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Received: 30 April 2024

Revised: 25 May 2024

Accepted: 27 May 2024

Published: 29 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antibiotics

Perspective

Implications of Artificial Intelligence in Addressing
Antimicrobial Resistance: Innovations, Global Challenges,
and Healthcare’s Future
Francesco Branda 1,*,† and Fabio Scarpa 2,*,†

1 Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma,
00128 Rome, Italy

2 Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
* Correspondence: f.branda@unicampus.it (F.B.); fscarpa@uniss.it (F.S.)
† These authors contributed equally to this work.

Abstract: Antibiotic resistance poses a significant threat to global public health due to complex
interactions between bacterial genetic factors and external influences such as antibiotic misuse.
Artificial intelligence (AI) offers innovative strategies to address this crisis. For example, AI can
analyze genomic data to detect resistance markers early on, enabling early interventions. In addition,
AI-powered decision support systems can optimize antibiotic use by recommending the most effective
treatments based on patient data and local resistance patterns. AI can accelerate drug discovery by
predicting the efficacy of new compounds and identifying potential antibacterial agents. Although
progress has been made, challenges persist, including data quality, model interpretability, and
real-world implementation. A multidisciplinary approach that integrates AI with other emerging
technologies, such as synthetic biology and nanomedicine, could pave the way for effective prevention
and mitigation of antimicrobial resistance, preserving the efficacy of antibiotics for future generations.

Keywords: artificial intelligence; antibiotic resistance; machine learning; genomic analysis; data quality;
interdisciplinary collaboration; decision support systems; antibiotic discovery; model interpretability

1. Introduction

Antibiotic resistance stems from a complex interplay between intrinsic bacterial biol-
ogy and external influences related to human activities (Figure 1). Understanding these
causes is crucial for developing effective strategies against it. Resistance primarily arises
from bacterial adaptation and evolution in response to excessive and improper antibiotic
use [1]. This is driven by factors such as inappropriate administration in human and
veterinary medicine, noncompliance with medical prescriptions, and widespread use in
intensive farming, as well as inadequate hygiene in healthcare settings. The intrinsic ability
of bacteria to mutate rapidly and transfer resistance genes among themselves through
mechanisms such as transformation, transduction, and conjugation further contributes to
its spread [2]. Antibiotic resistance poses a significant threat to global public health and
healthcare systems, compromising the effectiveness of antibiotic treatments and increasing
morbidity and mortality associated with bacterial infections. Infections caused by resistant
bacteria require longer and more expensive treatments, escalating healthcare costs and
impeding patient recovery. Moreover, resistance can prolong hospital stays, leading to over-
crowding and increasing the risk of nosocomial infection transmission. This global crisis
jeopardizes the treatment of various diseases, imperiling millions of lives and necessitating
urgent action [3]. Indeed, formerly manageable illnesses such as pneumonia, urinary tract
infections, and skin infections now require more aggressive and costly treatments due to
antibiotic resistance [4]. The effectiveness of antibiotics in critical medical procedures such
as surgeries and organ transplants is compromised as well.
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Figure 1. Key causes of antibiotic resistance: over-prescribing, patients not finishing treatment, overuse
in livestock and fish farming, poor infection control in hospitals, lack of hygiene and sanitation, and
lack of new antibiotics development. Source: WHO, available at https://www.who.int/europe/multi-
media/item/causes-of-antibiotic-resistance (accessed on 25 May 2024).

To effectively address the growing threat of antibiotic resistance, emerging technolo-
gies such as artificial intelligence (AI) offer unprecedented opportunities to improve un-
derstanding and response to this phenomenon [5]. AI is revolutionizing the process of
drug discovery and development, enabling the efficient exploration of vast virtual chemical
spaces and accelerating the identification of new potentially therapeutic molecules [6,7].
Machine learning and deep learning algorithms can analyze huge amounts of data, identi-
fying complex patterns and filtering candidate molecules based on desirable properties [8].
One of the most promising approaches is the computational design of new antibiotics [9],
in which machine learning models analyze the molecular structures of existing antibiotics
and their protein targets to identify potential modifications that can overcome bacterial
resistance mechanisms [10]. In addition, AI can be used to identify new therapeutic targets
by exploiting the growing genomic and transcriptional data on resistant bacteria. Despite
the challenges related to the need for high-quality data and experimental validation, the
integration of AI into new drug research offers significant potential for combating antibiotic
resistance [11]. Despite the many opportunities offered by AI, it is important to recognize
that its integration into new drug research still presents significant challenges. In addition
to the need for high-quality data and experimental validation of computational results,
the transparency and interpretability of machine learning algorithms remain a priority to
ensure the safety and efficacy of newly developed drugs [12].

Veterinary medicine faces similar challenges, impacting livestock, companion animals,
and wildlife [13]. The connection between human and animal health is undeniable, with
the reduced effectiveness of antibiotics against resistant bacteria presenting obstacles in
the management and containment of infectious diseases among livestock, companion
animals, and wildlife [14]. Epidemiological trends indicate a steady rise in infections
caused by resistant bacteria over recent decades, making antibiotic resistance a major global
health threat. This paper examines the fundamental aspects of antimicrobial resistance
(AMR) and the role of AI in addressing AMR, highlighting the innovative applications,
current challenges, and future prospects of this emerging technology in pharmaceutical
and healthcare research. Specifically, Section 2 describes how genetic mutations in bacteria,
which alter antibiotic targets or uptake/expulsion mechanisms, are a major cause of the
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emergence of resistance. Section 3 illustrates the crucial role of horizontal gene transfer
in the rapid spread of resistance genes among bacterial populations through mechanisms
such as conjugation, transformation, and transduction. Section 4 delves into the importance
of plasmids and other mobile genetic elements in carrying and disseminating antibiotic
resistance genes among bacteria. Section 5 describes how AI can analyze large volumes
of data, such as microscopic images of bacterial cultures and genomic data, to rapidly
identify markers of antibiotic resistance. Section 6 illustrates the potential of AI-based
decision support systems to guide physicians’ antibiotic prescribing by analyzing clinical
data and microbial profiles of patients. Section 7 examines the application of AI in the
process of discovering new antibiotics, from virtual screening of chemical compounds to
de novo design of molecules and optimization of candidates through structure–activity
relationship analysis. Finally, Section 8 concludes the paper, emphasizing that AMR
requires a multidisciplinary approach. It is critical to integrate the understanding of
molecular mechanisms with the development of innovative strategies in order to preserve
the efficacy of antibiotics. Without effective interventions, future projections suggest a
dramatic increase in difficult-to-treat infections and mortality rates. Therefore, adopting
preventive and control measures to contain the spread of antibiotic resistance and preserve
the effectiveness of antibiotics for future generations is imperative.

2. Genetic Mutations Associated with Antibiotic Resistance

Genetic mutations represent one of the primary causes of the emergence of antibiotic
resistance, contributing to genetic diversification and bacterial survival in the presence of
antimicrobial agents [15]. These mutations can affect a wide range of genes, including those
involved in antibiotic action mechanisms and those related to their penetration into bacte-
rial cells, efflux, or inactivation [16]. One of the most common ways for bacteria to develop
resistance to antimicrobials is represented by mutations in the antibiotic target genes [17].
For instance, in Gram-positive bacteria, mutations in genes encoding penicillin-binding pro-
teins (PBPs) can alter the structure of target proteins, reducing the antibiotic’s affinity for its
binding site and rendering the bacterium resistant to its action. Similarly, in Gram-negative
bacteria, mutations in genes encoding porins, the channels for antibiotic entry into the
bacterial cell, can reduce the effectiveness of the antibiotic in crossing the outer membrane
and reaching its site of action [18]. Mutations in genes involved in antibiotic transport
and efflux mechanisms can influence the bacterium’s ability to absorb the antibiotic from
the surrounding environment or to expel it once absorbed [19]. For example, mutations
in genes encoding efflux pumps can increase the activity of these proteins, allowing the
bacterium to expel the antibiotic before it can exert its antibacterial effect [20]. Additionally,
mutations in genes encoding nutrient transporters can indirectly affect antibiotic absorp-
tion by altering the composition and permeability of the bacterial cell membrane [21]. In
antibiotic inactivation systems, mutations can allow some bacteria to develop resistance
to antibiotics through mutations in genes encoding enzymes capable of inactivating the
antibiotic before it can exert its antibacterial effect. For example, Gram-negative bacteria
such as Escherichia coli can develop resistance to penicillin through mutations in genes
encoding beta-lactamases, enzymes that degrade the beta-lactam ring of the antibiotic,
rendering it ineffective in binding to PBPs and blocking cell wall synthesis [22]. In general,
genetic mutations represent an adaptive response of bacteria to antibiotics, allowing them
to survive and proliferate in the presence of antimicrobial selective pressures. The diversity
and plasticity of the bacterial genome provide multiple evolutionary pathways for antibi-
otic resistance development, emphasizing the importance of a thorough understanding of
the underlying genetic mechanisms to effectively address this growing issue.

3. Horizontal Transfer of Resistance Genes among Bacteria

Horizontal gene transfer (HGT) stands as a pivotal mechanism in the dissemination
of antibiotic resistance among bacterial populations [23]. Unlike vertical transmission,
which involves the transfer of genetic material from parent to offspring, HGT allows for
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the exchange of genetic information between bacteria of different species or strains. This
phenomenon significantly contributes to the rapid spread and acquisition of antibiotic resis-
tance traits, posing a formidable challenge to antimicrobial therapy and public health [24].
Conjugation, one such mechanism, involves the direct transfer of genetic material through
physical contact between donor and recipient cells [25]. Conjugation is facilitated by con-
jugative plasmids, which are extrachromosomal DNA molecules capable of self-replication
and transfer between bacterial cells [26]. These plasmids often carry genes encoding antibi-
otic resistance determinants, such as beta-lactamases, efflux pumps, or target-modifying
enzymes. Accordingly, conjugative plasmids can transfer not only resistance genes but
also virulence factors and other adaptive traits, further complicating the management of
bacterial infections. Another mechanism of HGT is transformation, wherein bacteria take
up free DNA molecules released into the environment by lysed cells or during cellular
degradation [27]. This process allows bacteria to acquire new genetic material, including
antibiotic resistance genes, from surrounding microbial communities. Transformation is
particularly relevant in natural environments, where bacterial populations are exposed to
diverse genetic pools and selective pressures, fostering the exchange of genetic information
and the emergence of novel resistance phenotypes. Furthermore, bacteriophages, which
are viruses that infect bacteria, play a crucial role in HGT through a process known as
transduction. During transduction, bacteriophages inadvertently package bacterial DNA
fragments, including antibiotic resistance genes, into their viral capsids during the lytic
cycle [28]. Upon infecting new bacterial hosts, these phages inject their genetic cargo,
thereby transferring resistance traits between bacteria [29]. The widespread occurrence
of HGT underscores its significance in shaping bacterial evolution and adaptation to en-
vironmental challenges, including antibiotic exposure. By promoting genetic diversity
and facilitating the acquisition of adaptive traits, HGT enables bacteria to rapidly respond
to selective pressures and overcome antimicrobial interventions [30]. Unfortunately, the
rampant dissemination of antibiotic resistance genes through HGT poses a serious threat to
public health, complicating treatment strategies and limiting the effectiveness of available
antibiotics. In addition, Outer Membrane Vesicles (OMVs) are emerging as a pathway for
the transfer of genetic material and proteins that plays a significant role in the spread of
antibiotic resistance. In particular, Neisseria gonorrhoeae has demonstrated the ability to
exploit these structures to transfer its resistance genes, thereby contributing to the rapid
dissemination of antibiotic-resistant strains. OMVs, which are small membrane sacs re-
leased by bacterial cells, can contain a variety of biologically active molecules, including
antibiotic resistance genes. This mechanism of gene transfer provides an additional avenue
through which pathogens can acquire and spread antibiotic resistance [31].

4. Role of Plasmids and Mobile Genetic Elements in Resistance Spread

The role of plasmids and mobile genetic elements in spreading antibiotic resistance is
crucial in the epidemiology and evolution of bacterial resistance to antibiotics. Plasmids
are small extrachromosomal DNA fragments that are primary vehicles for transferring
antibiotic resistance genes between bacteria [32]. These genetic elements can replicate
autonomously within bacterial cells, and are transmitted through processes such as conju-
gation, transformation, and transduction [33]. Additionally, mobile genetic elements such
as transposons, integrons, and phages significantly contribute to resistance dissemination.
Transposons move within the bacterial genome, carrying resistance genes, while integrons
capture and integrate new resistance genes, allowing rapid acquisition of new determi-
nants. Phages are viruses that infect bacteria; they can transfer resistance genes during
infection cycles, spreading resistance across strains and species. The interaction between
plasmids, transposons, integrons, and phages creates a dynamic genetic environment fos-
tering the emergence and spread of antibiotic resistance. This genetic flexibility enables
bacteria to quickly adapt to antibiotic pressures, posing a serious threat to public health.
Understanding the role and impact of these elements is essential for developing strategies
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to control and mitigate antibiotic resistance while ensuring the efficacy of antibiotics for
future generations.

5. Artificial Intelligence-Based Diagnostic Tools for Early Detection of
Antibiotic Resistance

Antibiotic resistance represents one of the greatest challenges to global public health,
as it reduces the effectiveness of antibiotic treatments and increases the risk of difficult-to-
treat infections. In this context, artificial intelligence (AI)-based diagnostic tools can analyze
large volumes of data, often with greater accuracy than humans, enabling faster and more
targeted diagnoses. One of the main applications of AI in the diagnosis of antibiotic
resistance is the analysis of microscopic images. Machine learning algorithms can be
trained to recognize specific features in images [34] of bacterial cultures that are indicative
of antibiotic resistance. For example, a study conducted by Hayashi et al. [35] focused on
using Convolutional Neural Networks (CNNs) to identify drug-resistant bacterial cells in
transmission electron microscope (TEM) images without the need for antibiotic exposure.
Their study revealed that drug-resistant strains maintain morphological changes even in the
absence of drugs, suggesting a link between genetic changes during the acquisition of drug
resistance and morphological changes. CNNs and Support Vector Machines (SVMs) have
been widely explored for their ability to identify complex patterns in microbiological and
genetic data [36,37], as shown in Figure 2, which schematically illustrates the use of confocal
Raman microscopy techniques for spectral analysis and classification of antibiotic-resistant
bacteria using a Residual Neural Network model (ResNet).

Figure 2. Schematic overview of confocal Raman microscopy techniques, from sample preparation to
spectral analysis and construction of the ResNet taxonomic model [37]. (A) illustrates the experimental
setup with a confocal Raman microscope analyzing a bacterial sample, showing the various types
of scattering and fluorescence phenomena that can be observed, while (B) presents a diagram
of the vibrational energy levels and electronic states involved in Raman scattering phenomena,
with a typical Raman spectrum resulting. Using a one-dimensional residual network with 25 total
convolutional layers, Raman spectra are analyzed to predict the existence of ARGs and virulence
genes or drug-resistant phenotypes.

A significant example is the use of deep learning algorithms to rapidly analyze an-
tibiotic susceptibility testing (AST) [38], which can reduce the time needed to determine
resistance from days to a few hours. Recurrent Neural Networks (RNNs) contribute sig-
nificantly to antibiotic resistance diagnostics. For example, RNNs excel at processing
sequential data, making them valuable in time series analysis of antibiotic treatments and
bacterial growth patterns [39]. Genomic data analysis represents another frontier where
AI is demonstrating significant impact. Machine learning algorithms, ranging from Deci-
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sion Tree (DT) to Gradient Boosting Machines (GBMs), play a key role in the discovery of
genetic markers associated with antibiotic resistance [40]. For example, Arango-Argoty
et al. [41] developed DeepARG, a novel deep learning approach designed to predict ARGs
from metagenomic data, which consists of two models to respond to different annotation
strategies, i.e., DeepARG-SS for short read sequences and DeepARG-LS for full gene length
sequences. As demonstrated in Figure 3, DeepARG models tend to perform better than
the best-hit approach for most categories, which often results in a high false-negative
rate, demonstrating the effectiveness of deep learning in identifying resistance genes from
genomic data. In addition to DeepARG, other machine learning approaches, such as Ran-
dom Forest (RF), have been employed to analyze genomic data for antibiotic resistance
genes [42]. These models leverage large-scale genomic databases to identify genetic traits
associated with resistance, providing valuable insights into the mechanisms that drive
antibiotic resistance. AI techniques are increasingly being applied to predict bacterial phe-
notypes from genomic data, including antibiotic susceptibility profiles [43]. By integrating
genomic information into machine learning models, researchers can predict the likelihood
of bacterial strains exhibiting resistance to specific antibiotics, facilitating more informed
therapeutic decisions in clinical settings. Despite these advances, challenges persist in
applying AI to the diagnosis of antibiotic resistance. A significant obstacle is the availability
of high-quality well-annotated data, which is essential for effectively training machine
learning algorithms [44].

ARDB databases were used as features. The DeepARG-
LS model shows similar results, with an overall precision
of 0.99 and recall of 0.99 for predicting different categor-
ies of ARGs. Better performance in DeepARG-LS than
DeepARG-SS is expected, because longer sequences
contain more information than short reads (Fig. 6).
Particularly DeepARG-LS achieved a high precision
(0.97 ± 0.03) and an almost perfect recall (0.99 ± 0.01)
for the antibiotic categories that were highly represented

in the database, such as bacitracin, beta lactamase,
chloramphenicol, and aminoglycoside (See Fig. 6b and
Additional file 3: Table S3 for details). Comparatively,
the best hit approach achieved a perfect precision (1.00
± 0.00) but a much lower recall (0.48 ± 0.2) for these
categories. Similar to DeepARG-SS, DeepARG-LS did not
perform well for categories with few genes, such as sul-
fonamide and mupirocin (See Additional file 3: Table S3
for details).

Fig. 6 a Performance comparison of the DeepARG models with the best hit approach using precision, recall, and F1-score as metrics for the training
and testing datasets. The MEGARes bars corresponds to the performance of DeepARG-LS using the genes from the MEGARes database. b Precision
and recall of DeepARG models against the best hit approach for each individual category in the testing dataset. *UNIPROT genes are used for testing
and not all the ARG categories have genes from the UNIPROT database

Arango-Argoty et al. Microbiome  (2018) 6:23 Page 8 of 15

Figure 3. (a) Performance comparison of DeepARG models with the best-hit approach using precision,
recall, and F1-score as metrics for the training and test datasets. MEGARes bars represent the performance
of DeepARG-LS using genes from the MEGARes database. (b) Precision and recall of DeepARG models
compared with the best hit approach for each individual category in the test dataset [41].

Although there is an abundance of data in various forms, including genomic sequences,
medical records, and bacterial culture images, much of these data lack adequate annotation and
standardization. This deficiency prevents the development of accurate and reliable artificial
intelligence models for predicting antibiotic resistance. AI systems must be able to handle the
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incomplete and/or noisy data commonly encountered in the real clinical world [45]. Variability
in data quality, sample collection procedures, and laboratory techniques can introduce bias
and confounding factors that can affect the performance of AI models. Moreover, ensuring the
robustness and interpretability of AI systems remains a critical concern [46]. AI algorithms are
inherently complex, which makes it difficult to understand how they arrive at their predictions,
especially in medical settings, where interpretability is critical to gaining the trust of physicians
and patients. Addressing these challenges requires interdisciplinary collaboration among
clinicians, data scientists, and experts in the field. Efforts to curate and annotate high-quality
datasets are essential for training robust AI models that can accurately predict antibiotic
resistance. In addition, research on explainable AI techniques is critical to improving the
interpretability of AI systems, enabling clinicians to understand and trust the decisions made
by these models [47]. Advances in data preprocessing and algorithm development are needed
to ensure that AI systems can effectively handle noisy and incomplete data in order to ultimately
improve their performance in real-world clinical settings.

6. Optimizing Antibiotic Use through Artificial Intelligence-Guided Decision
Support Systems

Artificial intelligence-driven decision support systems (AI-DSS) represent a promising
approach for optimizing antibiotic use in healthcare settings [48]. These systems leverage
advanced algorithms to analyze large amounts of patient data, including medical records, labo-
ratory results, and microbial profiles, thereby supporting healthcare professionals in making
prescribing decisions for antibiotics. Figure 4 describes the architecture and operational flow
of a clinical decision support system (CDSS) that supports clinicians in antibiotic prescribing
decisions by integrating empirical data, guidelines, and clinical trials through a dedicated user
interface. The process begins with suspects, i.e., patients with suspected bacterial infections.
Information about these patients is then relayed to physicians. The central layer of the model is
the human–computer interface (HCI) layer, which serves as the point of interaction between
the system and the users (physicians). This level collects empirical diagnoses and biochemical
indicators related to patients, and provides advice on antibiotic prescribing. The HCI layer is
supported by two underlying layers: (i) the computing rules layer, which performs matching
and retrieval of information from clinical drug guidelines and relevant clinical evidence, and
(ii) the information resources layer, which actually contains the guidelines and clinical
evidence. The output of the system consists of treatment plans for the patients generated
based on the collected information and the rules implemented in the CDSS.

Figure 4. Example of an operational model of a clinical decision support system for antibiotic prescribing [49].
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A study by Lee et al. [50] demonstrated the feasibility of using machine learning
models to predict bacterial or viral infections based on clinical symptoms and laboratory
markers, thereby helping clinicians make informed antibiotic prescribing decisions. In
addition to hospital-based applications, AI-DSS has the potential to extend antimicrobial
stewardship efforts to community-based healthcare providers such as primary care physi-
cians, urgent care clinics, and long-term care facilities [51]. By leveraging telemedicine
platforms, mobile applications, and other digital health technologies, AI-DSS can reach
a wider audience and empower patients and healthcare providers in decisions regarding
antibiotic use [52]. Moffa et al. [53] evaluated the impact of implementing an antimicrobial
stewardship program (ASP) in a community teaching hospital on healthcare-associated
Clostridium difficile infection (HA-CDI) rates and high-risk antibiotic use. Moreover, AI-DSS
can support early diagnosis and selection of appropriate antibiotic treatment, improving
clinical outcomes for patients. Such a system was described by Lauritsen et al. [54], who
presented a deep learning system for early sepsis detection that learns key characteristics
and interactions directly from raw event sequence data, eliminating the need for labor-
intensive feature extraction. An overview of the potential of AI models in identifying early
sepsis to guide antibiotic administration was discussed by Schinkel et al. [55]. However,
significant challenges still exist in the effective implementation of AI-DSS for antimicrobial
stewardship. One of the most critical issues is the quality and completeness of the data
used to train machine learning models, which can be affected by errors, missing values, and
biases. Furthermore, many AI algorithms currently used in AI-DSS are black box systems
that lack transparency and interpretability, making it difficult for clinicians to understand
the underlying rationales behind their recommendations.

7. Artificial Intelligence in the Development of Novel Antibacterial Agents

The emergence of antibiotic-resistant bacteria poses a significant threat to public
health, underscoring the urgent need to develop new antibacterial agents. In this regard, AI
has emerged as a powerful tool to accelerate drug discovery and development processes,
offering innovative approaches for identifying potential antibacterial compounds and
optimizing their properties. Figure 5 illustrates a typical machine learning methodology
and workflow applied to the design of new antibacterial drugs. The input can consist of
different types of compounds, such as small molecules, peptides, proteins, and experi-
mental data on active/inactive compounds and their antibacterial activity, e.g., Minimal
Inhibitory Concentration (MICs). These data are divided into training, validation, and
test sets and processed through various featurization techniques such as image represen-
tations, molecular descriptors, fingerprints, etc. Next, various machine learning methods
are applied to develop predictive models, such as Logistic Regression (LR), Naive Bayes
(NB), K-Nearest Neighbors (KNN), and ensemble methods. The developed models are
then validated and optimized on test data for final use in applications such as virtual
screening (e.g., High-Throughput Virtual Screening (HTVS), Ligand-Based Virtual Screen-
ing (LBVS), or Structure-Based Virtual Screening (SBVS)), consensus scoring, and new
drug design guided by experimental data and Quantitative Structure–Activity Relationship
(QSAR) calculations.
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Figure 5. Example of a machine learning methodology and workflow applied to the design of new
antibacterial drugs [56].

Virtual screening, in which machine learning algorithms analyze large databases of
chemical compounds to identify molecules with potential antibacterial activity, is a major
application area of AI in drug discovery. By training on known antibacterial agents and their
structural features, AI models can predict the likelihood of a given compound exhibiting
antimicrobial properties, thereby narrowing the pool of candidates for further experimental
validation [57]. For example, the use of deep learning algorithms to examine millions
of chemical compounds for antibacterial activity has led to the discovery of several new
compounds with potent antimicrobial properties [6]. In addition, AI-driven approaches to
de novo drug design enable the generation of new molecular structures with optimized
pharmacological properties. Generative models, such as Generative Adversarial Networks
(GANs) and Variational Autoencoders (VAEs), can generate molecular structures with
desired properties such as high potency and low toxicity based on input data from known
antibacterial compounds and their structural features [58]. This approach holds promise
for the development of new antibacterial agents with increased efficacy and reduced
probability of resistance development. AI algorithms can facilitate optimization of lead
compounds through structure–activity relationship (SAR) analysis and molecular docking
simulations. By analyzing the interactions between potential antibacterial agents and
their target bacterial proteins, AI models can predict the binding affinity and efficacy
of candidate compounds, guiding the rational design of new antibiotics with enhanced
potency and specificity [59]. The research conducted by Ivanenkov et al. [60] used machine
learning techniques to optimize the structure of a principal compound targeting bacterial
cell wall synthesis, resulting in the development of a potent antibacterial agent with
broad-spectrum activity against multidrug-resistant bacteria. In recent years, the role
of artificial intelligence has moved beyond the initial identification and optimization of
compounds. Machine learning algorithms now help to navigate the complex landscape
of pharmacokinetics and pharmacodynamics, predicting a compound’s behavior within
biological systems and its efficacy in fighting bacterial infections. By integrating data from
preclinical studies and clinical trials, AI-driven models can provide valuable insights into a
compound’s safety profile, potential side effects, and optimal dosing regimens, guiding
decision-making throughout the drug development process [61,62]. AI holds promise
for addressing the challenge of antibiotic resistance through innovative strategies such as
optimizing combination therapies and drug repurposing. By analyzing large-scale datasets
that include the genetic information of both pathogens and host organisms, AI can identify
synergistic drug combinations and reuse existing drugs with known safety profiles for
novel antimicrobial applications, thereby maximizing therapeutic efficacy and minimizing
the risk of resistance emergence [62].
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8. Discussion

Antimicrobial resistance represents one of the greatest threats to global public health.
This complex phenomenon is due to a combination of biological factors intrinsic to bacteria,
such as genetic mutation, as well as external factors related to the misuse of antibiotics
in medical, veterinary, and agricultural settings. The rapid and adaptive evolution of
pathogens requires a multidisciplinary approach to effectively counter this crisis. The
integration of AI in the fight against antimicrobial resistance presents a promising and
innovative solution. AI can contribute significantly in several areas:

1. Genomic analysis: AI can accelerate the analysis of genomic data to identify resistance
markers early on, thereby improving surveillance and monitoring of resistant infec-
tions. This enables timely and targeted interventions. For example, the use of machine
learning algorithms to analyze genomic sequences can help to quickly identify specific
mutations associated with antibiotic resistance. Such tools can be integrated into clinical
microbiology laboratories to provide faster results than traditional methods, allowing
clinicians to intervene earlier.

2. Optimizing antibiotic use: AI-based decision support systems can guide clinicians in
choosing the most appropriate antibiotics, reducing inappropriate use and minimizing
the risk of resistance development. This can significantly improve clinical management
of infections. For example, the implementation of a CDSS can help to analyze real-time
patient data and microbiological information in order to suggest the most effective
therapies while taking into account clinical history and local patterns of resistance.
In addition, such systems can be continuously updated with newly collected data to
improve their recommendations over time.

3. Discovery of new antibacterial agents: AI facilitates the discovery and design of new
antibacterial drugs through predictive modeling and computational simulation, acceler-
ating the drug development process and potentially reducing associated costs. Using
deep learning techniques, large libraries of chemical compounds can be analyzed to
identify those with potential antibacterial activity. These approaches can also predict
the likelihood of success of new drugs at later stages of development, thereby reducing
the risks and costs associated with pharmaceutical research and development.

4. AI-controlled delivery and action of antibiotics: AI technologies are increasingly being
used to improve the delivery and efficacy of antibiotics. These advanced systems can
optimize dosing regimens, improve drug targeting, and monitor patient responses in
real time. Significant examples of antibiotics for which administration and action have
been successfully managed by artificial intelligence systems include:

- Optimizing vancomycin dosing with AI: Vancomycin is a key antibiotic for the treat-
ment of serious infections caused by Gram-positive bacteria, including methicillin-
resistant Staphylococcus aureus (MRSA). Traditional vancomycin dosing requires
careful monitoring to avoid toxicity and ensure therapeutic efficacy. Several studies
have shown how AI models can optimize vancomycin dosing to improve efficacy
and reduce the risk of toxicity. For example, an approach based on ensemble learn-
ing strategies has shown high accuracy and specificity in predicting initial and
subsequent doses of vancomycin, making treatment safer and more effective [63,64].

- AI-driven delivery of amikacin: Amikacin, an aminoglycoside antibiotic, is com-
monly used to treat severe Gram-negative infections. Its therapeutic window is
narrow and requires precise dosing to avoid ototoxicity and nephrotoxicity. Artificial
intelligence systems have been developed to monitor blood levels of amikacin in
real time and adjust dosing accordingly. These artificial intelligence-driven delivery
systems use pharmacokinetic and pharmacodynamic models to ensure that optimal
drug concentrations are maintained, thereby improving treatment efficacy and safety.
For example, Adbulla et al. [65] conducted a prospective evaluation of a model-
based amikacin dosing regimen in infants which showed significant improvements
in achieving target drug concentrations compared with traditional methods. Simi-
larly, advances in biosensor technology have enabled real-time monitoring and dose
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adjustment of antibiotics such as amikacin, leading to improved outcomes in the
treatment of critically ill patients [66,67].

- AI-driven targeted delivery of colistin: Colistin is an antibiotic of last resort for
multidrug-resistant Gram-negative bacterial infections; however, its use is limited by
significant nephrotoxicity. Researchers have employed artificial intelligence to de-
velop targeted colistin delivery systems, such as nanoparticle-based delivery vehicles,
that can be targeted to the site of infection. Artificial intelligence algorithms can opti-
mize the design and release profiles of these nanoparticles to maximize therapeutic
effects and minimize systemic toxicity. Early studies indicate that AI-guided targeted
delivery significantly reduces adverse effects and improves treatment outcomes.
For example, silver nanoparticles conjugated to colistin (Col-AgNPs) have shown
enhanced antimicrobial activity and reduced toxicity compared to colistin alone,
demonstrating the potential of AI-optimized nanoparticle systems for improving the
colistin therapeutic index [68].

- AI-personalized antibiotic regimens: AI can help to personalize antibiotic regimens
by analyzing large amounts of patient data, including genetic information, aiding in
the prediction of individual responses to different antibiotics. For example, Zaga-
jewski et al. [69] have demonstrated the use of AI to detect antibiotic resistance and
tailor treatments accordingly. This study highlighted rapid detection capabilities and
the potential for personalized antibiotic regimens, particularly with ciprofloxacin,
showcasing how AI can revolutionize treatment strategies to combat antibiotic re-
sistance. Weaver et al. [70] focused on using reinforcement learning to develop
optimal treatment strategies that limit antibiotic resistance. Personalized approaches
for various antibiotics, including ciprofloxacin and azithromycin, formed part of
their research. A study on personalized dosing of antibiotics at the bedside for
severe sepsis and septic shock included ciprofloxacin among the tested antibiotics.
Artificial intelligence systems based on pharmacokinetic models were used to opti-
mize dosing, demonstrating potential for improved efficacy and safety in antibiotic
administration [71].

Despite significant progress, there are still critical challenges facing the effective
implementation of AI in the fight against AMR. One major challenge is the availability of
high-quality, properly annotated, and standardized data. In order to develop accurate and
reliable machine learning models, it is critical to have large amounts of data representing a
wide range of clinical and biological scenarios. However, data from different sources often
vary in terms of format, annotation, and quality. This heterogeneity can compromise the
performance and generalizability of AI models. Standardizing data and creating centralized
repositories with high-quality data are key steps towards improving the effectiveness of AI
algorithms in the medical field. Another significant obstacle is ensuring the interpretability
and transparency of AI models. Many machine learning algorithms, particularly those
based on deep neural networks, are often described as black boxes, as their decisions are
difficult to understand and explain. This lack of transparency can create mistrust among
healthcare providers and patients, hindering large-scale adoption of these technologies. It
is essential that researchers and AI developers adopt explainability practices, such as using
interpretable models and implementing post hoc interpretation techniques, to make their
algorithms more transparent. Techniques such as LIME (Local Interpretable Model-agnostic
Explanations) and SHAP (SHapley Additive exPlanations) [72] can help to explain the
predictions of complex models by providing insights into which features most influenced a
particular decision. In addition, transparency is critical to ensure that AI models are used
ethically and responsibly. Algorithms must be designed to avoid bias and discrimination,
which can occur if the training data are not representative of the population or contain bias.
Ongoing evaluation and independent validation of AI models are necessary to ensure that
they work properly in different populations and clinical settings. Finally, it is important
to consider the regulatory and legal aspects of AI use in healthcare. Regulators need to
establish clear guidelines for the approval and oversight of AI systems to ensure that
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they meet standards of safety, efficacy, and privacy. Collaboration among AI developers,
healthcare providers, and regulators is essential in order to create an environment of trust
and security that facilitates the adoption of AI technologies in the fight against AMR.

Looking forward, the integration of AI with other emerging technologies, such as
synthetic biology and nanomedicine, could open up new perspectives in the fight against
antimicrobial resistance. For example, AI-based intelligent drug delivery systems could
improve the efficacy of antibiotic treatments while reducing the risk of side effects and
the development of resistance. In addition, the application of AI to computational epi-
demiology and predictive modeling could make it possible to anticipate the emergence
of new forms of resistance, thereby promoting large-scale prevention and containment
strategies. International collaboration is essential to addressing the global challenges of
antimicrobial resistance. Sharing data, resources, and knowledge across institutions and
countries can improve the effectiveness of AI-based interventions and accelerate progress
in combating AMR. In this context, global initiatives such as establishing research consortia
and promoting international standards for data collection and analysis can play a key role
in overcoming both current and future challenges.
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