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Simple Summary: The live attenuated infectious bronchitis virus vaccine strain QXL87 was derived
from the parental virulent strain JS/2010/12 through serial passages in specific pathogen-free (SPF)
chicken embryos. However, the molecular mechanism underlying its attenuation remains unknown.
In this study, the complete genome sequences of both strains were obtained through next-generation
sequencing technology. By comparing amino acids, protein structures, and functional sites, three
potential virulence genes (Nsp2, Nsp3, and S) were identified as likely contributors to altering viral
pathogenicity. Furthermore, analysis of the effects of single amino acid mutations on protein function
and stability revealed three potential functional mutation sites: P106S (Nsp2), A352T (Nsp2), and
L472F (Nsp2). This research provides an initial insight into the molecular basis of IBV attenuation
and is expected to facilitate the development of new vaccines.

Abstract: The QXL87 live attenuated vaccine strain for infectious bronchitis represents the first
approved QX type (GI-19 lineage) vaccine in China. This strain was derived from the parental strain
CK/CH/JS/2010/12 through continuous passage in SPF chicken embryos. To elucidate the molecular
mechanism behind its attenuation, whole-genome sequencing was conducted on both the parental
and attenuated strains. Analysis revealed 145 nucleotide mutations in the attenuated strain, leading
to 48 amino acid mutations in various proteins, including Nsp2 (26), Nsp3 (14), Nsp4 (1), S (4), 3a (1),
E (1), and N (1). Additionally, a frameshift mutation caused by a single base insertion in the ORFX
resulted in a six-amino-acid extension. Subsequent comparison of post-translational modification
sites, protein structure, and protein–protein binding sites between the parental and attenuated strains
identified three potential virulence genes: Nsp2, Nsp3, and S. The amino acid mutations in these
proteins not only altered their conformation but also affected the distribution of post-translational
modification sites and protein–protein interaction sites. Furthermore, three potential functional
mutation sites—P106S, A352T, and L472F, all located in the Nsp2 protein—were identified through
PROVEAN, PolyPhen, and I-Mutant. Overall, our findings suggest that Nsp2, Nsp3, and S proteins
may play a role in modulating IBV pathogenicity, with a particular focus on the significance of the
Nsp2 protein. This study contributes to our understanding of the molecular mechanisms underlying
IBV attenuation and holds promise for the development of safer live attenuated IBV vaccines using
reverse genetic approaches.

Keywords: IBV; attenuated vaccine; genomic analysis; bioinformatics; mutation; virulence genes
or sites
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1. Introduction

Infectious bronchitis (IB) is an acute and highly contagious disease caused by the in-
fectious bronchitis virus (IBV), affecting the respiratory, reproductive, nervous, and urinary
systems of chickens [1–3]. In the global poultry industry, IBV is one of the most important
viruses that seriously threatens the development of the industry [4,5]. A member of the
Gammacoronavirus family, IBV is an unsegmented, single-stranded positive-sense RNA
with a length of approximately 27.6 kb. The 3′ end of the genome encodes structural and
accessory proteins, including the spike (S), accessory proteins 3a and 3b, envelope (E),
membrane (M), 5a, 5b, and nucleocapsid (N) proteins. The 5′ end contains two overlapping
open reading frames, ORF1a and ORF1b, which together constitute about two-thirds of
the genome. ORF1a encodes polyprotein pp1a, while pp1ab is encoded by both ORF1a
and ORF1b. These polyproteins are subsequently cleaved by virus-encoded enzymes,
the papain-like proteinase (PLpro), and the 3C-like proteinase (3CLpro), into 15 nonstruc-
tural proteins (Nsp2–Nsp16) that play crucial roles in viral replication, transcription, host
infection, and immune evasion [6–11].

To protect chickens against IBV infection, both inactivated and live attenuated vaccines
are frequently used. Live attenuated vaccines, however, are preferred due to their higher
immunogenicity, capable of inducing both humoral and cellular immune responses. These
vaccines are typically obtained by serially passaging parental strains in SPF chicken em-
bryos until the desired non-pathogenicity and immunogenicity are achieved [12]. However,
this process is time-consuming, which is a significant limitation in the development of
vaccines against emerging mutant strains. In addition, the use of live attenuated vaccines
is constantly challenged by rapid viral variation, limited or poor cross-protection, and
reversion to virulence [13]. A clearer analysis and targeted modification of the genes
and sites associated with IBV virulence could significantly enhance the development and
effectiveness of IBV vaccines.

Previous studies have highlighted that among the IBV structural proteins, the S pro-
tein experiences the most mutations during the attenuation process, indicating its key role
in pathogenicity [14,15]. However, the pathogenicity of the Beau-R attenuated strain re-
mained unchanged when expressing the S protein of the M41 pathogenic strain, suggesting
that the S protein is not the sole contributor to IBV pathogenicity [16]. Conversely, the
pathogenic M41 strain expressing the replicase gene of the attenuated Beaudette strain
lost its pathogenicity, indicating that the replicase protein may be a determinant of IBV
pathogenicity [17]. Genome sequence alignment between parental and attenuated IBV
strains revealed multiple mutations in the replicase gene ORF1a, and the reverse genetic
system was used to construct recombinant viruses. It was found that the ORF1a gene of
IBV is a determinant of pathogenicity [18]. Additionally, studies have shown that deletions
of 3a, 3b, 5a, and 5b result in mutant viruses with an attenuated phenotype, suggesting that
accessory proteins are also involved in the regulation of viral pathogenicity [19,20].

The QXL87 live attenuated vaccine strain for infectious bronchitis, which belongs to the
GI-19 lineage [21], has been officially approved as the first vaccine for this lineage in China.
This strain was derived from the parental strain CK/CH/JS/2010/12 by continuous passage
in SPF chicken embryos. To elucidate the changes in genetic characteristics associated with
IBV attenuation, the whole genome of the parental strain JS/2010/12 and the attenuated
strain QXL87 were sequenced and analyzed in this study. Amino acids, structures, and
functional sites in viral proteins from both strains were compared, and three genes (Nsp2,
Nsp3, and S) with notable differences were identified. Furthermore, through analysis of the
impact of amino acid mutations on protein structure and stability, three functional mutation
sites (P106S, A352T, and L472F) were identified. These insights into potential virulence
genes and sites are crucial for the development of new, more effective IBV vaccines.



Animals 2024, 14, 1784 3 of 15

2. Materials and Methods
2.1. Viruses

The virulent JS/2010/12 strain was isolated by our laboratory in 2010 from chickens
with respiratory and renal disease. After culturing the strain in SPF chicken embryos for
5 generations, the parental strain JS/2010/12 (GenBank accession number PP100175), which
can stably replicate in chicken embryos, was obtained. The parental strain caused the partial
death of SPF chickens, with autopsy revealing inflammatory or caseous exudate in the
trachea and bronchus, enlarged kidneys with urate deposits, and signs of inflammation or
dysplasia in the ovaries [22,23]. The attenuated vaccine strain QXL87 (GenBank accession
number PP100176) was derived from the parental strain JS/2010/12 through 120 serial
passages in SPF chicken embryos. No clinical response was observed when QXL87 was
inoculated. Meanwhile, no microscopic changes were detected in tissue.

2.2. Next-Generation Sequencing (NGS)

The parental JS/2010/12 strain and the attenuated vaccine QXL87 strain were sepa-
rately inoculated into the allantoic cavity of 9-day-old SPF chicken embryos. After prop-
agation at 37 ◦C for 48 h, the allantoic fluid was collected, and the cellular debris was
removed by centrifugation at 5000× g for 10 min. The supernatant was then enriched
using a 100K Centrifugal Ultrafiltration Device (Pall Corporation, New York, NY, USA).
RNA was extracted from the supernatant using an Ultrapure RNA Kit (CWBIO, Taizhou,
China) following the manufacturer’s instructions. Subsequently, a double-stranded cDNA
library ranging from 250 to 500 bp was prepared using the TruSeq TM DNA Sample Prep
Kit (Illumina, San Diego, CA, USA). The constructed library was subjected to paired-end
(PE) sequencing on the NGS Illumina HiSeq2500 platform. The raw data were processed
using Fastp v 0.20.0 (https://github.com/OpenGene/fastp, accessed on 7 March 2023) to
eliminate sequencing adapters and low-quality reads with a quality score below Q20. Ribo-
somal RNAs and host read subtraction by read-mapping were accomplished with BBMAP
(https://github.com/BiolnfoTools/BBMap, accessed on 8 March 2023). De novo genome
assembly was carried out using SPAdes v3.14.1 (https://github.com/ablab/spades, ac-
cessed on 9 March 2023) to achieve the complete genome sequence. Finally, the assembled
reads were compared using the NCBI BLAST database. This experiment was performed
with the assistance of Tanpu Biotechnology Co., Ltd. (Shanghai, China).

2.3. Prediction of Protein Post-Translational Modification Sites

The post-translational modifications (PTMs) sites of Nsp2, Nsp3, Nsp4, S, 3a, E, N
and ORFX proteins from both parental and attenuated strains were individually pre-
dicted to assess the impact of amino acid mutations on their modifications. The online
analysis tools employed were as follows: NetPhos 3.1 (https://services.healthtech.dtu.
dk/services/NetPhos-3.1, accessed on 10 March 2024) for phosphorylation site predic-
tion, with a prediction score above 0.500 considered positive; NetNGlyc (https://services.
healthtech.dtu.dk/services/NetNGlyc-1.0/, accessed on 13 March 2024) and NetOGlyc
(https://services.healthtech.dtu.dk/services/NetOGlyc-4.0/, accessed on 22 March 2024)
for glycosylation site prediction; and CUCKOO (http://biocuckoo.cn, accessed on 17 April
2024) to predict protein methylation, lysine acetylation, and ubiquitination sites.

2.4. Homology Modeling

The automatic mode of SWISS-MODEL (https://swissmodel.expasy.org/, accessed on
30 December 2023) was employed to identify homologous sequences of the target proteins.
Proteins displaying high amino acid similarity and extensive coverage were chosen as
templates for homology modeling. The three-dimensional structure of the protein was
visualized using the PyMOL 3.0 system. To evaluate the structural changes caused by non-
synonymous substitutions, the root mean square deviation (RMSD) of relevant proteins
between parental and attenuated strains was calculated.

https://github.com/OpenGene/fastp
https://github.com/BiolnfoTools/BBMap
https://github.com/ablab/spades
https://services.healthtech.dtu.dk/services/NetPhos-3.1
https://services.healthtech.dtu.dk/services/NetPhos-3.1
https://services.healthtech.dtu.dk/services/NetNGlyc-1.0/
https://services.healthtech.dtu.dk/services/NetNGlyc-1.0/
https://services.healthtech.dtu.dk/services/NetOGlyc-4.0/
http://biocuckoo.cn
https://swissmodel.expasy.org/
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2.5. Prediction of Protein-Protein Binding Sites

The protein–protein binding sites of the parental and attenuated strains Nsp2, Nsp3,
Nsp4, S, 3a, E, and N proteins were predicted through the ScanNet online website (http:
//bioinfo3d.cs.tau.ac.il/ScanNet/, accessed on 20 April 2024). Following this, the influence
of amino acid mutations on protein–protein binding affinity was evaluated. ScanNet
(Spatio-Chemical Arrangement of Neighbors Network), a geometric deep learning model,
facilitates structure-based prediction of binding sites. By inputting the raw structural
file, ScanNet iteratively builds representations of atoms and amino acids based on the
spatio-chemical arrangement of their neighbors. These representations are then used to
predict the probability of amino acid involvement in binding sites [24,25].

2.6. Prediction of Potential Virulence Sites

In this study, the functional prediction of amino acid mutation sites was performed
using PROVEAN (http://provean.jcvi.org/seq_submit.php, accessed on 13 April 2024)
and Polyphen (http://genetics.bwh.harvard.edu/pph2/index.shtml, accessed on 13 April
2024). PROVEAN is designed to predict the effects of single or multiple amino acid substi-
tutions, insertions, and deletions. Variants with a score of −2.5 or below are considered
“deleterious” and those scoring above −2.5 are considered “neutral” mutations. Polyphen-
2 utilizes a machine-learning approach based on the naïve Bayes model to predict the
likelihood of amino acid mutations affecting protein structure and function. A threshold of
0.50 is used, with scores closer to 1.0 indicating a higher probability of influencing protein
function. Additionally, I-Mutant (http://folding.biofold.org/i-mutant/i-mutant2.0.html,
accessed on 16 April 2024) was used to predict the impact of amino acid mutations on
protein stability. DDG < 0 indicates decreased protein stability, and DDG > 0 indicates
increased protein stability.

3. Results
3.1. NGS Analysis

To investigate the changes during IBV attenuation, total RNA was extracted from
both the parental JS/2010/12 strain and the attenuated vaccine QXL87 strain for NGS
analysis. The parental strain generated 338,276 reads, while the attenuated strain generated
797,639 reads, with average sequencing depths of 6771.25× and 8058.06×, respectively
(Figure 1A,B). Excluding the polyA sequence, the genome sizes of the parental and attenu-
ated strains were 27,664 nt and 27,665 nt, respectively. Both genomes consisted of 5′ UTR,
ORF1a, ORF1b, S, 3a, 3b, E, M, ORFX, 5a, 5b, N, and 3′ UTR. The sequence identity between
the two strains reached 99.47%. In the attenuated strain, a total of 145 base substitutions
were identified across various regions, including 5′ UTR (4), Nsp2 (80), Nsp3 (50), Nsp4 (1),
Nsp9 (1), Nsp14 (1), S (5), 3a (1), E (1), and N (1). The mutation rates for the mentioned
genes were as follows: 0.76%, 4.00%, 1.05%, 0.06%, 0.30%, 0.06%, 0.14%, 0.57%, 0.31%, and
0.08% (Figure 1C). Furthermore, a nucleotide insertion was observed in the ORFX region.
Amino acid sequence alignment showed that 53 non-synonymous mutations resulted in
48 amino acid residue changes, distributed across Nsp2 (26), Nsp3 (14), Nsp4 (1), S (4), 3a
(1), E (1), and N (1). Additionally, a frameshift mutation in the ORFX protein resulted in the
addition of six amino acids. The distribution of amino acid differences between the parental
and attenuated strains is shown in Figure 1D. Notably, the Nsp2 gene had the highest
number and rate of nucleotide mutations, consequently causing the most significant amino
acid residue alterations.

http://bioinfo3d.cs.tau.ac.il/ScanNet/
http://bioinfo3d.cs.tau.ac.il/ScanNet/
http://provean.jcvi.org/seq_submit.php
http://genetics.bwh.harvard.edu/pph2/index.shtml
http://folding.biofold.org/i-mutant/i-mutant2.0.html
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Figure 1. Next-generation sequencing analysis of the parental and attenuated IBV strains.
(A) Sequencing depth for the IBV parental strain. (B) Sequencing depth for the attenuated IBV
strain. (C) Per genomic location with number and mutation rate of nonsynonymous and synonymous
mutations. The bar graph illustrates the number of mutations at each genomic location, with blue
bars representing synonymous mutations and red bars representing non-synonymous mutations.
Meanwhile, the line graph shows the mutation rates for genes, with blue lines indicating synonymous
mutation rates and red lines indicating non-synonymous mutation rates. (D) Distribution of amino
acid mutations across the parental and attenuated strains of IBV.

3.2. Difference Analysis of PTMs

PTMs are crucial for regulating the replication, infection, and pathogenicity of coro-
naviruses [26]. This study analyzed mutations in phosphorylation, methylation, lysine
acetylation, N-glycosylation, O-glycosylation, and ubiquitination sites across viral proteins
from both parental and attenuated strains. The analysis revealed PTM mutations in Nsp2,
Nsp3, S, E, and ORFX proteins following IBV attenuation. In the attenuated strain, the
phosphorylation sites 191T, 328S, and 447T of Nsp2 were absent, while new phosphoryla-
tion sites were discovered at positions 105S, 106S, 224S, 352T, 562S, and 611T. The protein
kinases associated with these phosphorylation site mutations included PKA (224S), PKC
(191T), PKG (447T), p38MAPK (352T), DNAPK (562S), CKI (328S), and CKII (328S, 611T).
Meanwhile, a new lysine acetylation site (110K) and an N-glycosylation site (178N) were
identified in the attenuated strain (Figure 2A). Compared with the parental strain, the
attenuated strain Nsp3 exhibited an increase in phosphorylation sites at 235P and 1570T,
along with a new lysine acetylation site at 206K, while five O-glycosylation sites (122T,
132T, 185S, 189T, and 518S) were absent (Figure 2B). The protein kinases responsible for
the phosphorylation site mutations in Nsp3 were PKC (235S) and CDC2 (1570T). The S
protein introduced two new phosphorylation sites, 67T and 120S, while losing the 548S
phosphorylation site (Figure 2C). Protein kinases PKC (67T, 120S) and CDC2 (548S) were
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implicated in these phosphorylation site mutations. Additionally, the E protein lost one
lysine acetylation site 71K (Figure 2D) and the ORFX protein lost two lysine acetylation
sites 92K and 93K (Figure 2E).
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Figure 2. Schematic diagram of PTM mutations of Nsp2 (A), Nsp3 (B), S (C), E (D), and ORFX
(E) proteins during IBV attenuation.

3.3. Difference Analysis of Protein Three-Dimensional Structure

Considering the amino acid mutations in Nsp2, Nsp3, Nsp4, S, 3a, E, and N or
additions in ORFX proteins during IBV attenuation, we further investigated their effect
on protein structure. The qualifying homology models were selected as templates and
the following regions of each protein were modeled: Nsp2 (14–597 aa), Nsp3 (337–501 aa,
504–804 aa), Nsp4 (419–513aa), S (21–1025 aa), 3a (9–46 aa), E (10–65 aa), and N (18–362 aa).
However, the structural model of ORFX could not be constructed due to the lack of a suitable
template in the database. By calculating the RMSD between parental and attenuated strains,
we found that amino acid mutations influenced the spatial conformation of Nsp2 (0.027),
Nsp3 (0.008/0.000), Nsp4 (0.005), S (0.002), and N (0.002) proteins (Figure 3A–E). The Nsp2
protein structure showed the most significant alterations due to amino acid mutations. This
observation was further supported by an overlap analysis of protein monomer structures.
Following IBV attenuation, a prominent change was detected at amino acid 565 of the
Nsp2 protein, which changed from a helical to a coiled structure (Figure 3A). To better
characterize the structural implications of amino acid mutations, these mutations were
localized on its three-dimensional structural model (Figure 3F–J).
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Figure 3. Three-dimensional structural analysis of proteins that changed between parental and
attenuated strains. The monomer structural overlap of Nsp2 (A), Nsp3 (B), Nsp4 (C), S (D), and N
(E) proteins between parental and attenuated strains. Cartoon model of Nsp2 (F), Nsp3 (G), Nsp4
(H), S (I), and N (J) proteins where the mutated amino acids are shown.

3.4. Difference Analysis of Protein–Protein Binding Sites

Protein–protein interactions play a crucial role in various cellular processes, including
signal transduction, cell growth, proliferation, and apoptosis. These interactions are mainly
determined by their binding affinities. Studying how amino acid substitutions affect
the binding capabilities of proteins with their interaction partners can provide valuable
insights into viral pathogenesis [27]. In this study, the ScanNet server was utilized to
perform a comparative analysis of protein–protein binding sites in parental and attenuated
strains of Nsp2, Nsp3, Nsp4, S, 3a, E, and N based on protein structures. The findings
revealed significant alterations in the protein–protein binding sites of Nsp2, Nsp3, and
S following IBV attenuation. Specifically, the protein binding affinity of amino acids 68,
104, 109, and 496–597 in the Nsp2 protein (Figure 4A), as well as amino acid 548 in the S
protein (Figure 4C), exhibited a notable increase. Conversely, the binding affinity of amino
acids 460, 466, and 467 in the Nsp3 protein decreased (Figure 4B). Further details on the
comparison of protein–protein binding sites for other proteins can be found in Figure S1.
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3.5. Prediction and Analysis of Virulence Sites on IBV Genome

Amino acid mutations might impact DNA transcription and translation, leading to
changes in protein structure and function [28]. The effects of amino acid mutations in
the viral genome on protein function were predicted using PROVEAN and PolyPhen
software. PROVEAN identified six deleterious mutation sites, while PolyPhen identified
ten damaging mutation sites. I-Mutant software was used to evaluate the impact of amino
acid mutations on protein stability. Out of 48 mutation sites analyzed, 37 were found to
decrease protein stability (Table 1). A Venn diagram analysis pinpointed three significant
functional mutation sites: P106S (Nsp2), A352T (Nsp2), and L472F (Nsp2) (Figure 5A).
Three-dimensional protein structure comparison showed that all three functional mutation
sites were involved in the structural changes in the Nsp2 protein, where the 565th amino
acid changed from a helical to a coiled structure (Figure 5B–D). Further analysis revealed
that the P106S mutation introduced new protein phosphorylation (105S and 106S) and
lysine acetylation sites (110 K) (Figure 5E) and significantly enhanced the protein binding
affinities at amino acid positions 68, 104, 106, and 109 (Figure 5G). The A352T mutation
introduced a new phosphorylation site (352T) and reduced the protein binding affinity at
amino acid 470 (Figure 5F,H). The L472F mutation enhanced the protein binding affinity at
amino acids 569, 571, and 572 (Figure 5I).
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Table 1. Prediction of functional amino acid mutation sites on IBV genome.

Protein Name Mutation Site PROVEAN PolyPhen I-Mutant (DDG)

Nsp2 A9V Neutral Neutral −0.9 KJ/mol
V18I Neutral Neutral −0.39 KJ/mol

P106S Deleterious Damaging −1.42 KJ/mol
H120Q Neutral Neutral −0.37 KJ/mol
V153I Neutral Neutral −0.16 KJ/mol
V155I Neutral Neutral −0.19 KJ/mol
G180S Neutral Neutral −1.33 KJ/mol
T191A Neutral Neutral −1.31 KJ/mol
A197S Deleterious Neutral −0.29 KJ/mol
G231E Neutral Damaging −0.09 KJ/mol
S328P Neutral Neutral −0.91 KJ/mol
A352T Deleterious Damaging −1.24 KJ/mol
A418V Neutral Damaging 0.11 KJ/mol
K448E Neutral Neutral 0.49 KJ/mol
L472F Deleterious Damaging −0.24 KJ/mol
I487V Neutral Neutral −0.95 KJ/mol
A492V Neutral Neutral −0.41 KJ/mol
L560I Neutral Neutral 0.41 KJ/mol
F562S Neutral Neutral −1.35 KJ/mol
L575I Neutral Neutral −0.51 KJ/mol
V590I Neutral Neutral −1.24 KJ/mol

Q591H Deleterious Neutral −0.92 KJ/mol
I601V Neutral Neutral −1.93 KJ/mol
I611T Neutral Neutral −2.39 KJ/mol
V612I Neutral Neutral 0.27 KJ/mol
P616L Neutral Neutral −0.16 KJ/mol

Nsp3 L16P Neutral Neutral −1.01 KJ/mol
D67G Neutral Damaging 0.23 KJ/mol
D115E Neutral Neutral −0.2 KJ/mol
D128E Neutral Neutral 0.76 KJ/mol
Q138E Neutral Neutral 0.55 KJ/mol
D142G Neutral Neutral −0.01 KJ/mol
Q205R Neutral Neutral −0.73 KJ/mol
P235S Neutral Neutral −0.29 KJ/mol
I242V Neutral Neutral −1.18 KJ/mol
T296I Neutral Neutral 0.82KJ/mol
E298K Neutral Neutral −0.22 KJ/mol
E493A Neutral Neutral −0.9 KJ/mol
I554T Neutral Neutral −2.22 KJ/mol

V1577I Neutral Neutral −0.31 KJ/mol
Nsp4 D490N Neutral Damaging −2.88 KJ/mol

S E64Q Neutral Neutral −0.48 KJ/mol
I125T Neutral Neutral −1.08 KJ/mol
S548R Neutral Damaging 0.78 KJ/mol
Y826D Neutral Neutral −1.35 KJ/mol

3a Y8F Neutral Neutral 0.78 KJ/mol
E R70I Neutral Damaging −0.52 KJ/mol
N L62F Neutral Neutral 1.11 KJ/mol
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4. Discussion

Serial passage of parental IBV in SPF chicken embryos is a common method for
developing attenuated vaccines [29]. In our laboratory, this method was successfully
utilized to obtain the live attenuated vaccine strain QXL87 for the QX type, which has
since become one of the most widely used live vaccines in China. However, the molecular
mechanism behind its attenuation remains unclear. In this study, the genome sequences
of the parental strain JS/2010/12 and its attenuated strain QXL87 were compared and
analyzed. The results showed that mutations were distributed across the entire genome,
affecting Nsp2, Nsp3, Nsp4, S, 3a, E, N, and ORFX proteins. Subsequently, we compared the
sequence changes in our results to those reported in other studies and found no universal
differences in the amino acid mutations responsible for IBV attenuation [30,31]. This implies
that the attenuation of IBV may be caused by multiple amino acid mutations.
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In this study, it was found that 90.34% of all amino acid substitutions in the entire
genome were located in the ORF1a gene, indicating the crucial role of ORF1a in IBV
attenuation. Similar findings were observed in a comparative analysis of pathogenic
and attenuated vaccine strains of Ark DPI strains [15]. Moreover, the key role of the YN
strain ORF1a gene in IBV pathogenicity has been determined based on a reverse genetic
system [18]. By analyzing the position and number of amino acid mutations in ORF1a, it
was discovered that there were 26, 14, and 1 amino acid substitutions in the Nsp2, Nsp3,
and Nsp4 proteins, respectively, between the parental strain and the attenuated strain.
Previous studies have also reported amino acid substitutions in these proteins [32,33].
One study pointed out that the Nsp3 protein showed the most amino acid differences
during the attenuation of Ark, GA98, and Mass41 strains [34]. However, in our study,
although Nsp3 had a large number of amino acid mutations, Nsp2 was found to exhibit
the most amino acid differences during viral attenuation. Importantly, this phenomenon
was reported for the first time in our related study. Besides ORF1a, amino acid mutations
were also identified in the S, 3a, E, N, and ORFX proteins in this study. Previous research
has shown the involvement of S, 3a, E, and N proteins as virulence genes in regulating
IBV pathogenicity [19,20,35,36]. However, the role of ORFX in viral pathogenicity remains
unclear. Not all IBVs contain this ORF [37], and its generation of mutations during IBV
virulence was reported for the first time in our study. We propose that this protein may
play a role in regulating viral pathogenicity, but further experiments are needed to confirm
this hypothesis.

PTMs alter amino acid side chains without changing amino acid sequences, serving
as subtle mechanisms for maintaining cellular protein homeostasis and enabling complex
functions. Common PTMs include phosphorylation, glycosylation, methylation, acetylation,
and ubiquitination. During coronavirus–host interactions, viruses promote viral proliferation
and immune evasion through PTMs [38]. In this study, phosphorylation site mutations were
observed in Nsp2, Nsp3, and S proteins after IBV attenuation. Given the critical role of phos-
phorylation in coronavirus replication, transcription, and assembly [39–41], we hypothesize
that the introduction of phosphorylation sites in these proteins could enhance viral prolifera-
tion. The N-glycosylation of the coronavirus Nsp4 protein plays a crucial role in the formation
of double-membrane vesicles (DMVs) [42]. In this study, a new N-glycosylation site was
introduced in the Nsp2 protein, which is known to be recruited to the DMV and convoluted
membrane (CM) during viral replication. We speculate that the introduction of this site could
enhance viral replication. Previous research has shown that recombinant mouse hepatitis
virus (MHV) containing O-glycosylated M protein induces higher levels of type I interferon
compared to MHV with non-glycosylated M protein [43]. Following IBV attenuation, our
study uncovered a deletion of an O-glycosylation site within the PLPro structural domain
of the Nsp3 protein, which has been shown to have interferon antagonistic functions [44].
We speculate that the deletion of O-glycosylation could aid the virus in escaping the innate
immune response, thereby promoting viral infection. In addition, this study identified acetyla-
tion site mutations in Nsp2, Nsp3, E, and ORFX proteins. Previous research has shown that
pp1ab of MERS-CoV employs the host acetylation mechanism to regulate enzymatic activity
for optimal replication [45]. Therefore, we hypothesized that acetylation sites introduced in
the Nsp2 and Nsp3 proteins may enhance viral replication. Acetylation of K53 and K63 at
the C-terminus of the SARS-CoV-2 E protein enhanced its interaction with BRD4, thereby
impacting the host immune response [46]. In our study, the acetylation sites at K53 and K63
were not found on the C-terminus of the IBV E protein, while an acetylation site at K71 was
identified. Interestingly, this site was lost during IBV attenuation. We speculate that this
mutation may impact the regulation of immune responses. Due to the lack of studies on the
ORFX protein, we are unable to ascertain the effect of mutations in the acetylation site of this
protein on the regulation of viral pathogenicity.

Alterations in the structure of a protein can often impact its function [47]. In this study,
the spatial conformations of Nsp2, Nsp3, Nsp4, S and N proteins were altered, suggesting
a potential relationship between these proteins and IBV pathogenicity. Subsequently,
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we further analyzed the effect of amino acid mutations on protein–protein binding sites
based on the three-dimensional structure of the proteins. The protein binding affinity
of Nsp2 protein 496–597aa was found to be significantly enhanced, possibly due to the
alteration of amino acid 565 from a helical to a random coil structure. Previous studies
have demonstrated that Nsp2 proteins interact with various host proteins and play a role in
regulating viral replication, transcription, and immune response [48–50]. We supposed that
changes in Nsp2 protein structure and protein binding affinity are important regulators of
viral pathogenicity. The altered the protein binding affinity of the Nsp3 protein occurring
within the macrostructural domain. This domain can influence viral pathogenesis and
immune regulation by interacting with other proteins [51]. Reduced protein binding affinity
in this domain may alter protein interactions and thereby affect the regulation of viral
pathogenicity by Nsp3 proteins. Additionally, our study identified a notable increase in
protein binding affinity at amino acid 548 of the S protein, attributed to the S548R mutation.
This mutation could potentially influence the spatial conformation of the protein through
phosphorylation modifications, thereby changing its ability to interact with other molecules.
The host proteins found to interact with S proteins are primarily related to components
of the innate immune pathway, such as cytokines and chemokines [52]. We speculated
that changes in the interaction site of the IBV S protein could impact its function in the
regulation of innate immunity.

In this study, the amino acid mutations occurring in Nsp2, Nsp3, and S affected not
only the spatial conformation of the proteins but also the distribution of post-translational
modification sites and protein–protein binding sites. We hypothesized that they are impor-
tant genes involved in the regulation of viral pathogenicity. The involvement of these three
proteins as virulence factors in the regulation of pathogenicity in other coronaviruses has
been demonstrated [53,54]. However, the role of the other two proteins, except for the S
protein [20], in the regulation of IBV pathogenicity needs to be further verified by reverse
genetic systems.

Amino acid mutations have the potential to impact protein function and consequently
viral pathogenicity. Computer simulation methods provide an effective means of identify-
ing deleterious mutations in specific genes [55]. In this study, functional amino acid muta-
tion site prediction was performed using three software packages: PROVEAN, PolyPhen,
and I-Mutant. Since these methods are both independent and complementary to each other,
a comprehensive evaluation of these prediction methods was conducted to minimize dis-
crepancies in the results. Three functional mutation sites were finally screened, which were
P106S (Nsp2), A352T (Nsp2), and L472F (Nsp2). Notably, all three mutations were found
in Nsp2. PCR amplification and Sanger sequencing were conducted on the Nsp2 genes of
JS/2010/12 and QXL87 strains to reconfirm the presence of these important mutation sites.
Further analysis indicated that these mutations could alter protein structure and biological
functions by affecting post-translational modifications or protein–protein interactions. This
finding further supports the hypothesis that Nsp2 plays a critical role as a virulence factor
in regulating IBV pathogenicity. Despite providing insights into the damaging effects of
amino acid mutations, additional biological validation through investigating protein func-
tion or creating mutant viruses using reverse genetic systems is essential to comprehend
their specific roles and impact on viral pathogenicity.

5. Conclusions

In conclusion, this study obtained the whole-genome sequences of the parental
JS/2010/12 strain and the attenuated vaccine QXL87 strain and identified several amino
acid mutations in the proteins. The amino acid mutations in Nsp2, Nsp3, and S proteins
not only altered the spatial conformation of the proteins but also affected the distribution of
post-translational modification sites and protein–protein interaction sites. Therefore, it was
hypothesized that Nsp2, Nsp3, and S proteins play crucial roles as virulence genes in alter-
ing viral pathogenicity. Furthermore, three potential virulence sites, P106S (Nsp2), A352T
(Nsp2), and L472F (Nsp2), were identified by bioinformatics software. These findings
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provide a theoretical basis for investigating the molecular mechanisms of IBV attenuation
and offer valuable insights for the development of innovative IBV vaccines.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ani14121784/s1. Figure S1: Prediction and comparison results of
protein–protein binding sites in Nsp3 (A), Nsp4 (B), 3a (C), E (D), and N (E) protein of parental and
attenuated strains.
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