestational diabetes mellitus; BMI: body mass index; PCOS: polycystic
ovary syndrome; DM: diabetes mellitus; *: p < 0.05; ***: p < 0.001; NS: not significant.
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3.1.2. Prediction of GDM with First Trimester Serum NIR Spectral Data

To predict GDM using the biochemical information that serum samples contain, NIR
spectra were acquired. Figure 1 shows NIR spectra from first trimester NGT and GDM
sera. The spectral traces’ behavior depends on the wavenumber range. In particular, signal
sequential noise varies with wavenumber. There is a high-noise region between 10,500
and 7600 cm−1, a varying-noise region between 7600 and 5100 cm−1, and a low-noise
region between 5100 and 4000 cm−1. Since different spectral ranges present different noise
characteristics, they may require different mathematical pretreatments before ML analyses.
Therefore, NIR spectra were divided in three ranges, according to their sequential noise
features: Range 1, from 10,500 to 7600 cm−1 (R1); Range 2, from 7600 to 5100 cm−1 (R2),
and Range 3, from 5100 to 4000 cm−1 (R3). Posterior analyses considered the three spectral
regions, as well as the full range, from 10,500 to 4000 cm−1 (Full).

Biomedicines 2024, 12, x FOR PEER REVIEW 7 of 21 
 

Hypertension  41.8 (28/67) 60.0 (9/15) 0.255 NS 45.1 (37/82) 
Hypothyroidism  17.9 (12/67) 33.3 (5/15) 0.287 NS 20.7 (17/82) 
Hyperthyroidism  1.5 (1/67) 13.3 (2/15) 0.085 NS 3.7 (3/82) 
Asthma  7.5 (5/67) 0.0 (0/15) 0.579 NS 6.1 (5/82) 
Other  16.4 (11/67) 13.3 (2/15) >0.999 NS 15.9 (13/82) 

NGT: normal glucose tolerance; GDM: gestational diabetes mellitus; BMI: body mass index; PCOS: 
polycystic ovary syndrome; DM: diabetes mellitus; *: p < 0.05; ***: p < 0.001; NS: not significant. 

3.1.2. Prediction of GDM with First Trimester Serum NIR Spectral Data 
To predict GDM using the biochemical information that serum samples contain, NIR 

spectra were acquired. Figure 1 shows NIR spectra from first trimester NGT and GDM 
sera. The spectral traces’ behavior depends on the wavenumber range. In particular, signal 
sequential noise varies with wavenumber. There is a high-noise region between 10,500 
and 7600 cm−1, a varying-noise region between 7600 and 5100 cm−1, and a low-noise region 
between 5100 and 4000 cm−1. Since different spectral ranges present different noise char-
acteristics, they may require different mathematical pretreatments before ML analyses. 
Therefore, NIR spectra were divided in three ranges, according to their sequential noise 
features: Range 1, from 10,500 to 7600 cm−1 (R1); Range 2, from 7600 to 5100 cm−1 (R2), and 
Range 3, from 5100 to 4000 cm−1 (R3). Posterior analyses considered the three spectral re-
gions, as well as the full range, from 10,500 to 4000 cm−1 (Full).  

 
Figure 1. NIR spectra from first trimester serum samples. Each trace corresponds to the NIR spec-
trum of one serum sample, that is, of one subject. Spectra from NGT and GDM pregnant women are 
colored in blue and red, respectively. Four spectral ranges are considered: full, from 10,500 to 4000 
cm−1; Range 1, from 10,500 to 7600 cm−1; Range 2, from 7600 to 5100 cm−1; and Range 3, from 5100 to 
4000 cm−1. NIR: near-infrared; NGT: normal glucose tolerance; GDM: gestational diabetes mellitus; 
R1: Range 1; R2: Range 2; R3: Range 3. 
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is moderately higher than that obtained with the Full spectral range of 0.5726 ± 0.0410.  

Figure 1. NIR spectra from first trimester serum samples. Each trace corresponds to the NIR spectrum
of one serum sample, that is, of one subject. Spectra from NGT and GDM pregnant women are colored
in blue and red, respectively. Four spectral ranges are considered: full, from 10,500 to 4000 cm−1;
Range 1, from 10,500 to 7600 cm−1; Range 2, from 7600 to 5100 cm−1; and Range 3, from 5100 to
4000 cm−1. NIR: near-infrared; NGT: normal glucose tolerance; GDM: gestational diabetes mellitus;
R1: Range 1; R2: Range 2; R3: Range 3.

First trimester NIR spectral data were used to develop different single-block predictive
models for GDM. For every spectral region, Full, R1, R2, and R3, 80 combinations of
pretreatments were tested (Tables S1–S4). Table 2 presents the characteristics of the best
models, i.e., the ones with the highest NER in DCV, for each spectral range. The NIR region
with the best predictive performance is R1, with an NER of 0.6321 ± 0.0489. This value is
moderately higher than that obtained with the Full spectral range of 0.5726 ± 0.0410.
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Table 2. Predictive performance of the best ML models using NIR spectral data from first trimester
serum samples.

Range a Pretreatment
Sp Se NER

Av StD Av StD Av StD

Full SM (W = 23) + N + MC 0.6946 0.0456 0.4507 0.0681 0.5726 0.0410
R1 N + MC 0.6722 0.0361 0.5920 0.0910 0.6321 0.0489
R2 SM (W = 3) + N + MC 0.5678 0.0322 0.6480 0.1035 0.6079 0.0542
R3 SM (W = 23) + MC 0.5931 0.0346 0.5133 0.0811 0.5532 0.0441

a Full: 10,500–4000 cm−1; R1: 10,500–7600 cm−1; R2: 7600–5100 cm−1; R3: 5100–4000 cm−1. Sp: specificity; Se:
sensitivity; NER: non-error rate; Av: average; StD: standard deviation; R1: Range 1; R2: Range 2; R3: Range 3; SM:
smoothing; W: width; N: normalization; MC: mean centering.

To assess if the latter models could be improved, NIR Full and NIR R1 data were
combined with the 28 medical variables mentioned in Section 2.3. Different multi-block
models were trained and validated (Table S5). The addition of medical data does not
improve the overall predictive performance of the original models, whether compared
to the models based only in NIR spectra, or compared to models based only in medical
data (NER of 0.6133 ± 0.0298 in DCV for a model based on the 28 medical variables, NER
of 0.6592 ± 0.0000 in DCV for a model based on history of GDM in a prior pregnancy,
and NER of 0.6692 ± 0.0000 in DCV for a model based on family history of DM, with
history of GDM in a prior pregnancy and family history of DM being the statistically
significant variables in Table 1). None of the multi-block models outperform the best
single-block model obtained with NIR R1 data only. The simplification of the multi-block
models through variable selection did not improve its predictive performance either. As in
single-block analyses, NIR R1-based multi-block models tend to show moderately higher
NERs than NIR Full-based multi-block models.

Figure 2 presents the overall predictive performance of the best ML model obtained
using NIR spectra from first trimester serum samples. It corresponds to the NIR R1 spectral
range (10,500–7600 cm−1) with pretreatment by normalization and mean centering. It
predicts GDM with a DCV AUROC of 0.5768 ± 0.0635. The most relevant spectral intervals
for the performance of this model, i.e., those mainly composed of variables with VIP scores
larger than 1, are 10,500–9828 cm−1 and 8826–7858 cm−1. The tentative biomolecular
assignment of these spectral intervals is shown in Table S11.
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Figure 2. ROC curve of the best predictive model for the first trimester cohort. The model was trained
with NIR spectra (R1, 10,500–7600 cm−1) from first trimester serum samples after pretreatment by
normalization and mean centering. The average and the individual curves of 50 DCV repetitions are
colored in black and gray, respectively. ROC: receiver operating characteristic; NIR: near-infrared; R1:
Range 1; DCV: double cross-validation.
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3.2. Second Trimester Cohort
3.2.1. Description of the Second Trimester Cohort

To characterize this cohort, classical statistical analyses were performed. Table 3
presents the same 28 medical parameters considered for the first trimester cohort and
compares their behavior in NGT and GDM subjects. In this cohort, the prevalence of GDM
was 17.0%. There are only two variables that statistically differ between the two groups:
BMI and history of GDM in a prior pregnancy. The former is higher, and the latter is more
frequent in GDM pregnancies than in NGT pregnancies.

Table 3. Medical variables in the second trimester cohort.

Variable Unit NGT (n = 39) GDM (n = 8) p Value All (n = 47)

Age Years 29 ± 5 30 ± 7 0.606 NS 29 ± 5

BMI Kg/m2 27.0 ± 4.7 31.3 ± 6.5 0.034 * 27.7 ± 5.2

Supplement consumption % 64.1 (25/39) 62.5 (5/8) >0.999 NS 63.8 (30/47)

Hyperemesis % 33.3 (13/39) 25.0 (2/8) >0.999 NS 31.9 (15/47)

Vaginal bleeding % 5.1 (2/39) 25.0 (2/8) 0.129 NS 8.5 (4/47)

Drug use before pregnancy %

Cigarettes 33.3 (13/39) 37.5 (3/8) >0.999 NS 34.0 (16/47)
Alcohol 61.5 (24/39) 50.0 (4/8) 0.697 NS 59.6 (28/47)
Other drugs 25.6 (10/39) 0.0 (0/8) 0.174 NS 21.3 (10/47)

Prior pregnancy issues %

GDM 0.0 (0/39) 37.5 (3/8) 0.004 ** 6.4 (3/47)
Hypertensive disorder 7.7 (3/39) 0.0 (0/8) >0.999 NS 6.4 (3/47)
Preterm birth 5.1 (2/39) 12.5 (1/8) 0.436 NS 6.4 (3/47)
Other 7.7 (3/39) 0.0 (0/8) >0.999 NS 6.4 (3/47)

Prior non-viable pregnancy % 17.9 (7/39) 12.5 (1/8) >0.999 NS 17.0 (8/47)

Fertility problems % 17.9 (7/39) 0.0 (0/8) 0.329 NS 14.9 (7/47)

PCOS % 25.6 (10/39) 12.5 (1/8) 0.659 NS 23.4 (11/47)

First period age Years 13 (12–14) 12 (12–13) 0.058 NS 13 (12–14)

Last period month % 0.729 NS

January 2.6 (1/39) 0.0 (0/8) 2.1 (1/47)
February 7.7 (3/39) 25.0 (2/8) 10.6 (5/47)
March 12.8 (5/39) 0.0 (0/8) 10.6 (5/47)
April 5.1 (2/39) 12.5 (1/8) 6.4 (3/47)
May 12.8 (5/39) 0.0 (0/8) 10.6 (5/47)
June 10.3 (4/39) 12.5 (1/8) 10.6 (5/47)
July 15.4 (6/39) 25.0 (2/8) 17.0 (8/47)
August 12.8 (5/39) 0.0 (0/8) 10.6 (5/47)
September 2.6 (1/39) 12.5 (1/8) 4.3 (2/47)
October 10.3 (4/39) 12.5 (1/8) 10.6 (5/47)
November 5.1 (2/39) 0.0 (0/8) 4.3 (2/47)
December 2.6 (1/39) 0.0 (0/8) 2.1 (1/47)

Personal morbid history %

Insulin resistance 5.1 (2/39) 0.0 (0/8) >0.999 NS 4.3 (2/47)
Thyroid dysfunction 10.3 (4/39) 0.0 (0/8) >0.999 NS 8.5 (4/47)
Asthma 7.7 (3/39) 0.0 (0/8) >0.999 NS 6.4 (3/47)
Other 10.3 (4/39) 37.5 (3/8) 0.084 NS 14.9 (7/47)

Family morbid history %

Insulin resistance or prediabetes 7.7 (3/39) 12.5 (1/8) 0.539 NS 8.5 (4/47)
DM 35.9 (14/39) 62.5 (5/8) 0.240 NS 40.4 (19/47)
Hypertension 48.7 (19/39) 62.5 (5/8) 0.701 NS 51.1 (24/47)
Hypothyroidism 17.9 (7/39) 25.0 (2/8) 0.639 NS 19.1 (9/47)
Hyperthyroidism 5.1 (2/39) 12.5 (1/8) 0.436 NS 6.4 (3/47)
Asthma 10.3 (4/39) 0.0 (0/8) >0.999 NS 8.5 (4/47)
Other 12.8 (5/39) 12.5 (1/8) >0.999 NS 12.8 (6/47)

NGT: normal glucose tolerance; GDM: gestational diabetes mellitus; BMI: body mass index; PCOS: polycystic
ovary syndrome; DM: diabetes mellitus; *: p < 0.05; **: p < 0.01; NS: not significant.

3.2.2. Prediction of GDM with Second Trimester Serum NIR Spectral Data

To predict GDM using the biochemical information contained in sera, NIR spectra
were recorded. Figure 3 exhibits NIR spectra from second trimester NGT and GDM serum
samples. Due to their sequential noise behavior, NIR spectra were divided into the same
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three regions considered for the first trimester cohort: R1 (10,500–7600 cm−1), R2 (7600–
5100 cm−1), and R3 (5100–4000 cm−1). Subsequent analyses considered both the three NIR
regions, and the Full spectral range (10,500 to 4000 cm−1).
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Figure 3. NIR spectra from second trimester serum samples. Each trace corresponds to the NIR
spectrum of one serum sample, that is, of one subject. Spectra from NGT and GDM pregnant women
are colored in blue and red, respectively. Four spectral ranges are considered: Full, from 10,500 to
4000 cm−1; Range 1, from 10,500 to 7600 cm−1; Range 2, from 7600 to 5100 cm−1; and Range 3, from
5100 to 4000 cm−1. NIR: near-infrared; NGT: normal glucose tolerance; GDM: gestational diabetes
mellitus; R1: Range 1; R2: Range 2; R3: Range 3.

Second trimester NIR spectral data were used to train and validate different single-
block models for GDM prediction. For each spectral range (Full, R1, R2, and R3), 80
combinations of mathematical pretreatments were assessed (Tables S6–S9). Table 4 displays
the figures of merit of the best models, i.e., the ones with the highest NER in DCV, for every
NIR region. The range with the greatest predictive power is R3, with an NER of 0.7894
± 0.0431. This performance is much better than that obtained with the Full NIR range of
0.4642 ± 0.0321.

Table 4. Predictive performance of the best ML models using NIR spectral data from second trimester
serum samples.

Range a Pretreatment
Sp Se NER

Av StD Av StD Av StD

Full 2D (W = 15) + N + MC 0.8133 0.0324 0.1150 0.0556 0.4642 0.0321
R1 WLS + N + MC 0.8754 0.0414 0.1625 0.1218 0.5189 0.0643
R2 2D (W = 3) + N + MC 0.6821 0.0288 0.3875 0.1191 0.5348 0.0613
R3 1D (W = 15) + MC 0.8713 0.0361 0.7075 0.0783 0.7894 0.0431

a Full: 10,500–4000 cm−1; R1: 10,500–7600 cm−1; R2: 7600–5100 cm−1; R3: 5100–4000 cm−1. Sp: specificity; Se:
sensitivity; NER: non-error rate; Av: average; StD: standard deviation; R1: Range 1; R2: Range 2; R3: Range 3;
2D: second derivative; W: width; N: normalization; MC: mean centering; WLS: weighted least squares; 1D: first
derivative.

To evaluate if the performance of the predictive models for this cohort could be
enhanced, NIR Full and NIR R3 were combined with the 28 medical parameters mentioned
in Section 2.3. Different multi-block models were developed (Table S10). The combination
of NIR Full with medical data improves the overall performance in comparison to the Full
NIR single-block model. Likewise, the combination of NIR R3 with medical data increases



Biomedicines 2024, 12, 1142 11 of 20

the overall predictive power in comparison to models based on medical data only (NER
of 0.6115 ± 0.0467 in DCV for a model based on the 28 medical variables, NER of 0.6642
± 0.0159 in DCV for a model based on BMI, and NER of 0.6875 ± 0.0000 in DCV for a
model based on history of GDM in a prior pregnancy, with BMI and history of GDM in
a prior pregnancy being the statistically significant variables in Table 3). Nevertheless,
the addition of medical data does not improve the predictive performance compared to
the best single-block model, obtained with NIR R3 data only. The simplification of the
multi-block models by means of variable selection does not outperform its predictive
performance either. Similarly, with what was observed in single block-analyses, NIR R3-
based multi-block models tend to present higher NERs than NIR Full-based multi-block
models.

Figure 4 shows the overall predictive performance of the best ML model obtained by
employing NIR spectra from second trimester sera. It corresponds to the NIR R3 spectral
region (5100–4000 cm−1) with pretreatment by first derivative (width = 15) and mean
centering. It predicts GDM with an AUROC of 0.8836 ± 0.0259 in DCV. The most relevant
spectral intervals for the performance of this model, i.e., those mainly composed of variables
with VIP scores larger than one, are 5028–4856 cm−1, 4764–4702 cm−1, 4492–4442 cm−1,
4392–4364 cm−1, 4302–4268 cm−1, 4206–4176 cm−1, and 4096–4000 cm−1. The tentative
biomolecular assignment of these spectral intervals is presented in Table S12.
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Figure 4. ROC curve of the best predictive model for the second trimester cohort. The model
was trained with NIR spectra (R3, 5100–4000 cm−1) from second trimester serum samples after
pretreatment by first derivative (width = 15) and mean centering. The average and the individual
curves of 50 DCV repetitions are colored in black and gray, respectively. ROC: receiver operating
characteristic; NIR: near-infrared; R3: Range 3; DCV: double cross-validation.

4. Discussion

This work shows that ML modeling with NIR spectra from first trimester sera leads
to a moderate performance for the prediction of GDM. It also shows that modeling with
NIR data from second trimester samples results in a high predictive power for GDM. In
both cases, the entire method takes only 32 min, considering both sample preparation and
data acquisition by NIR spectroscopy. These findings suggest that the second trimester
NIR-spectroscopy-based method could be used as an alternative screening tool for GDM.

4.1. The Addition of Medical Data Does Not Improve the Predictive Performance of NIR
Data-Based Models

The prevalence of GDM in the study cohorts was higher than what was reported for
the Chilean population in 2015, this being 13.0% [4]. This behavior is consistent with the fact
that the prevalence of GDM is increasing both in Chile [4] and worldwide [41]. The medical
variables that differed between GDM and NGT groups were history of GDM in a prior
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pregnancy, family history of DM, and BMI. Higher frequencies or levels of these variables
were observed in pregnant women with GDM. This observation makes sense since they
are known risk factors for GDM, both in the Chilean [4] and global population [1]. The
statistical behavior of these risk factors was not exactly the same in the first and the second
trimester cohorts, however, in a multivariate scale the two cohorts behaved similarly. Full
medical data allowed us to predict GDM with a very similar overall performance in the first
and the second trimester cohorts. Moreover, the addition of medical data with multi-block
techniques did not improve the performance of NIR data-based predictive models in any of
the cohorts, even when all statistically relevant variables were part of the best multi-block
models.

Even though multi-block analysis is often associated with an increased predictive
power compared to single-block analysis, this is not always the case [42]. One strategy that
can improve predictive performance is to apply variable selection [38,40,43], however, in
this study it did not have that effect. Another strategy is to use multi-block techniques of a
higher data fusion level [42]. Multi-block analysis can be related to low-, mid-, or high-level
data fusion (LLDF, MLDF, and HLDF, respectively). LLDF techniques work directly on the
original data blocks; MLDF techniques operate on features extracted from each data block;
and HLDF techniques fuse the outcome of models built from each data block [44]. The
multi-block technique applied here, SO-PLS-LDA, corresponds to MLDF, since information
is sequentially extracted from the different blocks to construct the model [37]. Therefore,
the application of an HLDF technique may increase the predictive power of the models
presented here. The use of such a technique should be considered carefully, since HLDF
modeling is more complex, time-consuming, and more difficult to interpret [44].

4.2. NIR Data-Based Prediction Has Advantages over Medical Data Prediction

NIR data-based models performed as well as or better than medical data-based models.
In fact, the best model built on NIR spectral data from first trimester serum samples showed
an overall performance similar to that obtained with full medical data in the same cohort.
Likewise, the best model built on NIR spectral data from second trimester serum samples
presented a much higher predictive power than the one obtained with full medical data
in the same cohort. The same behavior was observed when comparing the best models
based on NIR data with models based on the individual medical variables that showed
statistical significance in each cohort: for the first trimester cohort, history of GDM in a
prior pregnancy and family history of DM; and for the second trimester cohort, BMI and
history of GDM in a prior pregnancy.

It is important to mention that all the medical parameters considered here are clinical.
Clinical variables involve anthropometrical measurements, demographical parameters, and
personal or family morbid history data. In general, models involving this type of variable
are associated with a moderate performance for the prediction of GDM [17]. Furthermore,
this kind of information is generally obtained by means of self-report questionnaires and,
therefore, is subject to bias. In contrast, NIR spectral data are obtained through the objective
instrumental analysis of biological samples. Hence, in addition to presenting a similar or
higher predictive power than medical-data-based models, NIR data-based models are less
subjective.

4.3. NIR Spectral Data Pretreatment Is Essential to Maximize Predictive Power

In the two study cohorts, particular spectral regions achieved a better predictive
performance than full spectral ranges. In the case of first trimester serum samples, R1
presented an NER moderately higher than that obtained with the Full range. In the case of
second trimester serum samples, R3 exhibited an NER much higher than the one obtained
with the Full range. This tendency was maintained when medical data were added.

It is likely that spectral segmentation allowed us to better optimize data pretreatment.
Pretreatment operations are used to remove chemically irrelevant sources of variation in
the data, reducing the contribution of signals that are not related to the property being
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predicted, and improving the performance of both qualitative and quantitative analyses [35].
Typical pretreatment for infrared (IR) data includes selecting the optimal wavenumber
range and correcting different spectral alterations, such as random and systematic noise,
light scattering, and baseline shift, among others [35,36]. The effect of pretreatment on
predictive power is highly data-dependent [36]. Therefore, it is important to optimize it
depending on the spectral features that need to be corrected in each particular case. Here,
signal sequential noise varied between NIR spectral regions, suggesting that they may
require different pretreatments. Indeed, the optimal pretreatment for each spectral region
was different, both between short spectral regions and compared to the Full NIR range.

4.4. Predictive Performance in the First and the Second Trimester Is Related to Biochemical
Changes Occurring throughout GDM

The optimal NIR ranges differed between trimesters. For first and second trimester
sera, the spectral ranges with higher predictive power were 10,500–7600 cm−1 and 5100–
4000 cm−1, respectively. This difference in optimal spectral range and associated predictive
performance might be related to the biochemical changes that underlie the development of
GDM.

The biochemical interpretation of NIR spectra is a challenging task, since the bands
observed in NIR spectra are mainly due to overtones and combination bands of fundamen-
tal vibrational modes [28]. However, it is possible to tentatively relate spectral patterns to
particular biomolecules [29,45,46]. In the first trimester best model, two NIR intervals stood
out, 10,500–9828 cm−1 and 8826–7858 cm−1, whereas in the second trimester case, six spec-
tral intervals did so, 5028–4856 cm−1, 4764–4702 cm−1, 4492–4442 cm−1, 4392–4364 cm−1,
4302–4268 cm−1, 4206–4176 cm−1, and 4096–4000 cm−1. These first and second trimester
spectral intervals involve vibrations of various chemical bonds, among which there are
some that have been associated with carbohydrates, lipids, and proteins. Therefore, these
three biomolecules would be altered in GDM, in both trimesters of pregnancy.

Based on the tentative assignments made, the potential biochemical differences be-
tween the two trimesters are not evident. However, there is a key difference between them
in GDM. The hyperglycemia state that characterizes GDM manifests only in the late second
trimester or in the early third trimester of pregnancy [1]. In other words, while glycemia
is not altered in the first trimester, it is altered in the second trimester. Interestingly, the
optimal spectral range for predicting GDM in the second trimester (5100–4000 cm−1) has
been identified as relevant for quantifying glucose in serum samples. Indeed, Goodarzi and
Saeys showed that 2100–2300 nm (4762–4348 cm−1) was the most important NIR region
for glucose quantification in human serum. They discussed that this was consistent with
previous studies, which had identified 2000–2500 nm (5000–4000 cm−1) as the most infor-
mative wavelength range for glucose measurement [47]. Their result is coherent with the
tentative assignments performed here, in which wavenumbers near 4762–4348 cm−1 were
related to carbohydrates. In consequence, it is very likely that the best second trimester
model achieves a better predictive performance than the best first trimester counterpart
because it accounts for biochemical changes that become evident only when GDM is fully
established.

4.5. NIR Data-Based Prediction Has Advantages over Other Instrumental Data-Based Prediction

The NIR-based models presented here allowed us to predict GDM in 32 min, con-
sidering sample preparation and spectral acquisition of each instrumental replicate. This
is fast compared to other instrumental methods reported in literature. In the following
paragraphs, the proposed method is compared with those presented in some other existing
studies, both in terms of predictive power and duration of analysis. This comparison is
summarized in Table 5. It is important to note the difficulty of directly comparing this
work with others. Other studies that address the same problem using other instrumental
techniques are extremely heterogeneous in terms of reporting their predictive power, with
some reporting the value in the training phase, others in the internal validation phase, and
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others in the external validation phase. In addition, different articles use different types of
internal and external validation strategies or different metrics to assess predictive power.
On the other hand, most of these studies do not report the time required for each step of the
analytical methods they propose, therefore it is only possible to have an estimated value
of their duration of analysis. As a consequence, the following comparison should be read
with caution.

Table 5. Comparison of the method developed in this study for the diagnostic support of GDM with
those presented in similar articles.

Time of Application Study Instrumental
Technique Predictive Power Duration of Analysis

Before diagnosis of
GDM by OGTT

This study NIRS
AUROC: 0.5768 ±
0.0635
NER: 0.6321 ± 0.0489

32 min

[21] LC-MS AUROC: 0.724–0.902 >8 h

[48] LC-MS AUROC: 0.7075 1.5 h

[49] LC-MS AUROC: 0.729–0.906 >4 h

[22] GC-MS AUROC: 0.771–0.907 >1.5 h

[50] GC-MS AUROC: 0.745–0.797 >16 h

[23] NMRS AUROC: 0.796

Not mentioned.
Typically 1–1.5 h [51]

[52] NMRS AUROC: 0.59

[53] NMRS NER: 0.635–0.825

[54] NMRS AUROC: 0.610–0.719

[27] PCR AUROC: 0.7694 >8 h

[55] PCR NER: 0.531–0.552 >2 h

[56] PCR AUROC: 0.600–0.669 >2.5 h

At the time of diagnosis
of GDM by OGTT

This study NIRS
AUROC: 0.8836 ±
0.0259
NER: 0.7894 ± 0.0431

32 min

[48] LC-MS AUROC: 0.7800 1.5 h

[50] GC-MS AUROC: 0.745–0.828 >16 h

[57] GC-MS AUROC: 0.83–0.90 >16 h

[52] NMRS AUROC: 0.62 Not mentioned.
Typically 1–1.5 h [51][53] NMRS NER: 0.695–0.885

[27] PCR AUROC: 0.7694 >8 h

[55] PCR NER: 0.531–0.552 >2 h

[58] PCR AUROC: 0.74–0.92 >2.5 h

GDM: gestational diabetes mellitus; OGTT: oral glucose tolerance test; NIRS: near-infrared spectroscopy; LC-MS:
liquid chromatography coupled to mass spectrometry; GC-MS: gas chromatography coupled to mass spectrometry;
NMRS: nuclear magnetic resonance spectroscopy; PCR: polymerase chain reaction; AUROC: area under the
receiver operating characteristic curve; NER: non-error rate.

There are studies applying LC-MS- or GC-MS-based methods to predict GDM at
different stages of pregnancy. Their predictive performance varies, e.g., with AUROCs of
0.7075 [48], 0.745–0.797 [50], 0.724–0.902 [21], 0.729–0.906 [49], and 0.771–0.907 [22] before
GDM diagnosis, and 0.7800 [48], 0.745–0.828 [50], and 0.83–0.90 [57] at the time of GDM
diagnosis. Even though some of these methods achieve a high predictive power, they are
very time-consuming. For instance, the LC-MS metabolomics strategy of Zhang et al. [48]
takes approximately 1.5 h, with a sample preparation step of at least 15 min, and two
LC-MS runs of 30 min each. Likewise, the LC-MS proteomics approaches of Guo et al. [49]
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and Wang et al. [21] include sample preparation processes that takes more than 4 h and 8
h, respectively. The GC-MS metabolomics methods of Raczkowska et al. [50] and Dudzik
et al. [57] require a sample preparation procedure of more than 16 h. Similarly, the GC-MS
metabolomics strategy of Zhu et al. [22] requires at least 1.5 h for sample preparation only,
as indicated in the reference they cited in the methods section of their study [59].

Other articles use NMR spectroscopy metabolomics-based methods to predict GDM
at different points in pregnancy [23,52–54]. Their predictive power is variable but tends
to be better at the time of GDM diagnosis than earlier, e.g., with AUROCs of 0.62 and
0.59, respectively, in the study of McBride et al. [52], and NERs of 0.695–0.885 and 0.635–
0.825, respectively, in the study of Pinto et al. [53]. Studies that focus particularly on early
detection of GDM achieve moderate predictive power, with AUROCs of 0.610–0.719 [54]
and 0.796 [23]. Papers presenting this kind of strategy do not usually mention details about
duration of analysis in the methodology section. However, sample preparation of biological
fluids for this type of analysis usually takes 1–1.5 h, while NMR data acquisition typically
takes 4–5 min per sample [51].

There are also works employing PCR-based methods for GDM prediction. Some
authors have based their methods on single nucleotide polymorphisms. Such methods are
valid to predict GDM at any point of life. Their predictive power is moderate, e.g., with an
NER of 0.531–0.552 [55] and an AUROC of 0.7694 [27]. Moreover, they are associated with
long analysis times. For example, the strategy of Yu et al. [55] consists of the extraction of
genomic DNA, and its analysis by PCR-restriction fragment length polymorphism (PCR-
RFLP). The PCR-RFLP protocol alone takes more than 2 h. Likewise, the method of Zulueta
et al. [27] consists of genomic DNA extraction, and its analysis by iPLEX-PCR using the
MassARRAY system from Agena Bioscience. According to the manufacturer, the entire
workflow for iPLEX MassARRAY PCR takes 8 h [60]. Some other authors have based
their GDM predictive methods on micro-RNAs. Their predictive performance varies, e.g.,
with AUROCs of 0.600–0.669 [56] before GDM diagnosis, and AUROCs of 0.74–0.92 [58]
at the time of GDM diagnosis. Although some of these methods reach a high predictive
power, they involve long durations of analysis. For instance, the approaches of Zhao
et al. [56] and Cao et al. [58] consist of RNA extraction, reverse transcription, and a TaqMan-
based quantitative PCR (TaqMan-qPCR) that takes, alone, about 1 h. Furthermore, sample
preparation for TaqMan-qPCR usually takes more than 1.5 h [61].

Even though the best first trimester method presented here is simple and fast, it
showed a moderate performance for the prediction of GDM compared to that reported
in literature with more time-consuming methods. This NIR data-based method could
be improved by modifying sample preparation, e.g., by removing from sera the high
concentration proteins that might be interfering with the analysis of lower concentration
biomolecules, which could be important to differentiate the two study groups. This would
increase the time of analysis, however, it could be adjusted, for example, by reducing
the drying time. The simplicity and rapidity of this method, coupled with an improved
predictive power, would make it ideal for the early detection of GDM. On the other hand,
the best second trimester method presented here exhibited a very high predictive power,
similar to or better than that reported in literature with much slower methods. This
predictive performance, together with its simplicity and rapidity, makes it an excellent
alternative screening method for GDM.

4.6. The Presented Strategy Has Advantages over Other IR-Based Strategies

Before this work, NIR spectroscopy had never been assessed as a diagnostic support
tool for GDM. There is only one study applying IR spectroscopy for the prediction of this
pregnancy disease, that of Bernardes-Oliveira et al. The following paragraph compares the
proposed method with that developed by them.

The method of Bernardes-Oliveira et al. consists of the analysis of plasma samples with
attenuated total reflection Fourier transform mid-IR spectroscopy, and is able to predict
GDM with an accuracy of 100% [62]. The limitation of this strategy is that plasma samples
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were collected in a very wide time range, at 9–39 or 12–38 weeks of pregnancy for the
control or the GDM group, respectively. Therefore, even though their study showed the
great potential of IR spectroscopy to differentiate subjects with and without GDM, it was
not designed to predict GDM at particular stages of pregnancy. In contrast, in the present
study serum samples were collected in the first and the second trimester of pregnancy,
allowing us to evaluate the capability of IR spectroscopy to predict GDM both before and
at the time of diagnosis.

4.7. The Proposed NIR Data-Based Method Has Advantages over the OGTT

The OGTT is the reference method for diagnosis of GDM in Chile [34] and in several
other countries of the world [5]. However, as discussed in the introduction of this study,
the OGTT is unpleasant, time-consuming, has low reproducibility, and results are tardy.

Even though none of the presented NIR spectroscopy-based models reach the diagnos-
tic specificity and sensitivity of the OGTT, they have important advantages over it: they do
not require pregnant women to go through the unpleasant process of taking a high glucose
load, nor do they require subjects to spend two hours at the health center in order to obtain
a blood sample. Moreover, they allow analysts to obtain a result from 10 µL of serum in
only 32 min, which would ease the work of laboratory staff.

The method developed from NIR spectra of first trimester sera has the additional
advantage of allowing the early detection of GDM, however, its predictive power is not
high enough to be implemented in clinical reality. In contrast, the method developed from
NIR spectra of second trimester sera has a high predictive power. As discussed above,
the performance of this method is similar to or better than other instrumental methods
reported in literature, which are much more complex and time-consuming. It is for these
reasons that the second trimester NIR-based method is an attractive option for use as an
alternative screening method to the OGTT.

4.8. Strengths of This Study

To our knowledge, this is the first study reporting NIR spectra-based methods for the
prediction of GDM, either as early detection or alternative screening tools. They are simpler
and faster than other strategies proposed in literature when predicting this pregnancy dis-
ease. Moreover, the best second trimester model achieved a highly competitive predictive
power compared to methods from literature, making it ideal as an alternative screening
tool for GDM. In addition, NIR data pretreatment was performed in an exhaustive and
systematic manner, enabling maximization of the predictive power for both first and second
trimester sera. Finally, every model was subjected to DCV, allowing us to obtain reliable
results despite a limited sample size.

4.9. Limitations of This Study

The sample size is small. Models constructed on a limited number of samples are prone
to overfitting. Even though DCV was used to minimize this effect, future external validation
studies are needed to confirm the effectiveness of the developed methods to predict GDM
in different populations. In addition, the predictive models for GDM presented here
are restricted to the Chilean diagnostic criteria. Further studies should be performed to
evaluate the performance of NIR spectra-based methods for the prediction of GDM under
other diagnostic criteria. Finally, this is neither a longitudinal nor a paired study, so the
comparison between first and second trimester results should be made with caution.

5. Conclusions

In this work, NIR spectroscopy of serum samples was evaluated for the prediction of
GDM at different stages of pregnancy. NIR data-based predictive models were methodically
optimized and robustly validated. The developed methods are simple, fast, and have great
potential for application as clinical decision support tools in medical practice. Even though
the first trimester approach should still be improved for application as an early detection



Biomedicines 2024, 12, 1142 17 of 20

tool for GDM, the second trimester strategy presents characteristics that make it suitable to
be used as an alternative screening tool to the OGTT at the time of GDM diagnosis, e.g.,
a high predictive power for GDM, simplicity, and rapidity. Further studies are needed to
confirm these findings in other populations and under different GDM diagnostic criteria.

Supplementary Materials: The following supporting information can be downloaded at: https:
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Predictive performance of ML models using NIR spectral data from second trimester serum samples
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29. Beć, K.B.; Grabska, J.; Huck, C.W. Near-Infrared Spectroscopy in Bio-Applications. Molecules 2020, 25, 2948. [CrossRef]
30. Balan, V.; Mihai, C.T.; Cojocaru, F.D.; Uritu, C.M.; Dodi, G.; Botezat, D.; Gardikiotis, I. Vibrational Spectroscopy Fingerprinting in

Medicine: From Molecular to Clinical Practice. Materials 2019, 12, 2884. [CrossRef]
31. Sakudo, A. Near-Infrared Spectroscopy for Medical Applications: Current Status and Future Perspectives. Clin. Chim. Acta 2016,

455, 181–188. [CrossRef]
32. Vitorino, R.; Barros, A.S.; Guedes, S.; Caixeta, D.C.; Sabino-Silva, R. Diagnostic and Monitoring Applications Using near Infrared

(NIR) Spectroscopy in Cancer and Other Diseases. Photodiagn. Photodyn. Ther. 2023, 42, 103633. [CrossRef] [PubMed]
33. Villena Gonzales, W.; Mobashsher, A.; Abbosh, A. The Progress of Glucose Monitoring—A Review of Invasive to Minimally and

Non-Invasive Techniques, Devices and Sensors. Sensors 2019, 19, 800. [CrossRef] [PubMed]
34. MINSAL. Guía Perinatal; Ministerio de Salud de Chile (MINSAL): Santiago, Chile, 2015; ISBN 9789563480764.
35. Morais, C.L.M.; Lima, K.M.G.; Singh, M.; Martin, F.L. Tutorial: Multivariate Classification for Vibrational Spectroscopy in

Biological Samples. Nat. Protoc. 2020, 15, 2143–2162. [CrossRef] [PubMed]
36. Jiao, Y.; Li, Z.; Chen, X.; Fei, S. Preprocessing Methods for Near-Infrared Spectrum Calibration. J. Chemom. 2020, 34, e3306.

[CrossRef]
37. Biancolillo, A.; Måge, I.; Næs, T. Combining SO-PLS and Linear Discriminant Analysis for Multi-Block Classification. Chemom.

Intell. Lab. Syst. 2015, 141, 58–67. [CrossRef]
38. Cocchi, M.; Biancolillo, A.; Marini, F. Chemometric Methods for Classification and Feature Selection. Compr. Anal. Chem. 2018, 82,

265–299. [CrossRef]
39. Ballabio, D.; Grisoni, F.; Todeschini, R. Multivariate Comparison of Classification Performance Measures. Chemom. Intell. Lab.

Syst. 2018, 174, 33–44. [CrossRef]
40. Mennickent, D.; Ortega-Contreras, B.; Gutiérrez-Vega, S.; Castro, E.; Rodríguez, A.; Araya, J.; Guzmán-Gutiérrez, E. Evaluation of

First and Second Trimester Maternal Thyroid Profile on the Prediction of Gestational Diabetes Mellitus and Post Load Glycemia.
PLoS ONE 2023, 18, e0280513. [CrossRef]

41. IDF. IDF Diabetes Atlas; Internacional Diabetes Federation (IDF): Brussels, Belgium, 2019; ISBN 9782930229874. Available online:
https://www.diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf (accessed on 26 April
2024).

42. Azcarate, S.M.; Ríos-Reina, R.; Amigo, J.M.; Goicoechea, H.C. Data Handling in Data Fusion: Methodologies and Applications.
TrAC-Trends Anal. Chem. 2021, 143, 116355. [CrossRef]

43. Post, M.J.; van der Putten, P.; van Rijn, J.N. Does Feature Selection Improve Classification? A Large Scale Experiment in OpenML.
In Advances in Intelligent Data Analysis XV, Proceedings of the 15th International Symposium, IDA 2016, Stockholm, Sweden, 13–15
October 2016; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; pp. 158–170.
[CrossRef]

44. Cocchi, M. Data Fusion Methodology and Applications; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780444639844.
45. Workman, J., Jr.; Weyer, L. Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy; CRC Press: Boca Raton, FL,

USA, 2012; ISBN 9780429110511.
46. Golic, M.; Walsh, K.; Lawson, P. Short-Wavelength Near-Infrared Spectra of Sucrose, Glucose, and Fructose with Respect to Sugar

Concentration and Temperature. Appl. Spectrosc. 2003, 57, 139–145. [CrossRef]
47. Goodarzi, M.; Saeys, W. Selection of the Most Informative near Infrared Spectroscopy Wavebands for Continuous Glucose

Monitoring in Human Serum. Talanta 2016, 146, 155–165. [CrossRef] [PubMed]
48. Zhang, H.; Zhao, Y.; Zhao, D.; Chen, X.; Khan, N.U.; Liu, X.; Zheng, Q.; Liang, Y.; Zhu, Y.; Iqbal, J.; et al. Potential Biomarkers

Identified in Plasma of Patients with Gestational Diabetes Mellitus. Metabolomics 2021, 17, 99. [CrossRef] [PubMed]
49. Guo, Y.; Han, Z.; Guo, L.; Liu, Y.; Li, G.; Li, H.; Zhang, J.; Bai, L.; Wu, H.; Chen, B. Identification of Urinary Biomarkers for

the Prediction of Gestational Diabetes Mellitus in Early Second Trimester of Young Gravidae Based on ITRAQ Quantitative
Proteomics. Endocr. J. 2018, 65, 727–735. [CrossRef] [PubMed]

50. Raczkowska, B.A.; Mojsak, P.; Rojo, D.; Telejko, B.; Paczkowska–Abdulsalam, M.; Hryniewicka, J.; Zielinska–Maciulewska, A.;
Szelachowska, M.; Gorska, M.; Barbas, C.; et al. Gas Chromatography–Mass Spectroscopy-Based Metabolomics Analysis Reveals
Potential Biochemical Markers for Diagnosis of Gestational Diabetes Mellitus. Front. Pharmacol. 2021, 12, 770240. [CrossRef]
[PubMed]

51. Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic Profiling, Metabolomic
and Metabonomic Procedures for NMR Spectroscopy of Urine, Plasma, Serum and Tissue Extracts. Nat. Protoc. 2007, 2, 2692–2703.
[CrossRef] [PubMed]

https://doi.org/10.1186/s13098-022-00788-y
https://www.ncbi.nlm.nih.gov/pubmed/35073990
https://doi.org/10.1136/bmjdrc-2022-003046
https://www.ncbi.nlm.nih.gov/pubmed/37085278
https://doi.org/10.3390/molecules25122948
https://doi.org/10.3390/ma12182884
https://doi.org/10.1016/j.cca.2016.02.009
https://doi.org/10.1016/j.pdpdt.2023.103633
https://www.ncbi.nlm.nih.gov/pubmed/37245681
https://doi.org/10.3390/s19040800
https://www.ncbi.nlm.nih.gov/pubmed/30781431
https://doi.org/10.1038/s41596-020-0322-8
https://www.ncbi.nlm.nih.gov/pubmed/32555465
https://doi.org/10.1002/cem.3306
https://doi.org/10.1016/j.chemolab.2014.12.001
https://doi.org/10.1016/bs.coac.2018.08.006
https://doi.org/10.1016/j.chemolab.2017.12.004
https://doi.org/10.1371/journal.pone.0280513
https://www.diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf
https://doi.org/10.1016/j.trac.2021.116355
https://doi.org/10.1007/978-3-319-46349-0_14
https://doi.org/10.1366/000370203321535033
https://doi.org/10.1016/j.talanta.2015.08.033
https://www.ncbi.nlm.nih.gov/pubmed/26695247
https://doi.org/10.1007/s11306-021-01851-x
https://www.ncbi.nlm.nih.gov/pubmed/34739593
https://doi.org/10.1507/endocrj.EJ17-0471
https://www.ncbi.nlm.nih.gov/pubmed/29760307
https://doi.org/10.3389/fphar.2021.770240
https://www.ncbi.nlm.nih.gov/pubmed/34867398
https://doi.org/10.1038/nprot.2007.376
https://www.ncbi.nlm.nih.gov/pubmed/18007604


Biomedicines 2024, 12, 1142 20 of 20

52. McBride, N.; Yousefi, P.; White, S.L.; Poston, L.; Farrar, D.; Sattar, N.; Nelson, S.M.; Wright, J.; Mason, D.; Suderman, M.; et al. Do
Nuclear Magnetic Resonance (NMR)-Based Metabolomics Improve the Prediction of Pregnancy-Related Disorders? Findings
from a UK Birth Cohort with Independent Validation. BMC Med. 2020, 18, 366. [CrossRef] [PubMed]

53. Pinto, J.; Almeida, L.M.; Martins, A.S.; Duarte, D.; Barros, A.S.; Galhano, E.; Pita, C.; Almeida, M.D.C.; Carreira, I.M.; Gil, A.M.
Prediction of Gestational Diabetes through NMR Metabolomics of Maternal Blood. J. Proteome Res. 2015, 14, 2696–2706. [CrossRef]

54. Mokkala, K.; Vahlberg, T.; Pellonperä, O.; Houttu, N.; Koivuniemi, E.; Laitinen, K. Distinct Metabolic Profile in Early Pregnancy
of Overweight and Obese Women Developing Gestational Diabetes. J. Nutr. 2020, 150, 31–37. [CrossRef] [PubMed]

55. Yu, X.Y.; Song, L.P.; Zheng, H.T.; Wei, S.D.; Wen, X.L.; Huang, B.; Liu, D. Bin Association between Functional Genetic Variants in
Retinoid X Receptor-α/γ and the Risk of Gestational Diabetes Mellitus in a Southern Chinese Population. Biosci. Rep. 2021, 41,
BSR20211338. [CrossRef]

56. Zhao, C.; Dong, J.; Jiang, T.; Shi, Z.; Yu, B.; Zhu, Y.; Chen, D.; Xu, J.; Huo, R.; Dai, J.; et al. Early Second-Trimester Serum MiRNA
Profiling Predicts Gestational Diabetes Mellitus. PLoS ONE 2011, 6, e23925. [CrossRef]

57. Dudzik, D.; Zorawski, M.; Skotnicki, M.; Zarzycki, W.; García, A.; Angulo, S.; Lorenzo, M.P.; Barbas, C.; Ramos, M.P. GC–MS
Based Gestational Diabetes Mellitus Longitudinal Study: Identification of 2-and 3-Hydroxybutyrate as Potential Prognostic
Biomarkers. J. Pharm. Biomed. Anal. 2017, 144, 90–98. [CrossRef] [PubMed]

58. Cao, Y.L.; Jia, Y.J.; Xing, B.H.; Shi, D.D.; Dong, X.J. Plasma MicroRNA-16-5p, -17-5p and -20a-5p: Novel Diagnostic Biomarkers for
Gestational Diabetes Mellitus. J. Obstet. Gynaecol. Res. 2017, 43, 974–981. [CrossRef] [PubMed]

59. Fiehn, O. Metabolomics by Gas Chromatography–Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr. Protoc.
Mol. Biol. 2016, 114, 30.4.1–30.4.32. [CrossRef]

60. Agena Bioscience, Inc. Single Nucleotide Polymorphism Detection with the IPLEX®Assay and the MassARRAY®System; Agena
Bioscience: San Diego, CA, USA, 2015.

61. Kroh, E.M.; Parkin, R.K.; Mitchell, P.S.; Tewari, M. Analysis of Circulating MicroRNA Biomarkers in Plasma and Serum Using
Quantitative Reverse Transcription-PCR (QRT-PCR). Methods 2010, 50, 298–301. [CrossRef] [PubMed]

62. Bernardes-Oliveira, E.; de Freitas, D.L.D.; Morais, C.d.L.M.d.; Cornetta, M.d.C.d.M.; Camargo, J.D.d.A.S.; de Lima, K.M.G.;
Crispim, J.C.d.O. Spectrochemical Differentiation in Gestational Diabetes Mellitus Based on Attenuated Total Reflection Fourier-
Transform Infrared (ATR-FTIR) Spectroscopy and Multivariate Analysis. Sci. Rep. 2020, 10, 19259. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s12916-020-01819-z
https://www.ncbi.nlm.nih.gov/pubmed/33222689
https://doi.org/10.1021/acs.jproteome.5b00260
https://doi.org/10.1093/jn/nxz220
https://www.ncbi.nlm.nih.gov/pubmed/31529056
https://doi.org/10.1042/BSR20211338
https://doi.org/10.1371/journal.pone.0023925
https://doi.org/10.1016/j.jpba.2017.02.056
https://www.ncbi.nlm.nih.gov/pubmed/28314466
https://doi.org/10.1111/jog.13317
https://www.ncbi.nlm.nih.gov/pubmed/28621051
https://doi.org/10.1002/0471142727.mb3004s114
https://doi.org/10.1016/j.ymeth.2010.01.032
https://www.ncbi.nlm.nih.gov/pubmed/20146939
https://doi.org/10.1038/s41598-020-75539-y
https://www.ncbi.nlm.nih.gov/pubmed/33159100

	Introduction 
	Materials and Methods 
	Ethical Aspects 
	Subjects Recruitment 
	Medical Data Collection 
	Blood Sample Collection 
	NIR Spectra Acquisition 
	GDM Diagnosis, Cohorts, and Study Groups 
	Classical Statistics Analyses 
	ML Analyses 
	Data Pretreatment 
	Single- and Multi-Block Analyses 
	Evaluation of Predictive Performance 
	Variable Importance and Selection 


	Results 
	First Trimester Cohort 
	Description of the First Trimester Cohort 
	Prediction of GDM with First Trimester Serum NIR Spectral Data 

	Second Trimester Cohort 
	Description of the Second Trimester Cohort 
	Prediction of GDM with Second Trimester Serum NIR Spectral Data 


	Discussion 
	The Addition of Medical Data Does Not Improve the Predictive Performance of NIR Data-Based Models 
	NIR Data-Based Prediction Has Advantages over Medical Data Prediction 
	NIR Spectral Data Pretreatment Is Essential to Maximize Predictive Power 
	Predictive Performance in the First and the Second Trimester Is Related to Biochemical Changes Occurring throughout GDM 
	NIR Data-Based Prediction Has Advantages over Other Instrumental Data-Based Prediction 
	The Presented Strategy Has Advantages over Other IR-Based Strategies 
	The Proposed NIR Data-Based Method Has Advantages over the OGTT 
	Strengths of This Study 
	Limitations of This Study 

	Conclusions 
	References

