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Abstract: The importance of essential oils and their components in the industrial sector is attributed
to their chemical characteristics and their application in the development of products in the areas of
cosmetology, food, and pharmaceuticals. However, the pharmacological properties of this class of
natural products have been extensively investigated and indicate their applicability for obtaining new
drugs. Therefore, this review discusses the use of these oils as starting materials to synthesize more
complex molecules and products with greater commercial value and clinic potential. Furthermore, the
antiulcer, cardiovascular, and antidiabetic mechanisms of action are discussed. The main mechanistic
aspects of the chemopreventive properties of oils against cancer are also presented. The data highlight
essential oils and their derivatives as a strategic chemical group in the search for effective therapeutic
agents against various diseases.

Keywords: essential oil; cardiovascular; antidiabetes; antiulcer; cancer chemopreventive; organic
synthesis; natural products; metabolites; medicinal plants; volatiles

1. The Transformation of Readily Available Essential Oil Constituents into
High-Value Products

Essential oils have been used by humanity for thousands of years, basically due to
their very pleasant aromas, flavors, and relevant pharmacological properties. This has
led to the creation of the flavor and fragrance industry and a significant participation in
the pharmaceutical industry. The major modification observed over the last two centuries
is the change from the direct utilization of the essential oils and their major constituents
to new chemical products obtained by their synthetic transformations. The principal
essential oils usually present a major component, associated with a characteristic aroma,
and they are potentially a great starting material for more complex compounds of highly
increased commercial value. In this review, we describe and discuss some major essential
oils, their principal components, and their synthetic transformations into more highly
valued products [1,2]. Clearly, essential oils are an important part of the renewable biomass
already in use.
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Essential oils, as obtained from nature by classical methods, are generally composed of
very complex mixtures of terpenoids and phenylpropanoids, both groups being of scientific
and commercial interest. The major constituents are monoterpenes with 10 carbon atoms,
in various carbon skeleton arrangements, with none or few functional groups, but usually
available in both enantiomeric forms. Organic chemists describe these compounds as
members of the chiral pool, an extremely important gift from nature that allows us to
synthesize much more complex molecules, both of academic and industrial interest, in
their pure enantiomeric forms [3]. As is well accepted, odor, flavor, and pharmacological
properties are all directly related to their enantiomeric purity.

At this point, we should mention organic synthesis as being the science that allows the
transformation of these relatively simple essential oil constituents into the desired finished
products. A parallel situation exists in nature where simple molecules are transformed
into much more complex molecules, and where nature is the supreme artist in this activity.
Synthetic transformation is a sequence of constructive reactions in which the starting
material molecule is structurally modified in the direction of the desired and proposed final
molecules [4] (Figure 1).
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Figure 1. Organic synthesis, the constructive process.

This process is interactive, involving planning known as retrosynthetic analysis and
then constructive execution of the strategy, with consequent modifications both of the plan
and the execution as determined by the ongoing experimental results obtained [5].

The latest experimental revolution is the introduction of a new enabling technology
for synthetic execution. The traditional equipment set-up is the batch reactor made of glass
or metal, in which a defined and limited quantity of starting materials are transformed into
products. We are now using the continuous flow technology [6,7] in which the starting
materials are pressurized into a continuous flow and then pass through the requisite
reactors, and other required equipment, leading then to the collector. This technology
can be run even on a 24 h per day routine, and obviously multiplied up with parallel
systems. This technology is being transplanted from the research environment into the
pharmaceutical industry with increasing intensity and success.

We shall focus on Brazilian essential oils, which represent a major world market but
are also similar to those of other major third world producers; that is, mainly exportation
of the crude essential oils but relatively little local synthetic exploration.

We will start with pine trees and their essential oils, historically known as turpentine,
now substituted by petrochemically derived solvents in the paint industry. Pine trees are
excellent examples of industrial excellence, as they furnish wood and thus paper, and as a
secondary product, the essential oil is obtained from other parts of the tree. It is difficult to
provide accurate and reliable amounts of the different essential oils being produced around
the world. However, we will estimate turpentine oil production as being of the order of
400,000 tons/year worldwide. Certainly, the other major essential oils are being produced
on much more modest scales. Pinus elliottii Engelm. (slash pine) has been successfully
adapted to many parts of southern Brazil and, together with Pinus taeda L., is our main
source of pinenes (Figure 2).
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Figure 2. Pine trees and the pinenes.

These essential oils are mainly composed of α- and β-pinenes, present in varying
percentages, and one of the enantiomeric forms depending upon the species (Figure 2).
What can we do with them apart from using their excellent dissolving properties [8,9]?
We have decided to carefully select examples of industrial transformations, which involve
large-scale production while using relatively simple chemical processes. However, we
will not detail further the major industrial operation which is the production of diverse
polymers, including “natural” rubbers.

The major transformation of the pinenes is in the production of α-terpineol for its
fragrance qualities and antimicrobial activity, already executed under continuous flow
conditions [10]. A personal affirmation is that a natural chemical is identical to its synthetic
version, only differing in their respective impurities, availabilities, and price.

As a general rule we will not detail the synthetic transformations or specify the indi-
vidual reactions performed but simply present the overall process from starting materials
to products. The pinenes are also used to produce camphor, para-cymene, and myrcene
(for transformation into L-menthol). These compounds have important fragrance and
pharmacological properties. para-Cymene can be envisaged as a green solvent which can
substitute the petrochemically derived solvents benzene, toluene, and the xylenes (Figure 3).
The photo-oxidation of α-pinene to pinocarvone can be executed under continuous flow
conditions [11,12].
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The second major starting materials are the enantiomeric limonenes, produced from
citrus fruit essential oils obtained from the peel, as a secondary product to the immense
citrus fruit juice market (Figure 4) [13].
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These compounds have a much simpler molecular structure than the pinenes but
are also utilized in the production of α-terpineol. Besides important polymer produc-
tion, limonenes are also used for the synthesis of para-cymene and enantiomeric carvones.
Limonenes can be selectively oxidized at the isolated methyl group, leading finally to the
oxime of perillaldehyde, usually known as perilla sugar, an excellent sweetener. Limonene
can also be photo-oxidized to the p-menthadienol epimers (Figure 5) [14], and then di-
rectly transformed into cannabidiol (CBD) as shown in Figure 6 [15,16]. At this point,
we should point out that the legalized and highly recommended cannabidiol (CBD) can
be synthesized easily from limonene and also from α-pinene, citral, and isopulegol. A
great advantage is that synthetic cannabinoids do not contain the psychoactive tetrahydro-
cannabinol (∆9-THC), as opposed to mixtures isolated from Cannabis sativa L. which do
and therefore are subjected to very strict legal controls.
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Figure 6. Menthadienols plus olivetol lead to cannabidiol.

The next starting material is citronellal, obtained from the essential oil of Corymbia
citriodora (Hook.) K.D. Hill & L.A.S. Johnson, a Eucalyptus species widely grown in Brazil
for paper and pulp production (Figure 7) [17].
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Figure 7. Corymbia citriodora and citronellal.

Citronellal should be the best starting material for obtaining L-menthol, a compound
with desirable flavor and fragrance with local anesthetic and cooling properties. However,
L-menthol is presently obtained from Mentha piperita L. essential oil, and the major part is
produced by other synthetic procedures on a reasonably large industrial scale (Figure 8).
The most important and acclaimed synthesis starts from the pinenes, which was developed
by the company Takasago, and is responsible for the major quantities available worldwide
(see Figure 3) [18–20]. This is basically due to the greater availability of pinenes.
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Citral, a variable mixture of geranial and neral, is available in several essential oils
including lemongrass (Cymbopogon genus), widely grown in Brazil as a home remedy
(Figure 9).
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Citral can be used for the production of L-menthol [18,21], pseudo-ionone [22], the
ionones, and then on to vitamin A (Figure 10), and also for certain certified cannabinoids.
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Of the phenylpropanoids, eugenol (found in many herbs, including cloves and cinna-
mon) is certainly the most useful at the moment, being transformed into vanillin, and is
also available on a much larger scale from sugarcane lignins. Vanillin is then the starting
material in the syntheses of levodopa and the curcuminoids (Figure 11) [23].
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In a different synthetic strategy, essential oil constituents can be envisaged as starting
materials in chemoenzymatic syntheses [24–27], also known as biocatalysis, in which (mod-
ified) enzymes are called into play. This is especially interesting when organic syntheses are
shown to be less effective. The reason for this is usually the lack of selectivity in classical
chemical reactions, with the formation of several products in lower yields, and demanding
extensive mixture separations. The chemoenzymatic alternative, when possible, affords
much higher selectivity and thus higher yields and easier product purification. At the
present moment, much academic activity is clearly demonstrating the enormous potential
of this alternative. We can imagine, in the very near future, syntheses involving one or
more chemoenzymatic reactions together with more classical chemical reactions.
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An excellent example is the transformation of valencene, isolated from certain citric
fruit essential oils, into the fragrance nootkatone with a very marked grapefruit-like aroma.
Although valencene obtained from the essential oil is not very pure and is now becoming
relatively expensive, nootkatone is a highly prized product (Figure 12) [28].
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We should emphasize that all these readily available starting materials have been
extensively used in elaborate syntheses to obtain highly complex molecules of more limited
commercial interest. Here, we have concentrated on simpler synthetic procedures leading
to high volume and commercially relevant products. The novelties reside in the new tech-
nological processes, principally continuous flow instead of batches, and chemoenzymatic
and biocatalytic reactions substituting more conventional reagents.

2. Mechanisms of Pharmacological Action of Essential Oils
2.1. Mechanisms of Antiulcer Action of Essential Oils

Peptic ulcer disease (PUD) occurs in the stomach (gastric ulcer) and the first portion
of the small intestine (duodenal ulcer). Signs and symptoms can include abdominal pain,
upper gastrointestinal bleeding, gastric outlet obstruction, and perforation [29]. Among
all complications, peptic ulcer bleeding is one of the most common clinical diseases [30]
and its morbidity has not decreased [31]. The wounds caused by PUD can penetrate the
gastric mucosa and reach the muscular coat, subsequently forming a cavity characterized
by different stages of necrosis, neutrophil infiltration, blood flow reduction, increased
oxidative stress, and acute and chronic inflammation [32,33].

PUD is a source of significant morbidity and mortality worldwide, with much of
the burden in low-income and middle-income countries [34]. The prevalence of PUD
has been estimated at around 5–10% [35] and it affects 4 million people worldwide an-
nually [36]. Disequilibrium between defensive factors (bicarbonate production, mucus
secretion, prostaglandins (PGs), nitric oxide (NO), and antioxidants) and aggressive factors
(oxidative stress and free radicals, acid and pepsin, fall in the gastric blood flow, H. pylori
infection, and non-steroidal anti-inflammatory drugs (NSAIDs)) in the gastric mucosa is
reported to be a fundamental mechanism involved in the pathogenesis of disease peptic
ulcer disease [30]

The decrease in the incidence of peptic ulceration in the last 30 years is partly due to
the substantial progress in the pharmacological management of dyspeptic symptoms as
well as to a significant understanding of its pathophysiology [37]. Management of PUD
entails reducing the production of gastric acids and includes antiacids (sodium bicarbonate,
aluminum hydroxide), H2 receptor antagonists (cimetidine, ranitidine, famotidine), proton
pump inhibitors (omeprazole, lansoprazole, pantoprazole), and cytoprotective agents
(sucralfate, bismuth or prostaglandin analogs). In the case of a gastric ulcer associated
with H. pylori, treatment consists of a combination of antibiotics, such as amoxicillin or
clarithromycin, and acid secretion inhibitors [38].
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Despite good therapeutic efficacy, these agents often cause severe side effects, such
as osteoporosis, gynecomastia, hypoacidity, hypergastrinemia, iron and vitamin B12 de-
ficiencies, thrombocytopenia, and cardiovascular disease risks, that limit their clinical
use [39–44].

For these reasons, research for the development of new gastroprotective agents that
are safer for long-term use has attracted interest. Given this, natural products (medici-
nal/herbal plants and extracts) are considered attractive sources for potential new drugs
and have shown promising results for the treatment of gastric ulcers [45–47]. The efficacy
of herbal medicines is comparable or superior to synthetic drugs with fewer adverse effects
and they have been proven as one of the best strategies for the disease management of
ulcers [48,49].

2.1.1. Antioxidant Activity

Hyptis martiusii Benth. (Lamiaceae) is an aromatic plant found in northeastern Brazil.
The leaves of this plant are used against diseases of the stomach and intestine [50]. Caldas
et al. [51] characterized the mechanisms of action involved in the gastroprotection of the
essential oil of H. martiusii (EOHM) using an ethanol-induced gastric ulcer model in rats.
Treatment with EOHM (400 mg/kg) decreased the rate of lipid peroxidation by significantly
diminishing the production of malondialdehyde and reversing the reduction in levels of
sulfhydryl groups in the mucosa in ethanol-induced gastric mucosal lesions in rats. In
an in vitro study of radical scavenging activity (DPPH assay), the free radical scavenging
ability of the EOHM showing that the EOHM exhibited no significant relative ability to
promote the capture of the DPPH radical at any of the concentrations tested. Similarly,
1,8-cineole, a major component of the essential oil, was unable to promote the capture
of DPPH.

In a new study with 1,8-cineole, also called eucalyptol, Caldas et al. [52] showed that
oral administration of this monoterpene (100 mg/kg) was able to revert the reduction of
the levels of sulfhydryl groups in the gastric mucosa by 62%, restoring the antioxidant
system to base levels in the gastric ulcer model induced by ethanol in Wistar rats. The
monoterpene decreased the rate of lipid peroxidation and myeloperoxidase activity (MPO)
by 55.3% and 59.4%, respectively, by diminishing the production of malondialdehyde by
ethanol when compared to the injured control group. Acute administration of ethanol
to rodents produces gastric mucosal damage that involves intracellular oxidative stress,
intracellular thiol groups, and microcirculation disturbances [53]. These results suggest the
involvement of an antioxidant mechanism in the gastroprotective activity of 1,8-cineole
and that compound action is related to the cytoprotection effect of the essential oil of
H. martiusii.

Syzygium aromaticum L., known as clove, is a dried flower bud belonging to the
Myrtaceae, rich in volatile compounds and antioxidants such as eugenol and α-humulene.
Clove essential oil (CEO) is traditionally used in many disorders. The literature evidenced
several remarkable properties, such as treatment for tooth infections and toothache [54]
and antiangiogenic [55], antioxidant [56], and anti-inflammatory activities [57]. Recently,
Hobani et al. [58] reported that eugenol (5 and 10 mg/kg, p.o.) exhibited a reduction of
gastric damage by ethanol-induced gastric ulceration. The extent of inhibition was 83.55
and 41.06%, respectively. In addition, eugenol protected the NP-SH and GSH levels, and it
reduced the gastric tissue MDA level. Alcohol causes depletion of the gastric wall mucosal
barrier via ROS formation and an increase in permeability [59]. In turn, ROS generation can
cause oxidative stress, with the main source of ROS being infiltrating inflammatory cells,
such as neutrophils that react with lipids to produce lipid peroxidation [60]. This study
demonstrates that eugenol has gastroprotective properties against ethanol-induced ulcers,
probably via improvement of cellular antioxidant defense. These results are in line with the
works carried out by Barboza et al. [61] and Jung et al. [62] who demonstrated that eugenol
exerts an action on oxidative stress and exhibits antioxidant activity and a protective effect
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against gastric damage, suggesting that eugenol has therapeutic potential for the treatment
of inflammatory conditions such as gastritis.

2.1.2. Mucosal Proliferation

Pogostemonis Herba is a known traditional Chinese medicinal herb in Southeast Asia.
It originates from the dried aerial part of Pogostemon cablin (Blanco) Benth. (Labiatae).
Clinically, Pogostemonis Herba has been used by traditional Chinese physicians to treat a
large number of medical conditions, for example, common cold, diarrhea, and H. pylori-
related gastritis [63]. According to the literature, among the majority components of P.
cablin (Blanco) Benth. essential oil (Lamiaceae) are patchouli alcohol, β-patchoulene, and
pogostone, which have anti-inflammatory and gastroprotective activities [64–66].

Patchouli alcohol is a tricyclic sesquiterpene and also the major active ingredient from
the essential oil of Pogostemonis Herba. This terpene has exhibited diverse pharmacological
activities, for instance, enhancing cognition in mice with memory impairment induced by
scopolamine and anti-inflammatory and anti-influenza virus activities in vitro and vivo [67].
A study developed by Zheng et al. [68] investigated the antiulcerogenic properties of
patchouli alcohol (PA) against various experimental gastrointestinal ulcerations in rats.
Animal groups pretreated with PA (10, 20, and 40 mg/kg mg/kg, p.o.) exhibited a dose-
dependent reduction of gastric damage by ethanol-induced gastric ulceration. The extent
of inhibition for the doses employed was 49.20%, 63.89%, and 71.85%, respectively. The
experimental model of ethanol-induced gastric ulcers is often employed to screen antiulcer
compounds [64]. Ethanol damages the gastric mucosa by diverse routes, including the
generation of oxygen-derived free radicals, lipid peroxidation, depletion of mucus, the
reduction of antioxidant defense, and decreased prostaglandin level [69].

To verify the participation of mucus secretion in the gastroprotective effect of PA, the
pylorus ligation-induced ulcer rat model was used. This model undergoes hypersecretion
which leads to the accumulation of gastric acid in the stomach lumen and promotes the
generation of oxidative free radicals [70], resulting in autodigestion of gastric mucosa
and breakdown of the mucosal barrier [71]. The mucus layer is the primary defense of
the gastric mucosa. It acts as a physical barrier against the aggressive effect of gastric
juice [72]. Increased mucus secretion can increase the buffering of acids in gastric juice and
can reduce mucosal damage mediated by oxygen free radicals [73]. Agents that increase
the secretion of mucus are effective in preventing the ulcers induced by this method [74].
The authors showed that the amount of adhered gastric mucus was augmented (p < 0.05)
by pretreatment with PA compared to the control group. In line with this view, it could be
said that PA protects the gastric mucosa through enhanced mucus secretion and potentially
plays an important role in gastric mucosal protection.

2.1.3. H+/K+ ATPase Activity

Cymbopogon citratus (DC) Stapf, belonging to the family Poaceae, popularly known as
lemongrass, is an aromatic plant used in Brazilian popular medicine for the treatment of
gastric and nervous disorders [75]. The essential oil from C. citratus (EOCC) is mostly com-
posed of the monoterpenes citral, nerol, and geraniol [76]. Venzon et al. [77] showed that
EOCC, citral, and geraniol at doses of 1–100 mg/kg (p.o.) exerted marked protection of the
gastric mucosa in an acute ethanol-induced ulcer model. In addition, it was demonstrated
that the essential oil of C. citratus and citral at 100 µg/mL were able to inhibit, in vitro, the
activity of the H+/K+ ATPase by 28.26% and 44.36%, respectively. However, the geraniol
did not inhibit this enzyme. The gastric H+/K+ ATPase, a member of the P2-type ATPase
family, found in gastric parietal cells, is known to transport H+ against a concentration
gradient, leading to acid secretion [78]. It has been well-established in the literature that
effective proton–potassium ATPase inhibitors (PPIs) are potential antiulcerative agents
since they interfere with the cascade of events of gastric ulcerations [79]. PPIs play a crucial
role in the management of gastroesophageal reflux disease, Barrett’s esophagus, and in the
treatment of Helicobacter pylori infection [80]. Based on the findings, it is possible to infer
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that the inhibition of the effect of the proton pump exerted by EOCC and citral may be
related to their gastroprotective effect and that is not an essential mechanism involved in
the gastric healing effects promoted by geraniol.

2.1.4. Nitric Oxide

Nitric oxide (NO), a potent vasodilator, appears to be a major regulator of blood
flow and gastric microcirculation [81]. NO has been shown to protect against ethanol-
induced gastric lesions, whereas inhibition of NO synthesis (NOS) has been demonstrated
to increase the susceptibility of the stomach to ethanol injury [82].

Croton rhamnifolioides Pax & Hoffm. (Euphorbiaceae) is an aromatic plant species used
in folk medicine to treat inflammation and ulcers [83,84]. A previous study identified
57 compounds in the essential oil of C. rhamnifolioides, whose major constituents were
sesquicineole, α-phellandrene, 1,8-cineole, and (E)-caryophyllene [85]. Martins et al. [86]
investigated the anti-inflammatory activity of the essential oil from C. rhamnifolioides
leaves (OEFC) and 1,8-cineole, its major constituent. OEFC (25 mg/kg) and 1,8-cineole
(10.33 mg/kg) reduced edema in several models of inflammation (histamine, arachidonic
acid, carrageenan, croton oil, 1% dextran, and granuloma), indicating regulatory action on
the release of inflammatory mediators. Intending to investigate the gastroprotective proper-
ties of this plant, Vidal et al. [87] evaluated C. rhamnifolioides essential oil (OECC) using the
absolute ethanol, acidified ethanol, or indomethacin gastric lesion model in mice. Animals
that were pretreated orally with OECC (200 mg/kg) showed a significant reduction in
lesions. Administration of L-arginine (600 mg/kg, i.p.), a substrate for NOS, also reduced
the lesion area, and the pretreatment of L-NAME (20 mg/kg, i.p.), an inhibitor of nitric
oxide synthase, reversed both protective effects of L-arginine and OECC, suggesting the
likely participation of nitric oxide in the gastroprotective activity of OECC. In agreement
with this study, Lima-Accioly et al. [88] demonstrated that the gastroprotective effect of an
essential oil obtained from Croton nepetaefolius is associated with the same mechanism.

Nitric oxide (NO) appears to be a key mediator of gastrointestinal mucosal defense
mechanisms, such as gastric blood flow and gastric microcirculation [89]. Nitric oxide
synthase (NOS)-derived NO causes vascular dilation by stimulating soluble guanylyl
cyclase and increasing cGMP in the smooth muscle cells. Therefore, nitric oxide plays an
important role in the gastric mucosa against ethanol-induced gastric lesions, and conversely,
inhibition of NO synthesis increases the susceptibility of the stomach to ethanol injury [90].
In conclusion, when OECC is administered orally it exerts its gastroprotective activity by
mechanisms that involve at least the participation of nitric oxide. 1,8-Cineole, the major
component in OECC (18.32%), may be one of the components responsible for the observed
effect [52].

2.1.5. Prostaglandin E2 Levels

Citrus belongs to the family Rutaceae and is one of the main fruit tree crops grown
throughout the world. Citrus essential oil is an important biologically active product from
citrus peel. The citrus EO is composed of tens to hundreds of various compounds [91].
Citrus lemon Burm. f. (Rutaceae) is the third most important cultivated citrus species
with a production of 7.3 million tons around the world annually [92]. The phytochemical
analysis of Citrus lemon essential oil (CLEO) showed that its main compounds are two
monoterpenes, limonene, and β-pinene [93].

Limonene, a monocyclic monoterpene, is a major constituent in several citrus oils
(orange, lemon, lime, and grapefruit). It is effective in relieving heartburn and gastroe-
sophageal reflux disorder. In animal studies, this monoterpene has also demonstrated
chemoprotective activity for several types of cancer [94]. β-Pinene is a bicyclic hydro-
carbon found in many essential oils from plants. This monoterpene has antimicrobial,
anti-inflammatory, gastroprotective, and cytoprotective activities [95].

For establishing the gastroprotective action mechanism of CLEO and its main com-
pounds, limonene and pinene, Rozza et al. [96] evaluated whether the gastroprotective effect
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from CLEO is due to its main compound limonene or the synergic activity of all components
of this oil. To this end, three experimental models were used to investigate the bioactivity of
the products: gastric ulcers induced by ethanol and indomethacin and their anti-Helicobacter
pylori activity in vitro. The results indicate bioactive CLEO (250 mg/kg) and limonene
(177 mg/kg) in gastroprotection (p < 0.05) in ethanol- and indomethacin-induced gastric
ulcer models, while β-pinene (33 mg/kg) did not exert effective gastroprotection (53.26%
and 37%, respectively).

Indomethacin (IND) induces gastric mucosal damage by ROS through a significant
increase in membrane lipid peroxidation [97]. In addition, IND blocks the gastroprotective
effects of prostaglandin E2 (PGE2) that augments mucus and bicarbonate secretions as
well as gastric blood supply [98]. Thus, the involvement of PGE2 in the gastroprotective
effect of CLEO and limonene was evaluated using the indomethacin-induced ulcer model.
The results showed that the gastroprotective effect of CLEO (250 mg/kg, p.o.) includes
the maintenance of PGE2 levels with indomethacin administration (30 mg/kg). Mean-
while, in the limonene group, the results indicate that the gastroprotective effect against
indomethacin is not related to PGE2 level maintenance. Thus, data analysis shows that
maintenance of PGE2 levels is observed in the gastroprotective mechanism of CLEO, but it
was not suggested in the limonene mechanism.

Patchouli, known as Pogostemon cablin Benth. and belonging to the family Lami-
aceae, is an important aromatic plant from Southeast Asia. Various bioactive compounds
have been identified in patchouli and, among the compounds, pogostone is of great
importance [99,100]. An earlier study by Chen et al. [101] reported the strong poten-
tial of pogostone in an indomethacin-induced gastric ulcer model in rats. Pogostone (10,
20, and 40 mg/kg) demonstrated inhibitory activity with the highest inhibition rate at a
dose of 40 mg/kg (82.2%). Furthermore, a lower but still significant level of gastropro-
tection was obtained with 20 and 10 mg/kg pogostone resulting in an average gastric
ulcer inhibitory rate of 56.6% and 47.5%, respectively. Pogostone (10, 20, and 40 mg/kg)
also promoted the increment of gastric mucosal PGE2 levels (58.6, 64.9, and 67.6 ng/g)
in a dose-related manner and significantly increased both COX-1 and COX-2 expressions.
Additionally, pogostone (10, 20, and 40 mg/kg) significantly augmented endogenous SOD,
GSH, and CAT activities, diminishing the constituent MDA level in the gastric mucosa in a
dose-dependent manner. From their results, it was concluded that pogostone displayed
gastroprotective action by enhancing gastric mucosal defensive factors which is rooted in
the modulation of PGE2 levels and enhancement of the cellular antioxidant mechanism.
Therefore, it could be a good therapeutic agent for the treatment of gastric ulcers.

2.1.6. Reduction of Bacterial Colonization: Helicobacter pylori

Geraniol is an acyclic isoprenoid monoterpene found in essential oils of several aro-
matic plants, such as Cinnamomum tenuipilum Kosterm (Lauraceae) and Cymbopogon citratus
(DC) Stapf [77]. Furthermore, this monoterpene has been shown to exhibit important
pharmacological properties, including antioxidant, anti-inflammatory, antimicrobial, and
antitumor activities [102].

Recently, Bhattamisra et al. [103] investigated the antiulcer and anti-Helicobacter pylori
activity of geraniol in an experimental chronic gastric ulcer model (acetic acid ulcers
induced by submucosal injection of acetic acid). Treatment with geraniol at doses of 15 and
30 mg/kg (i.d.) resulted in fewer dilated blood vessels and hemorrhagic streaks on the
gastric mucosal surface, producing a significant reduction in the ulcer index. The results
showed that geraniol attenuated (p < 0.05) the extent of damage in the stomach induced by
acetic acid by 42% and 52%, respectively.

In the rapid urease test (RUT), geraniol (15 and 30 mg/kg) showed a 17% and 33% re-
duction in H. pylori-positive antral samples, respectively. These results were supported
by the histopathological data. Treatment with geraniol (30 mg/kg) reduced inflammation
(p < 0.05) with a reduction in lesion scores and decreased bacterial load in the gastric mu-
cosa in comparison to ulcer control in the H. pylori group. The RUT is an indirect test of
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the presence of H. pylori based on the presence of urease in the gastric mucosa [104]. The
sensitivity of the RUT is high and has been reported to vary between approximately 80%
and 100% with specificity between 97% and 99% [105]. Based on these findings, Bergonzelli
et al. [106] determined that geraniol had a minimal inhibitory concentration (MIC) of
2 mg/L and inhibited 92% of H. pylori growth.

The antiulcer and anti-H. pylori actions of geraniol may involve direct gastroprotective
effects, as well as an antibacterial action against H. pylori. It is important to highlight the
report of the great healing and gastroprotective activity of several monoterpenes. However,
they do not have anti-H. pylori action (in vitro). Therefore, geraniol has potential use in the
treatment of peptic ulcers associated with H. pylori.

2.1.7. Inflammation: Role of Proinflammatory Cytokines

The acetic-acid-induced gastrointestinal ulcer model is similar to human ulcers in
terms of location, severity, and chronicity. This model has proven suitable for investigating
the effect of treatment on the healing process of chronic gastrointestinal ulcers [107] and
it has been used to screen antisecretory and cytoprotective drugs [108]. Gastric ulcer
occurs due to changes in multiple factors including prostaglandins, growth factor, nitric
oxide, cytokine, microcirculation, and mucus adhesion [109]. After a gastric ulcer is
induced by acetic acid, gastric inflammation increases interaction between leukocytes
and endothelial cells characterized by the migration of macrophages in the ulcer area.
The migrated macrophages then release proinflammatory cytokines such as TNF-α and
interleukin-1β (IL-1β) [110,111]. TNF-α and IL-1β are considered parameters of the systemic
inflammatory reaction and represent two important factors in the pathogenesis of gastric
ulcers, contributing to many forms of gastric mucosal damage [112,113].

Gallesia integrifolia (Spreng.) Harms (Phytolaccaceae), a tree popularly known as the
“garlic plant”, is a native and endemic plant of Brazil [114]. In traditional medicine, the
bark of this species is utilized to prepare teas for treating ulcers, cough, flu, pneumonia,
vermin, gonorrhea, prostate tumors, and rheumatism [115,116].

Arunachalama et al. [117] evaluated the gastric antiulcer action of the essential oil
of the inner stem bark of G. integrifolia (EOGI). In this work, the authors described the
protective effect of oral treatment of EOGI on gastric lesions induced by several necrotizing
agents and found that EOGI (5, 20, or 80 mg/kg, p.o.) significantly reduced the levels of
TNF-α and IL-1β in mice subjected to gastric ulcer induced by 99.5% acetic acid (20 mL).
These results suggest that the ulcer healing effect of EOGI on gastric mucosal injury is
probably related to a decrease in the TNF-α and IL-1 beta levels in inflammatory tissue.

Chen et al. [66] evaluated the antiulcerogenic potential of pogostone using ethanol-
induced gastric ulcers in rats as an experimental model. Pogostone (10, 20, and 40 mg/kg)
exhibited a dose-dependent protective effect against ethanol gastric lesions (44.87, 76.84,
and 95.05%, respectively) and restored the depletion of NP-SH and increased PGE2 lev-
els. Moreover, pogostone at a dose of 20 and 40 mg/kg was able to reduce the levels of
the proinflammatory cytokines TNF-α and IL-6, however, the low dose did not achieve
statistical significance. On the other hand, pogostone at all tested doses increased the anti-
inflammatory factor IL-10 in a dose-dependent manner. In conclusion, the results indicate a
cytoprotective role of pogostone affording gastroprotection against gastric damage induced
by ethanol, which is possibly mediated, in part, by endogenous prostaglandins, enhance-
ment of antioxidant activity, and reduction of the secretions of proinflammatory mediators,
including the high level of anti-inflammatory cytokine in rats exposed to ethanol.

β-Patchoulene (β-PAE) and patchoulene epoxide (PAO), obtained from the essential oil
of Pogostemon cablin (Blanco) Benth., were evaluated concerning the protective effect against
ulcers produced by indomethacin and in ethanol-induced gastric ulcer models, respectively.
Wua et al. [118] demonstrated that β-PAE (10, 20, and 40 mg/kg) reduced gastric damage
in the order of 33.84%, 61.53%, and 78.40%, respectively. The histopathological analysis
confirmed that β-PAE-treated groups displayed less mucosal damage by indomethacin
according to the decreasing ulcer area. The authors also showed that β-PAE exerted
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an antiulcer effect by inhibiting TNF-α-activated, NF-κB, and JNK signaling pathways.
Moreover, Liang et al. [119] evidenced that pretreatment with PAO (10, 20, and 40 mg/kg)
was also effective in reducing ethanol-induced gastric injuries by 67.23%, 82.15%, and
84.93%, respectively. Additionally, PAO was able to reverse the increase in the levels
of proinflammatory cytokines (TNF-α and IL-1β) induced by ethanol, also modulating
the expression of NF-κB-pathway-related proteins, including p-IκBα, IκBα, p-p65, and
p65. Taken together, these results show that β-PAE and PAO have a broad spectrum of
gastroprotective activity that overcomes the harmful actions of indomethacin or ethanol on
the gastric mucosa and reveal the potential use of these compounds as therapeutic agents
in the treatment of ethanol- or NSAID-associated gastropathy.

2.1.8. Cell Proliferation

Epidermal growth factor (EGF) is a protein responsible for activating mesenchymal
and epithelial cells, stimulating epidermal proliferation and repair after injury [120]. Previ-
ous studies have demonstrated that EGF is involved in gastric ulcer healing in experimental
gastric and duodenal ulcers in animal models, for example, cold restraint stress [121] and
acetic acid [122]. This polypeptide inhibits gastric acid secretion, increases mucus release,
and is active in upper and lower gastrointestinal lesions, stimulating cells involved in the
healing process [123,124].

The vascular endothelial growth factor (VEGF) participates in the protection of the
gastric mucosa, increasing vascular permeability and reducing the area of hemorrhagic
lesions [123]. In addition, this peptide can contribute to the development of the angiogenic
response that regulates the reconstruction of microvessels and connective tissue cells, con-
tributing restoration of the mucosal architecture, thereby promoting ulcer healing [124,125].
The production of VEGF, occurring in the normal gastric mucosa, is significantly enhanced
in the gastric mucosa after injury induced by alcohol [126], dexamethasone [127], or acetic
acid [128]. Hence, these growth factors (EGF and VEGF) stimulate with variable power all
the cellular elements needed to cure ulcers.

Recently, Bueno et al. [129] investigated the mechanisms of the essential oil from
Baccharis trimera (EOBT) in gastroprotection against acute gastric ulcer lesions caused by
absolute ethanol and a chronic model of gastric lesions induced by acetic acid in rats. This
study showed that oral pretreatment with EOBT (100 and 200 mg/kg) decreased gastric
injury by 94% and 98%, respectively, in ethanol-induced gastric ulcers. In the gastric lesions
induced by acetic acid, EOBT (100 mg/kg) was effective in healing gastric ulcers after
10 (65.5%) and 14 days (61%) of treatment. However, EOBT (100 mg/kg) only once a day
for seven days was not able to heal gastric lesions, despite reducing the lesion area (46.7%).
To determine whether vascular endothelial growth factor (VEGF) and epidermal growth
factor (EGF) are involved in the gastroprotection of EOBT, gastric lesions induced by acetic
acid were assessed. The data showed that there was no change in EGF expression in the
stomach of rats treated for 14 days with EOBT (100 mg/kg). While in the gastric mucosa
of rats treated with the essential oil, there was a significant increase in VEGF expression
when compared to the control group. Taken together, these data suggest that the expression
of VEGF but not EGF can favor the acceleration of ulcer healing by EOBT determined at
the late stages of this healing process. The analysis of the chemical composition of EOBT
indicated that it contains carquejyl acetate, ledol, and carquejol as the major components,
which may contribute to the biological properties of this essential oil.

In conclusion, essential oils have been the target of many investigations due to their
pharmacological properties, such as the antiulcer effect on models of gastric ulcers. an-
tiulcer effect. The antiulcer activity of these natural products can be attributed to several
mechanisms, e.g., antioxidant, inhibition of acid secretion, increase in mucus content, and
activity against H. pylori (Figure 13).
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Cancer is a disease responsible for a high number of deaths annually and is considered
a serious public health problem. For example, in 2022, around 20 million new cases
of cancer emerged, and 9.7 million deaths caused by this disease were recorded. It is
estimated that one in five people of both sexes develops cancer during their lifetime. Also
alarming is the proportion of deaths: around one in nine for men and one in twelve for
women [130]. The risk factors include family history, tobacco/alcohol use, obesity, infection,
and dietary factors, such as low consumption of fruit/vegetables and high consumption
of heat-processed meat and red meat. Performing physical activity regularly can also be
included as a beneficial recommendation in reducing the occurrence of cancer and other
diseases [130,131].

In the second half of the last century, more than 600,000 compounds were evalu-
ated for their anticancer activities. However, only about 40 drugs were viable for clinical
use [132,133]. There are several challenges to be overcome in searching for new pharma-
cotherapeutic approaches and chemical agents with anticancer and/or chemopreventive
properties. Therefore, the search for new alternative treatments for medicinal and preven-
tive use must be a priority.

Cancer chemoprevention is established as the use of natural, synthetic, or biological
agents to restrict, reverse, or prevent the early stages of carcinogenesis or the advancement
of premalignant cells into invasive disease. These agents are known as blockers and sup-
pressors and act by interrupting multiple pathways and processes of tumor development,
such as detoxification of electrophilic reactive substances and elimination of free radicals,
reduction of cellular uptake, and metabolic activation of procarcinogens, in addition to
stimulation of repair pathways [132,134].

Many natural agents with chemopreventive properties are found in foods and are
present in the diet, including β-carotene [135], retinol [132], and lycopene [136], which
are not constituents of essential oils. These compounds contain isoprene units in their
chemical structures, similar to those found in antitumor monoterpenes from essential
oils [137,138]. Therefore, the inclusion of foods rich in these essential oil components in
the daily diet could be an interesting strategy to prevent or inhibit the progress of the early
stages of cancer.

Among essential oil components, isoprene derivatives can be highlighted as promis-
ing cancer chemopreventive and antitumoral agents [139–142]. The protective effects
of this class of bioactive compounds have been shown in different models of carcino-
genesis in rodents [143]. In addition, the inhibitory effects of isoprene derivatives have
been extensively shown in several human cancer cell lines [142]. Monoterpenes such as
cyclic D-limonene [144] and acyclic geraniol [145,146] and sesquiterpenes such as acyclic
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farnesol [147] are examples of promising isoprene derivatives for their cancer chemopre-
ventive and antitumoral potential.

Initial cancer chemopreventive and antitumoral mechanistic focus was directed to-
wards isoprene derivatives’ inhibitory effects on 3-hydroxy-3-methylglutaryl coenzyme A
(HMG-CoA) reductase activity [140,142]. This is the main enzyme regulating cholesterol
biosynthesis in mammalian cells through the mevalonate pathway [148]. It is particularly
important for normal cell proliferation as it provides cholesterol, which is a component
of cellular membranes, as well as farnesyl and geranylgeranyl pyrophosphates that ac-
tivate proto-oncogenes including RAS and RHO [148]. This isoprenylation process is
key for their binding to the plasma membrane and cell signaling [149]. Different cancer
cells including hepatic and mammary ones present higher HMG-CoA reductase activ-
ity due to loss of its cholesterol-mediated negative feedback control, favoring cell cycle
progression [142,150,151]. Both mammal and plant cells share the initial steps of the meval-
onate pathway, which originates cholesterol in the former and the thousands of isoprene
derivatives in the latter [152]. Interestingly, while cholesterol transcriptionally inhibits
HMG-CoA reductase, essential oils’ isoprene derivatives posttranscriptionally inhibit this
enzyme [153,154]. Of note, cancer cells are especially sensitive to isoprene derivatives’
HMGCoA reductase negative feedback regulation, highlighting this enzyme as a key molec-
ular target for cancer chemoprevention and treatment [142]. Importantly, in recent years,
other molecular pathways and mechanisms implied in this class of cancer chemopreventive
and antitumoral agents have been identified [144,145,147].

D-Limonene is a cyclic monoterpene found in the essential oils of citrus fruit peels
including oranges, lemons, limes, and tangerines [155]. Inhibition of proto-oncogene
prenylation is one of its main anticancer molecular mechanisms [156,157]. This can be
accomplished through posttranscriptional inhibition of HMG-CoA reductase or farnesyl
protein transferases [157,158]. Rodent skin carcinogenesis chemoprevention by D-limonene
was associated with Ras signaling, as well as anti-inflammatory, antioxidant, and proapop-
totic actions through increased Bax and decreased Bcl-2 expression [159]. Accumulating
evidence shows that the monoterpene’s main anticancer cellular mechanisms include in-
duction of apoptosis [144,160]. D-Limonene inhibition of lung cancer growth in vitro and
in vivo involved induction of apoptosis, which was related to increased levels of cleaved
PARP and Bax and decreased levels of Bcl-2, suggesting that the mitochondria-mediated
intrinsic death pathway could be involved in cell death induction [161]. In addition, in this
study, D-limonene autophagy induction, which was accompanied by increased atg5 ex-
pression, could be relevant for the apoptosis effects [161]. Increased Bax and caspase-3 and
decreased Bcl-2 expression were associated with G2/M arrest and apoptosis induction in
T24 bladder cancer cells [162]. A D-limonene-rich blood orange (Citrus sinensis (L) Osbeck)
volatile oil was shown to dose-dependently inhibit cell proliferation and induce apoptosis,
as well as to inhibit angiogenesis in SW480 and HT-29 human colon cancer cells [163].
These effects involved dose-dependent induction of Bax/Bcl-2 and inhibition of vascular
endothelial growth factor (VEGF) expression [163]. Suppression of the PI3K/Akt pathway
was suggested to be related to D-limonene apoptosis induction in LS174T human colon
cancer cells [164]. Furthermore, MAP38 and ERK pathways are relevant ways of mediating
D-limonene apoptosis induction in BW5147 murine lymphoma cells [165].

Geraniol is an acyclic monoterpene found in the essential oils of several aromatic plants
such as lavender, citronella, and lemongrass [166,167]. It presented chemopreventive activi-
ties in rodent models of mammary [168], liver [152,169], renal [146], and tongue [170] car-
cinogenesis. In addition, it presented inhibitory effects in several cancer cell lines [145,146].
Geraniol’s cancer protective effects involve HMG-CoA-reductase-related [168,171] or in-
dependent effects [152,172]. In addition, geraniol has been shown to modulate oxidative
stress [170], inflammation [173], cell proliferation [174], and apoptosis [152]. In vivo chemo-
preventive activities against tongue carcinogenesis by geraniol involved inhibition of phase
I enzymes and induction of phase II antioxidant and carcinogen detoxifying enzymes via
activation of transcription factor Nrf-2 [170]. In addition, apoptosis induction by geraniol
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during rodent carcinogenesis was accompanied by modulation of different molecular tar-
gets including Kim-1, NF-κB, PCNA, and p53 [146]. In vitro and in vivo growth inhibitory
effects by geraniol against A549 human lung adenocarcinoma cells involved inhibition of
cell proliferation and induction of apoptosis [175]. These protective effects of geraniol in-
volved decreased activity of HMG-CoA reductase that was accompanied by decreased Ras
binding to the plasma membrane [175]. On the other hand, hepatocarcinogenesis chemopre-
vention by geraniol involved inhibition of RhoA binding to the plasma membrane without
decreasing HMG-CoA reductase, suggesting that the monoterpene could have inhibited
the oncogene prenylation through geranylgeranyl transferase inhibition [169]. In MCF-7
human breast cancer cells, geraniol treatment elicited G1 and G2/M growth arrest and
cell proliferation inhibition [172]. These effects were accompanied by inhibition of CDK 2
activity and expression of cyclins D1, E, and A, and CDKs 2 and 4, although inhibition of
the mevalonate pathway through HMG-CoA reductase inhibition did not exert a relevant
role [172]. Interestingly, inhibition of Hep-2 human hepatic cancer cell proliferation by
geraniol involved inhibition of the mevalonate pathway at a step after lanosterol synthesis,
suggesting that the monoterpene effects on cholesterol synthesis can be independent of
HMG-CoA reductase modulation [174]. In addition, geraniol’s antiproliferative effects were
accompanied by inhibition of protein prenylation [174]. Other relevant geraniol molecular
targets in cancer cells include E2F8A [176] and HSP90 [177]. A systematic computational-
based approach via network pharmacology proposed 38 potential geraniol molecular
targets, several of which are involved in cancer pathways (estrogen receptors, G protein
subunits, caspases, MAP kinases, ornithine decarboxylase 1, among others) [178]. This
reinforces geraniol as a multi-targeted anticancer agent that seems to act through several
molecular pathways, a feature that increases its effectiveness for cancer control [179]. Of
note, geraniol was recently shown to upregulate PTEN through the downregulation of
mir-21 in an in vivo breast cancer model [180]. This suggests that the monoterpene could
also modulate epigenetic processes that are key for cancer prevention.

Farnesol is an acyclic sesquiterpene found in the essential oils of several aromatic
plants such as lemongrass, citronella, rose, and musk [147]. It has presented chemo-
preventive activities in rodent models of pancreatic [181], liver [141,182], colon [183],
and skin [184] carcinogenesis. In addition, it presented inhibitory effects in several can-
cer cell lines [147,185]. Farnesol’s cancer protective effects involve HMGCoA-reductase-
related [152,186] or independent effects [183]. In addition, farnesol has been shown to
modulate oxidative stress [187], inflammation [182], cell proliferation [152], and apopto-
sis [188]. Farnesol’s protective effects against chemical hepatocarcinogenesis were associ-
ated with the induction of SOD, GPX, and CAT antioxidant enzymes as well as inhibition
of COX-2 and TNF-α proinflammatory markers [182]. Similar effects on these antioxi-
dant enzymes were reported after farnesol treatment in rats submitted to colon [189] and
lung [190] carcinogenesis. Skin carcinogenesis prevention by sesquiterpene involves in-
hibition of oxidative stress and inflammation, as well as reduction of cell proliferation
and induction of apoptosis [184]. These protective effects were related to the inhibition
of COX-2 and of the Ras/Raf/p-ERK1/2 pathway and to an increase in the proportion of
Bax/Bcl-2. These results indicate that farnesol acts by interfering with multiple signaling
pathways [184]. Apoptosis induction by farnesol in DU145 human prostate cancer cells in-
volved PI3K/Akt and mitogen-activated protein kinase signaling pathways [191]. Similarly,
HeLa human cervical cancer cells treated with farnesol also exhibited increased apoptosis
and downregulation of the PI3K/Akt pathway [192]. Furthermore, other molecular targets
have been implied in farnesol’s proapoptotic effects in cancer cells including PPARγ [193],
STAT-3 [194], and the TF4-ATF3-CHOP cascade of ER stress [195].

2.3. Mechanisms of Cardiovascular Action of Essential Oils

Cardiovascular diseases (CVDs) have a major impact on global health as shown in the
World Health Organization (WHO) reports, accounting for 31% of total deaths worldwide.
It is expected that by 2030, 20% of the world’s population over 65 will have 40% of CVD
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deaths. Hypertension is more prevalent in developed countries, affecting approximately
45% of the general population, due to incorrect lifestyle and behavioral habits such as diets,
alcohol abuse, physical inactivity, and stress [196]. Hypertension is characterized by a blood
pressure greater than 130/80 mm Hg, according to the American College of Cardiology
(ACC)/American Heart Association (AHA) guidelines and is strongly correlated with a
high incidence of mortality, as it is the most direct causal risk factor for cardiovascular
disease (CVD) leading to stroke and ischemic heart disease [197].

Anantha et al. [198] emphasized that blood pressure is a result of cardiac output
and systemic vascular resistance. Vascular tone may be elevated due to increased α-
adrenoceptor stimulation or increased peptides such as angiotensins or endothelins. The
renin–angiotensin system is involved at least in some forms of hypertension (e.g., renovas-
cular hypertension) and is suppressed in the presence of primary hyperaldosteronism. In
this context, Takimoto-Ohnishi and Murakami [199] reported that the renin–angiotensin
system (RAS) is a regulatory cascade that plays major physiological roles in blood pressure
regulation and electrolyte homeostasis. The homeostasis of body fluids and sodium is
controlled by the renin–angiotensin system. Angiontensin II is the most potent hormone of
this system, as it plays an important role in regulating vascular tone, cardiac function, and
renal sodium reabsorption [200].

Currently, there are several groups of drugs widely used in the treatment of hyper-
tension, such as diuretics, beta-blockers, angiotensin-converting enzyme (ACE) inhibitors,
Ca2+ channel blockers, angiotensin II receptor antagonists, and renin inhibitors. However,
some of the substances in these drug groups have significant side effects, mainly on the
central nervous system [201]. As a result, studies indicate the effectiveness of compounds
present in essential oils in reducing blood pressure and heart rate [202]. Figure 14 and
Table 1 summarize some mechanisms underlying antihypertensive effects of essential oils.
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arterial hypertension and implications thereof. Legend: Ang I—Angiotensin I; ACEI—Angiotensin
I-converting enzyme inhibitor; Ang II—Angiotensin II; eNOS—endothelial nitric oxide synthase;
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Table 1. Essential oils from plant species and their pharmacological mechanisms on hypertension.

Plant Species (Family) Major Compounds from Essential Oils Pharmacological Action References

Seseli pallasii Besser (Apiaceae) α-Pinene (42.7–48.2%) Vasorelaxant and
ACE-inhibiting effects [203]

Aframomum melegueta (Roscoe)
K. Schum.

and
Aframomum daniellii (Hook.f.) K.

Schum. (Zingiberaceae)

Eugenol
A. melegueta: 82.2%
A. daniellii: 51.1%

EO inhibited angiotensin I-converting
enzyme activity [204]

Pogostemon elsholtzioides Benth.
(Lamiaceae) Curzerene: 46.1% Involvement of nitric oxide synthase

and K+ channel activation [205]

Alpinia zerumbet (Pers.)
B.L.Burtt & R.M.Sm.

(Zingiberaceae)

1,8-Cineole (24.2%), terpinen-4-ol
(20.4%), and p-cymene (15.7%)

Vasodilator effect mediated by
inhibition of Ca2+ influx and release
from intracellular storage, as well as

an activation of the
NOS/sGC pathway

[206]

Trachyspermum ammi Sprague
(Apiaceae)

Thymol (38.1%), gamma-terpinene
(33.3%), and p-cymene (23.1%)

Vasorelaxant effect by inhibition of
extracellular Ca2+ influx via

calcium channels
[207]

Artemisia campestris L.
(Asteraceae) Spathulenol: 10.1% Vasorelaxation induced by AcEO via

L-type calcium channels [208]

Lippia alba (Mill.) N.E.Br.
(Verbenaceae) Citral

Vasorelaxant effect in isolated aorta,
via three hypothesized mechanisms:
blockade of Ca2+ influx or changes in
calcium binding protein sensitization
and/or intracellular calcium storage

[209]

Chrysopogon zizanioides (L.)
Roberty (Poaceae)

Khusimol (8.2%), β-vetivenene (8.2%),
β-funebrene (5.1%), β-vetispirene

(4.8%), β-vetivone (4.7%), δ-selinene
(4%), (E)-isovalencenol (3.3%),

α-vetivone (3.3%), β-calacorene (3%),
vetivonic acid (2.9%), and

vetiselinenol (2.8%).

The root essential oil of C. zizanioides
possesses a vasorelaxant effect

through the muscarinic pathway as
well as acts as a calcium

channel blocker

[210]

Rosa damascena Mill. (Rosaceae) 2-Phenyl-ethyl
Vasorelaxation by activation of

large-conductance Ca2+-activated K+

(BKCa) channels
[211]

2.3.1. Inhibition of Angiotensin Converting Enzyme (ACE)

Suručić et al. [203] described that Seseli pallasii Besser (Apiaceae) essential oil relaxed
isolated endothelium intact mesenteric arteries’ rings precontracted with phenylephrine
with IC50 = 3.10 nl/mL (IC50 = 2.70 µg/mL). The S. pallasii essential oil was found to exhibit
a dose-dependent ACE inhibitory activity with an IC50 value of 0.33 mg/mL. The results
suggested that a combination of vasorelaxing and ACE inhibitory effects of the S. pallasii
essential oil might have potential therapeutic significance in hypertension.

Adefegha and Oboh [204] compared the action of captopril and essential oils of the
Zingiberaceae family in hypertensive rats, and both inhibited angiotensin I converting
enzyme activity, with essential oils having the highest ACE inhibitory activity, and this was
attributed to the major constituent from Aframomum melegueta K. Schum. (alligator pepper)
and Aframomum daniellii K. Schum. (African or “false” cardamom), eugenol.

The essential oil from Blepharocalyx salicifolius (Kunth) O. Berg (Myrtaceae family)
showed 34 compounds. The sesquiterpenes were the largest fraction of 55.9%. The main
component was spathulenol with 11.6%, which caused an antihypertensive effect with a
decrease in systolic blood pressure (SBP) and diastolic blood pressure (DBP) (12% and 23%,
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respectively) and a decrease in cardiac ACE activity of 41.5% in spontaneously hypertensive
rats [212].

2.3.2. Modulation NO/cGMP Pathway

The essential oil from Pogostemon elsholtzioides Benth. (Lamiaceae) induced dose-
dependent vasodilation in precontracted aortic rings and a vasorelaxant effect, attributed
to the major constituents, such as curzerene (46.10%), benzophenone, α-cadinol, and
germacrone. There was also an antihypertensive effect, observed in hypertensive rats
that had a systolic pressure of 100 mmHg and a diastolic pressure of 64.77 mmHg at
the beginning of the experiment. After administration of EO, there was a decrease to
84.18 mmHg of systolic pressure and 21.69 mmHg of diastolic pressure. The vasorelaxant
effect in rat aortic rings involves the activation of both nitric oxide synthase and K+ channels,
which indicates the possible role of the NO/cGMP/PKG pathway in this effect [205].

Alpinia zerumbet has demonstrated antihypertensive and vasodilator effects. Rocha
et al. [206] pointed out that the essential oils of Alpinia zerumbet showed an endothelium-
independent vasorelaxant effect in second-order branches of the mesenteric artery. There
was a vasodilator effect mediated by the inhibition of Ca2+ influx and release from intracel-
lular storage, as well as an activation of the NOS/sGC pathway, being significant for the
treatment of hypertension.

2.3.3. Modulation of Ion Channels

Another interesting experiment showed that the essential oils of Trachyspermum ammi
(Linn.) Sprague (Apiaceae) seeds caused a completely endothelium-independent vasore-
laxation effect and extracellular Ca2+ influx, attributed to the main constituents: thymol
(38.1%), gamma-terpinene (33.3%), and p-cymene (23.1%) [207]. Jamhiri et al. [213] stated
that thymol has a strong antioxidant potential that causes cardioprotective effects and
prevents left ventricular hypertrophy by increasing serum antioxidant capacity.

Dib et al. [208] showed that Artemisia campestris L. (Asteraceae) essential oil (AcEO)
had a vasorelaxation effect, acting through L-type calcium channels and SERCA pumps
to reduce intracellular calcium, and, consequently, triggers sustained vasodilation. The
maximal antioxidant effect was obtained with the dose of 2 mg/mL of AcEO. A dose
of 1 mg/mL showed a maximum antiplatelet effect of 49.73% ± 9.54 and 48.20% ± 8.49,
respectively, on thrombin and ADP. The main components of this oil are spathulenol,
β-eudesmol, and p-cymene.

The essential oil from Lippia alba (Mill.) N.E. Brown (Verbenaceae), known as lemon
balm, is a strong vasorelaxant in the isolated aorta, probably due to the presence of the
citral compound that causes blockage of Ca2+ influx across the cell membrane or changes
in calcium binding protein sensitization and/or intracellular calcium storage [209].

The cumulative addition of essential oil nanoemulsion (EONE) of Chrysopogon zizan-
ioides (L.) Roberty (Poaceae) produced a vasorelaxant effect in thoracic aortic rings of
spontaneously hypertensive rats. This essential oil possesses a vasorelaxant effect through
the muscarinic pathway as well as acts as a calcium channel blocker. The study shows that C.
zizanioides root EO has the potential for further investigation as a possible antihypertensive
drug [210].

2-Phenyl-ethyl alcohol, an isolated component of Rosa damascena Mill (Rosaceae)
essential oil, exhibited a potent vasorelaxation effect in the mesenteric artery and aorta of
hypertensive rats. The activation of calcium-sensitive potassium channels might be the
putative mechanism of the vasorelaxant effect [211].

2.4. Antidiabetes Action Mechanisms of Essential Oil

Diabetes mellitus is a chronic disease that affects around 3% of the worldwide popu-
lation, with a prospect of increasing by 2030, and its prevalence has increased given the
aging population. In 2015, the International Diabetes Federation (IDF) estimated that 1 in
11 adults aged 20 to 79 years had type 2 diabetes mellitus. Diabetes mellitus ranks ninth
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among diseases that cause loss of healthy life years [214]. About 422 million people have
DM and 1.6 million deaths are directly attributed to the disease each year [215]. Likewise,
an increase in the number of deaths related to DM between 1990 and 2019, from 1,278,866
to 2,988,924, has been reported. For disability-adjusted life years (DALYs), growth was
observed from 28,586,671 in 1990 to 70,888,154 in 2019.

Diabetes mellitus (DM) is a metabolic disorder of multiple etiologies, which is mainly
characterized by persistent elevation of the level of glucose in the blood (hyperglycemia),
with disturbances in the metabolism of carbohydrates, lipids, and proteins, resulting from
a deficiency in insulin secretion, its action, or both [216–218].

Essential oils have a complex chemical composition that allows them to reach multiple
physiological structures and metabolic processes of antidiabetic aspects (see Figure 15 and
Table 2), with several mechanisms of action described [219]. Therefore, these products and
their components may have antiglycemic actions and potential use as pharmacologically
active chemical agents capable of reducing the harmful effects of diabetes mellitus on the
health of people affected by the disease. Additional investigations must be carried out,
including clinical studies, to verify the viability of these compounds as candidates for
antidiabetic drugs.
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Table 2. Essential oils from plant species and their pharmacological mechanisms on diabetes.

Plant Species (Family) Major Compounds from
Essential Oils Pharmacological Action References

Citrus × sinensis (L.) Osbeck
(Rutaceae)

and
Citrus limon (L.) Burm. f. (Rutaceae)

D-Limonene
C. sinensis: 92.14%
C. limon: 53.07%

The EO inhibited α-amylase and
α-glucosidase activities [220,221]

62 species from the families:
Lauraceae, Myristicaceae, Myrtaceae,

Oleaceae, Pinaceae, Piperaceae,
Poaceae, Rosaceae, Rutaceae,

Santalaceae, Verbenaceae,
and Zingiberaceae

-

In vitro α-amylase inhibitory
potentials were obtained after the

evaluation of Eucalyptus radiata,
Laurus nobilis, and Myristica

fragrans EOs.

[222]

Syzygirum aromaticum L. (Myrtaceae) Eugenol

There was a significant decline in
blood glucose levels, total cholesterol,

xanthine oxidase, antioxidant
activities, and it was a potent

α-amylase inhibitor

[223]

Ocimum basilicum L. (Lamiaceae) Linalool, methyl estragole, methyl
cinnamate, and methyl chavicol

Ocimum basilicum essential oil had a
strong α-amylase inhibitory activity [224]

Serevenia buxifolia (Poir.) Ten.
(Rutaceae)

β-caryophyllene (32.5%) and
elixene (9.8%)

Antidiabetic potential by inhibiting
the enzymes α-amylase and

α-glucosidase
[225]

Kaempferia galanga (L.)
(Zingiberaceae)

Ethyl
p-methoxycinnamate: 66.39%

Antidiabetic activity using α-amylase
inhibitory activity assay [226]

Dracocephalum heterophyllum Benth.
(Lamiaceae) -

Antidiabetic potential by inhibiting
the enzymes α-amylase and

α-glucosidase
[227]

Mentha suaveolens “Variegata”
(Labiatae) (MSEO);
Lavandula stoechas L.
(Lamiaceae) (LSEO);

Ammi visnaga (L.) Lam. (Apiaceae)
(AVEO)

MSEO: fenchone (29.77%) and
camphor (24.90%)

LSEO: piperitenone oxide
(74.55%)

AVEO: linalool (38.24%)

Antidiabetic action by inhibiting the
enzymes α-amylase and

α-glucosidase
[228]

Hypericum scabrum L. (Clusiaceae) -

The administration of Hypericum
scabrum L. essential oil caused an
increase in the level of GSH, GPx,
SOD, and CAT activities and there

was a decrease in the levels of MDA

[229]

2.4.1. Inhibition of α-Amylase and α-Glucosidase

Oboh et al. [220] investigated Citrus sinensis L. Osbeck (orange) and Citrus limon (L.)
Burm. f. (lemon) essential oils and their interactions with α-amylase, α-glucosidase, and
ACE activities. The results showed that the EO inhibited α-amylase and α-glucosidase activ-
ities. The components of EO from orange and lemon peels contained mostly monoterpene
hydrocarbons, oxygenated monoterpenes, and sesquiterpenes. Limonene was the main
constituent, 92.14% in orange and 53.07% in lemon. In a study carried out with D-limonene
administered to streptozotocin-induced diabetic rats, it was demonstrated that this monoter-
pene alters several biochemical parameters associated with diabetes and, therefore, can
contribute to preventing clinical complications arising from this disease [230]. In this way,
the antienzymatic actions of Citrus sinensis L. Osbeck and Citrus limon (L.) Burm. f. essential
oils must be related to the antidiabetic activity of their majority constituent, limonene.

A study by Lekshmi et al. [231] showed that turmeric essential oil (Curcuma longa
L.—Zingiberaceae) has a protective effect against type 2 diabetes through different mech-
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anisms involving a hypoglycemic effect attributed to upregulation of insulin sensitiv-
ity and lower cellular glucose uptake. The major constituent of Curcuma longa EO is
ar-turmerone, which can inhibit the activities of α-amylase (IC50 = 24.5 µg/mL) and α-
glucosidase (IC50 = 0.28 µg/mL), two key enzymes in glucose digestion. This biologi-
cal activity was also evidenced in Mentha viridis Linn (Lamiaceae) essential oil, which
showed a significant ability to inhibit α-amylase (IC50 = 101.72 µg/mL) and α-glucosidase
(IC50 = 86.93 µg/mL) [232].

In a profile study of 62 essential oils from different plant species and botanical families,
hypoglycemic activity was evidenced in an enzymatic assay of α-amylase and chemi-
cal characterization. The different plants belonged to the following families: Lauraceae,
Myristicaceae, Myrtaceae, Oleaceae, Pinaceae, Piperaceae, Poaceae, Rosaceae, Rutaceae,
Santalaceae, Verbenaceae, and Zingiberacea. In vitro α-amylase inhibitory potentials were
obtained after evaluation of Eucalyptus radiata A. Cunn, Laurus nobilis L. (Lauraceae), and
Myristica fragrans Houtt. (Myristicaceae) EOs. These products exhibited inhibitory capaci-
ties comparable to those of the positive control (acarbose) [222].

In the study conducted by Radünz et al. [221], among all the EOs evaluated, thyme
EO had the most significant inhibition of α-glucosidase (98.9%), followed by sweet orange
EO (Citrus sinensis L. Osbeck, Rutaceae) which showed the most potent inhibitory effect on
α-amylase (95.4%). The inhibitory effects of thyme and orange EOs were attributed to their
main components, thymol and D-limonene, respectively. Incomplete enzyme inhibition
and medium- and high-range inhibition for α-amylase and α-glucosidase, respectively,
are interesting for clinical treatment as they allow diabetes control without compromising
nutrients or glucose absorption in the small intestine.

Nait-Irahal et al. [223] analyzed the effect of intraperitoneal administration of clove
essential oil (Syzygirum aromaticum L., Myrtaceae) in diabetic rats. A significant reduction
in blood glucose, total cholesterol, and xanthine oxidase levels and potent inhibition of the
α-amylase enzyme were observed. In another study, the essential oil from Ocimum basilicum
L. (Lamiaceae) demonstrated strong α-amylase inhibitory activity (IC50 = 74.13 µg/mL).
The essential oil is mainly composed of linalool, methyl estragole, methyl cinnamate,
and methyl chavicol [224]. Linalool has many pharmacological actions. There are even
reports of the nephroprotective action of this monoterpene in diabetic rats [233]. These data
highlight the therapeutic potential of this natural product for the treatment of diabetes.

Serevenia buxifolia (Poir.) Ten. (Rutaceae) is a perennial citrus plant whose essential oil
has antidiabetic potential, with IC50 values of 87.8 and 134.9 µg/mL against α-amylase and
α-glucosidase, respectively. The biological action was concentration-dependent. This oil
contains 33 components, such as β-caryophyllene (32.5%) and elixene (9.8%) [225]. There
are several reports of the antidiabetic action of β-caryophyllene. This sesquiterpene was
administered orally in a dose-dependent manner to diabetic rats, in combination with
the hypoglycemic drug glibenclamide (600 µg/kg body weight), for 45 days. There was
a significant reduction in glucose due to the increase in plasma insulin levels and the
actions of carbohydrate metabolic enzymes were almost normalized [234]. In another
study, this sesquiterpene had an insulinotropic and antidiabetic action when combined
with L-arginine. The experiments were carried out in type 2 diabetic rats and a decrease
in glucose was observed. Additionally, there was a reduction in lipid levels and oxidative
stress [235]. So, scientific reports demonstrate the high potential of this natural product for
restoring glucose homeostasis.

Kaempferia galanga (L.) is a plant with aromatic rhizomes and belongs to the Zingiber-
aceae family. Its essential oil has a high concentration of ethyl p-methoxycinnamate and
shows α-amylase inhibitory activity with an IC50 value of 18.50 µg/mL. Acarbose, an antidi-
abetic drug, had IC50 = 20.39 µg/mL [226]. Chander et al. [227] also found excellent in vitro
action of Dracocephalum heterophyllum Benth. essential oil (Lamiaceae) in inhibiting the
enzymes α-amylase and α-glucosidase. β-Citronellol (31.5–83.7%) is the major constituent
in samples of this oil. The antidiabetic action of citronellol has been demonstrated in an
experimental model using streptozotocin-induced diabetic rats. This monoterpene was
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administered to animals orally (50 mg/kg) for 30 days and attenuated hyperglycemia via
the action of strategic carbohydrate metabolic enzymes [236].

The essential oils of the Moroccan medicinal plants Mentha suaveolens “Variegata”
(Labiatae), Lavandula stoechas L. (Lamiaceae), and Ammi visnaga (L.) Lam. (Apiaceae) were
evaluated for their in vitro ability to inhibit the enzymes α-amylase and α-glucosidase.
The study by El Hachlafi et al. [228] highlighted the outstanding biological action of the
three plant species, whose essential oils were able to repress the activities of the enzymes
in low concentrations compared to the standard drug used (acarbose). Mentha suaveolens
essential oil mainly contains the constituents fenchone (29.77%) and camphor (24.90%).
These monoterpenes are also the main components of Lavandula stoechas L. essential oil
(fenchone (31.81%) and camphor (29.60%)). The three products were tested against the
enzymes α-amylase and α-glucosidase. They showed inhibitory activity with IC50 of 106.73,
104.19, and 76.92 µg/mL against α-amylase and 98.54, 69.03, and 105.26 µg/mL in assays
using α-glucosidase [237]. Therefore, these data indicate that fenchone and camphor should
contribute to the antidiabetic action of Mentha suaveolens essential oil.

2.4.2. Oxidative Stress and Inflammation-Related Mechanisms

The essential oil from Hypericum scabrum L. (Clusiaceae) has a protective and healing
effect on wounds in streptozotocin-induced diabetic rats. The administration of Hypericum
scabrum L. essential oil caused an increase in the level of GSH, GPx, SOD, and CAT activities
and there was a decrease in the levels of MDA. H. scabrum L. essential oil may help reduce
lipid peroxidation, oxidative stress, and the associated complications that go along with
them, in addition to playing a beneficial role in the management of diabetic wounds [229].
Gandhi et al. [238] discussed in a data analysis that constituents of essential oils, including
linalool, cinnamaldehyde, zerumbone, myrtenol, thujone, α-terpineol, geraniol, citral,
eugenol, thymol, carvacrol, citronellol, and thymoquinone, have antidiabetic properties
through modulation of metabolic pathways associated with glucose metabolism. For
example, these constituents of essential oils can reduce the expression of TNF-α, IL-4, iNOS,
and COX-2, as well as regulate signaling molecules, such as AMPK, caspase-3, NF-κB, and
Nrf2/ HO-1.

3. Conclusions

The synthetic routes presented to obtain bioactive derivatives demonstrate the im-
portance of the constituents of these oils as starting materials in the synthesis of strategic
products for several sectors, particularly for the pharmaceutical sector. The interference
of these oils in various metabolic pathways, inhibiting or activating metabolites related to
organic disorders associated with diseases such as diabetes, hypertension, cancer, and ul-
cers, suggests the promising use of these products as prototypes for new drugs. Additional
studies are necessary to advance the understanding of the pharmacological activities and
toxicological aspects aiming to establish the therapeutic potential of these components and
their synthetic derivatives in a clinical stage.
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Abbreviations

CAT Catalase
cGMP Cyclic guanosine monophosphate
COX-1 Cyclooxygenase 1
COX-2 Cyclooxygenase 2
DPPH 2,2-Diphenyl-1-picrylhydrazyl
GSH Glutathione
H+/K+ ATPase Hydrogen potassium ATPase
IL-1β Interleukin 1β

IL-6 Interleukin 6
IL-10 Interleukin 10
L-NAME N (G)-nitro-L-arginine methyl ester
MDA Malondialdehyde
MIC Minimum inhibitory concentration
MPO Myeloperoxidase
NF-κB Nuclear factor kappa B
NO Nitric oxide
NOS Nitric oxide synthase
NP-SH Non-protein Sulfhydryl
NSAIDs Non-steroidal anti-inflammatory drugs
PGE2 Prostaglandin E2
p-IκBα and IκBα Inhibitors of the transcription factor NF-κB
p-p65 and p65 NF-κB subunits
ROS Reactive oxygen species
SOD Superoxide dismutase
TNF-α Tumor necrosis factor alpha
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