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Abstract: Chronic kidney disease (CKD) presents a substantial global public health challenge, with
high morbidity and mortality. CKD patients often experience dyslipidaemia and poor glycaemic
control, further exacerbating inflammation and oxidative stress in the kidney. If left untreated, these
metabolic symptoms can progress to end-stage renal disease, necessitating long-term dialysis or
kidney transplantation. Alleviating inflammation responses has become the standard approach in
CKD management. Medications such as statins, metformin, and GLP-1 agonists, initially developed
for treating metabolic dysregulation, demonstrate promising renal therapeutic benefits. The rising
popularity of herbal remedies and supplements, perceived as natural antioxidants, has spurred inves-
tigations into their potential efficacy. Notably, lactoferrin, Boerhaavia diffusa, Amauroderma rugosum,
and Ganoderma lucidum are known for their anti-inflammatory and antioxidant properties and may
support kidney function preservation. However, the mechanisms underlying the effectiveness of
Western medications and herbal remedies in alleviating inflammation and oxidative stress occur-
ring in renal dysfunction are not completely known. This review aims to provide a comprehensive
overview of CKD treatment strategies and renal function preservation and critically discusses the
existing literature’s limitations whilst offering insight into the potential antioxidant effects of these in-
terventions. This could provide a useful guide for future clinical trials and facilitate the development
of effective treatment strategies for kidney functions.
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1. Introduction

Chronic kidney disease (CKD) poses a significant global public health challenge, asso-
ciated with high morbidity and mortality [1]. It is characterized by impaired renal function,
with signs of kidney damage persisting for more than 3 months, as indicated by albumin-
uria (albumin excretion ≥ 30 mg/g) and/or reduced estimated glomerular filtration rate
(eGFR) (eGFR < 60 mL/min/1.73 m2) [2,3]. If left untreated, CKD can progress to end-stage
renal disease (ESRD), necessitating long-term dialysis or kidney transplantation.

CKD can result from various conditions, including hypertension, diabetes, polycystic kid-
ney diseases, and glomerulonephritis [4]. These conditions contribute to the rising caseloads
of CKD and impose substantial healthcare expenditures. The Global Burden of Disease Study
2017 reported a 33% increase in the worldwide prevalence of CKD between 1990 and 2017 [5].

The progression of CKD is often associated with inflammation and oxidative stress,
which contribute to the worsening of kidney function. This can lead to a heightened risk of
cardiovascular disease, neuropathy, retinopathy, hypertension, anaemia, bone disease, and
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susceptibility to infections [6–9]. In severe cases, patients may require kidney transplanta-
tion or lifelong dialysis. These complications can significantly impact patients’ quality of
life, with high morbidity and mortality rates [10]. Furthermore, CKD imposes a consider-
able financial and medical resource burden on both society and individual patients, with
treatment costs varying widely depending on disease severity [11].

The progression of CKD is heavily influenced by inflammation and oxidative stress [12].
Inflammation is the immune system’s defensive response to tissue damage or infection,
whilst oxidative stress occurs due to an imbalance between reactive oxygen species (ROS)
generation and the body’s antioxidant mechanisms. Hyperglycemia is one of the most
common risk factors for having CKD [13]. For patients with hyperglycemia, the elevated
blood glucose levels activate inflammatory pathways that stimulate the production of pro-
inflammatory cytokines, adipokines, and chemokines, which attract immune cells to the
kidneys [14]. Neutrophils and monocytes generate reactive intermediates that contribute
to the release of ROS, resulting in oxidative stress and subsequent kidney damage [15].
Additionally, elevated glucose levels activate the polyol pathway, causing the formation
of sorbitol, which intensifies oxidative stress and inflammation in the kidneys [16]. By
reducing inflammation and oxidative stress, it may be possible to mitigate the development
and progression of CKD. Glycosylation in the kidney resulting from the overactivated
hexosamine pathway caused by an increased UDP-GlcNAc production in the renal sys-
tem can lead to the production of advanced glycation end-products (AGEs) [17], which
triggers inflammation, oxidative stress, and fibrosis that negatively impact renal function
and health [18]. The accumulation of AGEs due to hexosamine pathway dysregulation
in the kidneys can thus promote CKD progression through pathogenic mechanisms like
renal inflammation and fibrosis [19]. These pathways can also activate signalling pathways,
including the nuclear factor-kappa (NF-κB) and transforming growth factor-β (TGF-β1)
pathways that are associated with kidney damage [20].

Despite conventional antihypertensive therapies such as angiotensin-converting en-
zyme (ACE) inhibitors, angiotensin II receptor blockers (ARBs), and glucose-lowering
drugs like metformin, a considerable number of patients unfortunately still progress to
ESRD [21]. Therefore, there is an urgent need for novel therapeutic approaches to enhance
CKD treatment outcomes by more directly targeting these pathological processes. An-
tioxidants have garnered significant interest as potential therapeutic agents for CKD due
to their ability to counteract oxidative stress and inflammation. Numerous studies have
explored the efficacy of antioxidants in preventing or delaying the progression of CKD by
targeting oxidative stress and inflammation, and they show promising results. However,
further research is necessary to identify the optimal antioxidant agents and dosages for
CKD treatment and to elucidate the underlying mechanisms of their beneficial effects. The
electronic databases PubMed (via MEDLINE) and Web of Science (WOS) were searched to
identify relevant literature published up until May 2024. In PubMed, medical subject head-
ing (MeSH) terms were used to capture articles related to various antioxidant compounds
and chronic kidney disease treatments. The MeSH terms searched included “Antioxidants”,
“Chronic Kidney Disease”, “Lactoferrin”, “Boerhaavia diffusa”, “Amauroderma rugosum”,
“Ganoderma lucidum”, “Statins”, “Metformin”, “Glucagon-like peptide 1 Agonists”, “ACE
inhibitors”, “ARBs”, and “Sodium-glucose co-transporter 2 Inhibitors”. In WOS, the terms
“Antioxidants”, “Chronic Kidney Disease”, and “Reactive Oxygen Species” were searched.

2. Oxidative Stress and Inflammation in CKD

CKD is a growing health problem characterized by the progressive loss of renal
function over time [22,23]. Oxidative stress is a crucial factor in the onset and progression
of CKD. It occurs when there is an imbalance between the production of ROS and the
body’s ability to neutralise them [24]. Under normal physiological conditions, ROS are
formed as natural byproducts of oxygen metabolism in the mitochondria and various
cellular processes. At low levels, ROS serve important functions in cell signalling, gene
expression, cell differentiation, apoptosis, and muscle power regulation [25–27].
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ROS include free radicals like superoxide (O2•−), hydroxyl radical (HO•), hydrogen
peroxide (H2O2), singlet oxygen (1O2), and nitrogen oxide (NO•) [27,28]. They are gener-
ated endogenously through cellular processes in organelles like mitochondria; enzymes
in peroxisomes such as acyl CoA oxidases and urate oxidase [29]; and enzymes in the
endoplasmic reticulum such as cytochrome p-450, b5 enzymes, and diamine oxidase [30].
Exogenous ROS can also originate from environmental sources such as contaminants,
radiation, diet, and medications [31].

The human body has a tightly regulated antioxidant system neutralising ROS and
maintaining them at non-toxic levels. However, in conditions of chronic disease, mitochon-
drial dysfunction, and exposure to exogenous ROS, excess ROS generation overwhelms
antioxidant capacity. This imbalance leads to oxidative damage to biological molecules
like lipids, proteins, and DNA [32]. Given the kidneys’ high metabolic activity and nu-
merous oxidation processes in mitochondria, they are particularly vulnerable to oxidative
stress [28,33,34]. Excess ROS can also contribute to CKD via three major pathological path-
ways, inflammatory, fibrotic, and apoptotic, and will be discussed below [35] (Figure 1).
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Figure 1. Oxidative stress-mediated pathways in the pathogenesis of CKD [27,35,36]. ROS from various
sources, including H2O2, LPS, and AGE, can activate latent TGF-β through oxidative post-translational
modifications. Activated TGF-β promotes fibrosis via canonical Smad signalling and non-canonical JNK
and NF-κB pathways, increasing profibrotic gene expression. This enhances myofibroblast development
and pathological fibrosis. ROS may also trigger the intrinsic and extrinsic apoptosis pathways in renal
cells. Collectively, these oxidative stress mechanisms may underlie CKD pathogenesis.

2.1. Inflammatory Pathways

Excessive ROS trigger the activation of TGF-β from its latent to its phosphorylated
form [37]. Activated TGF-β then promotes the formation of the NLRP3 inflammasome, a
multi-protein complex in the innate immune system capable of activating inflammatory
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caspases such as caspase-1 and various cytokines [38]. Upon activation, NLRP3 cleaves
and autoproteolysis caspase-1 fragments from pro-caspase-1 to active caspase-1 [38]. Active
caspase-1, in turn, cleaves the pro-domains from pro-IL-1β and pro-IL-18, generating mature
active forms of pro-inflammatory cytokines via proteolysis (IL-1β and IL-18) that play im-
portant roles in increasing inflammation and immunological responses in CKD [39–42]. The
release of tumour necrosis factor-alpha (TNF-α) is stimulated by IL-1β and IL-18 from im-
mune cells, further contributing to inflammation. TNF-α is a major proinflammatory cytokine
elevated in CKD [43], perpetuating the inflammatory response in kidneys by inducing the
expression of chemokines, adhesion molecules, and cytokines such as IL-1β and IL-18. This
exacerbates CKD by amplifying the inflammatory response and immune cell infiltration.

Both IL-1β and IL-18 play a significant role in polarizing T-helper cell responses [44].
IL-1β non-specifically amplifies both T and B lymphocytes, whereas IL-18 substantially
activates T helper 1 immune response via IFNγ production [45–47]. The IFNγ produced by
IL-18 would serve as a chemoattractant, attracting immune cells like macrophages to the site
of inflammation [48]. Moreover, IFNγ may upregulate the expression of adhesion molecules
(ICAM-1, VCAM-1, and E-selectin) on endothelial cells lining the kidney’s blood vessels,
facilitating immune cell adherence and migration to the kidneys [49]. Synergistically with
TNF-α and IL-1β, IFNγ further enhances the inflammatory response and exacerbates
direct cellular damage to the kidneys. In CKD, immune cells like monocytes, macrophages,
neutrophils, NK cells and Th1/17 cells infiltrate to the kidneys, causing damage by releasing
cytokines, ROS, autoantibodies, and serine proteases (such as granzymes) [50,51]. The
production of these cytokines and chemokines attracts immune cell infiltration into kidney
tissues, including macrophages and T cells, further contributing to the development of
CKD through prolonged inflammation and tissue damage.

2.2. Fibrotic Pathway

Fibrosis plays a pivotal role in the development and progression of CKD. The pathological
accumulation of extracellular matrix proteins in the kidney leads to functional and structural
impairment. There are two major signalling cascades mediating fibrosis: the canonical
TGF-β/Smad pathway and non-canonical pathways like JNK and NF-κB. The sustained
hyperactivation of these pathways drives exacerbated matrix deposition through different
mechanisms, eventually resulting in CKD. The pathways are further discussed below.

2.2.1. Canonical (Classical) Smad Pathway

The canonical TGF-β signalling pathway, known as the Smad-dependent pathway,
primarily drives TGF-β-mediated fibrosis [52]. Excessive ROS activate TGF-β from its latent
to its active phosphorylated form [53]. Active TGF-β signals through TGF-β type I and II
serine/threonine kinase receptors on target renal cells. This activation phosphorylates and
activates Smad2/3 proteins, forming complexes with Smad4 and translocating to the nucleus.

Within the nucleus, these complexes upregulate the transcription of profibrotic genes
such as CTGF, COLI, and αSMA [54,55]. COLI encodes for type I collagen, the most abun-
dant protein in fibrous tissues. Under TGF-β1 stimulation, excessive COLI expression
leads to its overproduction and accumulation in the extracellular matrix of blood vessels,
glomeruli, and kidney interstitium, resulting in renal fibrosis [56,57]. αSMA is the isoform
of actin that is expressed strongly in smooth muscle cells, myofibroblasts, and activated
fibrogenic cells [58,59]. The upregulation of αSMA marks the transformation of resident
fibroblasts into collagen-producing myofibroblasts, driving fibroblasts. CTGF promotes
collagen synthesis, fibrotic lesion maintenance, and myofibroblast differentiation down-
stream of TGF-β1 signalling [59]. Increased CTGF exacerbates fibrosis [60,61] and promotes
extracellular matrix deposition and fibrosis in the kidneys.

2.2.2. Non-Canonical (Non-Classical) JNK and NF-κB Pathway

In addition to the canonical Smad pathway, excess ROS can stimulate non-canonical
pathways to drive fibrotic gene expression [62]. The major non-canonical pathways in-
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volved are the JNK pathway and the NF-κB pathway. Both pathways are stimulated
independently of Smad through distinct mechanisms of ROS generation.

2.2.3. JNK Pathway

The JNK signalling pathway is stimulated downstream of TGF-β. Upon activation,
JNK phosphorylates transcription factors like c-Jun and c-Fos, forming the AP-1 com-
plex [63]. This complex increases the release of pro-inflammatory factors such as TNF-α
and CCL2 and pro-fibrotic factors such as TGF-β and CTGF [64]. The persistently active
JNK signalling pathway stimulates the increased production of chemokines and cytokines
that cause inflammation and fibrosis in the kidneys [63].

2.2.4. NF-κB Pathway

ROS can directly activate NF-κB signalling by inducing phosphorylation and degra-
dation of its endogenous inhibitor IκB [65]. This allows NF-κB to translocate from the
cytosol to the nucleus and function as a transcription factor. NF-κB is activated in response
to different stimuli, including elevated ROS levels during oxidative stress [66,67]. Ac-
tivated NF-κB perpetuates renal inflammation and fibrosis by upregulating NF-κB and
pro-inflammatory mediators (TNF-α) and inflammatory cytokines (IL-1β and IL-18) [68,69].
These cytokines can induce the expression of chemokines and adhesion molecules in kid-
ney tissues, boosting immune cell recruitment and aggravating chronic inflammation.
Moreover, they would also promote renal interstitial fibrosis and elevate proinflammatory
chemokines and cytokines via increasing CTGF expression [70].

By perpetuating renal inflammation and fibrosis, persistent NF-κB activation mediated
by ROS or JNK signalling exerts profibrotic effects and contributes to the pathogenesis
and progression of CKD over time. NF-κB functions as a key modulator of the oxidative
stress-induced fibro-inflammatory response.

The cumulative effects of TGF-β driven Smad and non-Smad promote excessive
accumulation of extracellular matrix proteins that damage normal renal structure over time
and eventually lead to CKD.

2.3. Apoptotic Pathway

Apoptosis is a tightly regulated programmed cell death process that can be activated
through intrinsic or extrinsic pathways [71]. Under oxidative stress, both routes are stimu-
lated, leading to renal cell loss and CKD progression.

2.3.1. Intrinsic Pathway

The intrinsic pathway involves the release of pro-apoptotic proteins from mitochondria
in response to ROS generation. This triggers the caspase cascade within the cell and leads
to renal cell death. ROS activate the pro-apoptotic protein BIM, which in turn activates the
pore-forming proteins BAK and BAX in the mitochondria, inducing mitochondrial outer
membrane permeabilization [71,72]. This triggers cytochrome c release from mitochondria
into the cytosol, where it binds to Apaf-1 [73]. The interaction between cytochrome c and
Apaf-1 leads to a conformational shift in Apaf-1, allowing it to oligomerize into a heptameric
structure and recruit procaspase-9. Together, this forms the apoptosome complex [74].

Overexpression of BAX and BAK results in mitochondrial outer membrane perme-
abilization and cytochrome c release, further promoting apoptosome formation [75]. By
dimerizing in the apoptosome complex, procaspase-9 is recruited and activated through
phosphorylation into caspase-9 [76].

Apoptosome activation through caspase-9 phosphorylation leads to its cleavage and
activation by the apoptosome complex. Activated caspase-9 then propagates the caspase
cascade by proteolytically cleaving and activating downstream executioner caspases like
caspase-7, -6, and -3 [77,78]. These executioner caspases execute the apoptotic program
through proteolytic degradation of critical cellular proteins. Specifically, they dismantle
DNA repair enzymes, structural scaffolding proteins, and activate DNases, leading to the
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fragmentation of nuclear material [79–81]. Together, this caspase activation ultimately
results in programmed cell death [62,82]. The apoptotic cell loss of tubular epithelial cells
and endothelial cells contributes to renal failure over the extended periods seen in CKD.

Through apoptosome formation, ROS are thus able to trigger an intrinsic apoptotic
signalling cascade, culminating in caspase activation and cellular apoptosis, promoting
progressive renal deterioration in CKD.

2.3.2. Extrinsic Pathway

ROS can indirectly activate the extrinsic apoptosis pathway in multiple ways. First,
ROS promotes ubiquitin-mediated degradation of the caspase-8/-10 inhibitory protein
c-FLIP [83]. With the downregulation of c-FLIP, the adaptor protein FADD can be more
readily bound to pro-caspase-8/-10 at the death-inducing signalling complex (DISC) upon
death receptor ligation, enhancing caspase-8/-10 recruitment and activation [71,83]. ROS
also stimulates the release of the death ligand TNF-α by activating NF-kB-mediated inflam-
mation [84]. TNF-α then binds to its receptor TNF-R1 of renal cells.

In the extrinsic pathway, death ligands like FasL, TNF-α, and TRAIL bind to their cognate
cell surface death receptors FasR, TNF-R1, and DR4. Upon ligand binding, dimerization of these
death receptors occurs, allowing recruitment and activation of initiator caspase-8/-10, which
subsequently activates the downstream caspase-3, propagating the apoptotic cascade [78,85–87].

Like the intrinsic pathway, caspase-3 activation is the convergent point between
both apoptotic routes [78,85]. Execution of the cell death program by caspase-3 leads to
renal cell loss, contributing to the progressive renal deterioration seen in CKD over time.
The extrinsic apoptotic pathway causes tubular atrophy and endothelial injury, which
subsequently results in CKD development [88–90].

In summary, oxidative stress significantly contributes to CKD development and pro-
gression through multiple interconnected pathways. Excess ROS activate the inflammatory
pathways involving cytokines such as IL-1β, IL-18, IFNγ, and TNFα. These cytokines pro-
mote leukocyte infiltration, perpetuate inflammation, and cause direct cytotoxicity. ROS also
stimulate the profibrotic signalling cascades mediated by TGF-β and NF-kB, resulting in renal
fibrosis. Additionally, both intrinsic and extrinsic apoptotic pathways are activated by oxidative
stress, leading to tubular epithelial cell death. These mechanisms converge to elicit glomerular
damage, tubulointerstitial fibrosis, loss of kidney function, and ultimately CKD development.

3. Metabolic Therapeutics: Unveiling Mechanisms for CKD Management

In the pathophysiology of CKD development, the role of inflammation is increasingly
recognized as a fundamental driver in disease progression. Originating from conditions
associated with metabolic syndrome such as obesity, hypertension, and diabetes, inflam-
mation can lead to renal damage, resulting in suboptimal outcomes for CKD patients.
To address these issues, several therapeutic agents initially designed to target metabolic
syndrome abnormalities, including statins, metformin, glucagon-like peptide 1 (GLP-1)
agonists, ACE inhibitors (ACEi), ARBs, and sodium-glucose co-transporter 2 (SGLT2) in-
hibitors, have been integrated into clinical treatments. Beyond their primary metabolic
efficacies, these drugs exhibit promising benefits for renal health, notably due to their
anti-inflammatory and antioxidant properties. This section delves into the biochemical
mechanisms and clinical data surrounding these therapeutic agents, highlighting their
emerging significance in CKD therapeutics. To offer a comprehensive overview of emerging
therapeutic agents in CKD treatment, a table summarizing current findings on various
kidney diseases, their related metabolic targets/pathways involving oxidant stress, and
their functional roles in alleviating CKD is included (Table 1).

3.1. Statin

Statins, primarily known as hydroxymethylglutaryl-CoA (HMG-CoA) reductase in-
hibitors, are important in the regulation of cholesterol biosynthesis by inhibiting the rate-
limiting enzyme—HMG-CoA reductase [91]. This inhibition leads to reduced cholesterol
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biosynthesis, subsequently amplifying the expression of low-density lipoprotein (LDL) recep-
tors in hepatocytes, thereby facilitating LDL cholesterol clearance from the bloodstream [92].

Recently, systematic reviews and meta-analyses have illustrated the beneficial role of
statins in enhancing renal functions through cholesterol reduction mechanisms and non-
cholesterol-mediated mechanisms. A vast number of research works have proved the effec-
tiveness of statins in reducing CKD progression, cardiovascular disease development risk, and
mortality [93–95]. The renoprotective ability of statins was mostly reflected by a reduction in
albuminuria and enhanced glomerular filtration rate in various renal disease models. Among
the statin family, members like atorvastatin, rosuvastatin, simvastatin, and cerivastatin are
found to alleviate different renal diseases, and they differ in potency, side effects, and drug
interaction tendencies. Nevertheless, while the benefits of statins on early-stage CKD are
acknowledged, the effect of statins on end-stage kidney failure is still unclear [96].

In the cholesterol reduction mechanism, due to the lipid-lowering ability of statins,
they are clinically effective drugs for CKD associated with hyperlipidaemia and dyslip-
idaemia. As an inhibitor for the essential enzyme, HMG-CoA, involved in cholesterol
synthesis, statins attenuate the production of endogenous cholesterol. Hence, statins ef-
fectively regulate plasma cholesterol levels, demonstrated by lowered LDL-C, lowered
triglycerides, and raised HDL-C, in CKD patients, regardless of any dialysis treatment
received [93,97]. Through relieving hypercholesterolaemia or dyslipidaemia conditions
in CKD patients, statins ameliorate major atherosclerotic events [98,99]. Hence, they are
effective in restoring renal blood flow, which enhances glomerular filtration and improves
renal deformities such as inflammation and tubular defects. The boost in renal function is
also reflected by reduced proteinuria and increased eGFR, which contributes to reducing
the mortality and morbidity rate of CKD patients.

On top of reducing cholesterol levels, the inhibition of HMG-CoA by statins also sup-
presses downstream synthesis of isoprenoids, a protein involved in intracellular signalling
for a variety of gene expressions [97]. This relates to the non-cholesterol-mediated renopro-
tective mechanisms of statins, referring to the alleviation of CKD progression independent
of cholesterol reduction due to the antioxidant effect of statins. Statins inhibit the activities
of pro-oxidant enzymes, such as NADPH oxidases, and pro-inflammatory chemokines. In
addition, they upregulate the expression of antioxidant enzymes like the NRF2 signalling
pathway, resulting in raised levels of catalase and SOD [100,101]. Combining statin’s action
towards prooxidant and antioxidants, it reduces ROS accumulation and alleviates cellular
senescence in renal disease progression [100]. For example, it is found that Atorvastatin
alleviated diabetic kidney disease (DKD) and diabetic nephropathies through downregu-
lating pro-oxidant expression, including histone deacetylase (HDAC), NADPH oxidases,
and Nox4, along with promoting cellular survival or proliferation by activation of the
Akt/GSK3β and RhoA signalling pathway, resulting in elevated renal e-cadherin expression
that indicated restored kidney function [102–104]. Rosuvastatin is also suggested to effec-
tively treat diabetic nephropathy by lowering 8-OhdG levels, indicating decreased oxidative
stress accumulation [105]. Consequently, reduced albuminuria and glomerular hypertrophy
accompanied by improved insulin resistance are observed after drug treatment.

Moreover, statins inhibit cellular apoptosis by regulating apoptosis-associated path-
ways. During the disease course of CKD, apoptosis of renal cells is promoted, leading to
cellular death that is associated with tubular atrophy and renal fibrosis. Cormack-Aboud
and his team revealed the effect of rosuvastatin on the slower progression of glomeru-
losclerosis in adriamycin- and puromycin aminonucleoside-induced CKD, mainly by the
p21-dependent antiapoptotic pathway that exerted anti-apoptotic and pro-survival ef-
fects on podocytes [106]. Treatment with Simvastatin helped reduce apoptosis in renal
endothelial progenitor cells, contributing to reversing endothelial dysfunction and renal
damage [107]. Atorvastatin also reduces apoptosis by suppressing the ERK1/2 pathway
that prevents renal parenchymal cell loss [102].

In addition, statins exert anti-inflammatory effects on the kidneys. Statins suppress
the signalling pathways involved in the production of pro-inflammatory cytokines and
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mediation of immune cell infiltration. This is exemplified by the contribution of simvastatin
to the downregulation of both COX 2 and TNF-α expression, thereby reducing the produc-
tion of pro-inflammatory mediators such as prostaglandins [108]. This decelerated CKD
progression is caused by the effect of angiotensin II in human mesangial cells. Furthermore,
other than the ROS-reduction activity, Atorvastatin diminished sickle cell nephropathy
by declining Cybb levels, which is associated with activated phagocytes [109]. Cerivas-
tatin also participated in the alleviation of diabetic nephropathy with hypertension by
acting against inflammatory pathways such as the MCP-1- and TGF-β-related signalling
pathways [110]. It was found that Cerivastatin restored the charge barrier of GBM, thus
contributing to the prevention of glomerular hyperfiltration and various renal histological
abnormalities such as mesangial expansion.

3.2. Metformin

Metformin is a first-line treatment for diabetes, primarily reducing blood sugar lev-
els [111] by suppressing gluconeogenesis and decreasing hepatic glucose output. Its
mechanism involves entry into hepatocytes via the OTC1 transporter [112] and subsequent
accumulation, especially within mitochondria [113]. Once inside, metformin inhibits the
mitochondrial respiratory complex I, altering the ADP to ATP ratio and activating AMPK,
which in turn inhibits gluconeogenesis [114].

Metformin’s potential in renal protection has garnered significant clinical attention. It
was found that metformin reduced all-cause mortality risk and cardiovascular events in
CKD, especially in DKD of diabetic stage G3 [115–117]. The effect of metformin on CKD is
also reflected by decelerated renal dysfunction progression and attenuated eGFR decline
upon drug treatment [118,119].

Recent research has made promising steps in deciphering the mechanistic basis by
which metformin potentially exerts renoprotection, mainly attributing to its direct an-
tioxidative activity and indirect antioxidative activity by the modulation of the lipid or
glucose metabolism. Acting as an antioxidant, metformin exhibited excellent ability in the
suppression of ROS accumulation in drug-induced renal injury, including folic acid- and
adenine-induced CKD and DKD. ROS accumulation in the mitochondria was especially
alleviated by metformin as the drug inhibited complex I-dependent respiration [120,121].
As mitochondrial ROS generation is reduced, mitochondrial-mediated apoptosis is pre-
vented [122]. Various research has demonstrated the effectiveness of metformin in CKD
treatment. For instance, it mitigated mitochondrial oxidative stress by reducing the activity
of N-acetyl-β-D-glycosaminidase and preventing the depletion of cytochrome c and NADH,
resulting in an enhanced mitochondrial balance in gentamicin-induced renal injury [123].
Such a reverse in renal injury was reflected by raised eGFR and renal blood flow.

Moreover, it regulates inflammatory pathways and exerts its anti-inflammatory activity
in CKD alleviation. Studies have suggested the role of metformin in the diminishing activa-
tion of immune cells and the release of pro-inflammatory cytokines through mechanisms
such as inhibition of P38 phosphorylation and NF-κB, reflected by the decline of MCP-1,
F4/80, and ICAM1 [124–126]. Another study conducted by Zhou further elaborated on the
action of metformin to inhibit NF-κB through an AMPK-dependent pathway in DKD [126].

Furthermore, the anti-fibrotic action of metformin on renal injuries has been widely in-
vestigated. It was found that it relieved the overexpression of TGF-β through Smad and non-
Smad mechanisms, which reduced collagen production induced by TGF-β, thereby limiting
the development of renal interstitial fibrosis and other associated pathologies [124,127,128].
The anti-fibrotic activity of metformin was also indicated through decreased fibrotic in-
dicators such as type IV collagen, fibronectin, and CTGF in the kidney in other stud-
ies [124,129,130]. With renal histology and renal function markers being evaluated in these
studies, metformin exhibited significant improvement in renal histology and parameters
such as serum creatinine, urinary creatinine, and blood urea nitrogen.

On top of metformin’s antioxidant activity, it modulates lipid metabolism, which
demonstrates its significance in fat-induced or diabetic renal diseases. It is revealed that
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metformin countered lipotoxicity through concurrent activation of AMPK/PPARα routes
and inhibition of the SREBP1 and FAS pathways, as well as enhancing mesangial GLP-1R
expression, which reduces mesangial cell apoptosis [131,132]. Also, it changed glycolipid
metabolism by upregulating AMPK and SIRT1 expression and downregulating FoxO1
expression [124,133]. Subsequently, renal histological improvements such as mesangial
expansion, tubular dilations, and interstitial fibrosis were ameliorated, accompanied by
a decline in apoptotic and fibrotic markers. Alteration in these pathways crucial for lipid
metabolism control demonstrated the role of metformin in tackling the underlying cause of
CKD, thereby moderating the development of downstream pathological activities such as
ROS accumulation and abnormal cell proliferation.

3.3. Glucagon-like Peptide 1 Agonists

GLP-1 receptor agonists are potent therapeutics commonly used in managing T2DM
and certain cases of obesity. Engineered to mimic the gut-derived peptide hormone GLP-1,
these agonists enhance insulin secretion from pancreatic islets in response to oral glucose
intake. This action, known as the incretin effect, helps lower blood glucose levels. GLP-1
agonists are divided into two categories based on their structure. One category consists
of agents derived from the human GLP-1 backbone and include Dulaglutide, Albiglutide,
Liraglutide, and Semaglutide. Another category contains those rooted in the exendin-4
backbone, comprising Exenatide (in two formulations) and Lixisenatide [134]. Synthetic
GLP-1 agonists are designed to resist degradation by the dipeptidyl peptidase 4 (DPP-4)
enzyme, thereby having a longer half-life than the natural peptide hormone [135]. These
agonists work by interacting with specific GLP-1 receptors on target tissues such as the
pancreas. There, they stimulate insulin biosynthesis and secretion from beta cells and
suppress glucagon secretion from alpha cells. In addition, GLP-1 agonists act on other
tissues. In the liver, they limit hepatic gluconeogenesis, and in the brain they provide
neuroprotective effects [136]. Through these various mechanisms, GLP-1 agonists offer
effective solutions for metabolic regulation in conditions like type 2 diabetes mellitus
and obesity.

Recent meta-analyses further provide growing evidence supporting the renal benefits
of GLP-1 agonists against CKD associated with T2DM. GLP-1 agonists show clinical sig-
nificance in treating T2DM-associated CKD as they contribute to a reduction in all-cause
mortality and provide cardiovascular benefits to CKD patients [137]. Improved renal in-
juries were also observed through a reduction in albuminuria and enhanced eGFR [137,138].
It also prevented the deterioration of CKD by reducing the risk of macroalbuminuria de-
velopment and ESRD progression without exposing patients to increased risks of severe
hypoglycaemia, pancreatic adversities, or thyroid cancer [138,139].

GLP-1 contributes to slowed DKD progression through direct antioxidant activity.
Due to its inhibitory effect on protein kinase C (PKC)-β and concurrent amplificatory action
on protein kinase A (PKA), Beinaglutide reduced NADPH oxidases activation, leading
to a diminished ROS and glycation end-product accumulation in renal glomeruli and
tubules [140,141]. The antioxidant effect of GLP-1 is also supported by the enhancement
in oxidative stress metabolites, such as NAD+ and adenosine, and cardiolipin essen-
tial for mitochondrial metabolism after Semaglutide and Dulaglutide treatment, respec-
tively [142,143]. Reduction in ROS correlated with the lowered urinary albumin/creatinine
ratio and alleviated progression in glomerulopathy. Moreover, it is revealed that liraglutide
normalized Nox4 levels. In addition to the strengthened antioxidant defence, this favours
vasodilation, further contributing to the alleviation of hypertension, inflammation, and
fibrosis [144].

Studies also revealed GLP-1 agonists’ anti-inflammatory mechanism of CKD pre-
vention. Diabetic nephropathy was alleviated by GLP-1 via inhibition of inflammatory
activities such as MAPK and NF-κB phosphorylation, contributing to anti-inflammatory
effects on podocytes and tubular cells, thereby reducing glomerulosclerosis and renal tubu-
lointerstitial injuries [140,145]. For example, Liraglutide countered CKD without metabolic
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syndrome through the downregulation of inflammatory gene expressions, including C3,
CCL2, and TNFα [146]. Treatment with exendin-4 resulted in improved renal function, re-
flected by a decrease in creatinine clearance and urinary albumin excretion and suppressed
glomerular hypertrophy and mesangial expansion [147]. Additionally, the decline in renal
lipid accumulation of proinflammatory cytokines like IL-6, IL-1β, and TNF-α was also
suggestive of the anti-inflammatory effect of Semaglutide [142].

Furthermore, GLP-1 agonists counter renal fibrosis in DKD. Particularly, the drug
plays a significant role in preventing epithelial-mesenchymal transition (EMT), thereby
blocking downstream cascades that cause ECM protein secretion [148,149]. Involving this
mechanism, liraglutide inhibited pSmad3 and pERK1/2, downstream signalling molecules
in the TGF-β1 pathway, and effectively reduced renal fibrosis, indicated by lowered fi-
bronectin expression [144,146]. Furthermore, in unilateral ureteral obstruction injuries,
such anti-fibrotic activity promoted a reduction in UUO-induced collagen deposition [146].
Fibrosis in CKD is decelerated as collagen deposition is weakened.

GLP-1 agonists are also found to slow CKD progression by other means. For example,
Semaglutide is found to significantly ameliorate glucose homeostasis and insulin resistance,
further improving renal outcomes in the disease course [142,150]. Moreover, Beinaglutide
elevated the expression of both megalin and cubilin for reabsorption, enhancing the capacity
for albumin absorption, and thus alleviating albuminuria [151]. Renal function restoration
is reflected by reduced levels of kidney injury molecule-1 (KIM-1) in urine/renal tissue,
improvement in glomerulosclerosis severity, enhanced podocyte filtration slit density, and
a decline in albuminuria.

3.4. ACE Inhibitors and Angiotensin Receptor Blockers

ACEi and ARBs are both recommended as first-line treatments for hypertension [152].
ACEi, such as Benazepril, Captopril, and Ramipril, function by inhibiting the ACE enzyme,
which converts angiotensin I to angiotensin II. This leads to vasodilation, natriuresis,
and a decrease in sympathetic activity, ultimately reducing blood pressure. However, in
patients with hypertension and heart failure undergoing chronic ACEi treatment, there
is a potential for the “angiotensin escape” phenomenon. This is where angiotensin II can
still be produced, negating the effects on the AT1 and AT2 receptors [153]. On the other
hand, ARBs like Losartan, Candesartan, and Telmisartan work downstream in the renin-
angiotensin system, preventing angiotensin II from binding to the AT1 receptor and thereby
mitigating its adverse effects. The activation of the AT1 receptor, a primary activator of
vascular NADPH oxidase, triggers harmful outcomes, including hypertension, oxidative
stress, and inflammation [152,154].

In comprehensive meta-analyses evaluating the effect of ACEis and ARBs for treating
CKD, several key findings regarding the efficacy of the individual drug and combination
therapy emerged. ACEis and ARBs are found to have comparable clinical renal out-
comes [155,156]. Both are found to be associated with slower CKD progression and lower
risk of cardiovascular mortality [157–159]. Nevertheless, the benefit of combined utilization
of ACEis and ARBs is debatable as some studies observed an enhanced renoprotective
outcome reflected by a greater reduction in proteinuria, while other research suggested no
significant difference in efficacy compared to that of individual drugs [155,160]. However,
side effects, like coughing and bone degradation, may arise under treatment [161,162].

Recent studies have provided insightful advances in understanding the underlying
mechanisms through which ACEi and ARBs may offer renal protection, mainly through
anti-fibrotic and anti-apoptotic mechanisms. Angiotensin II promoted renal fibrosis progres-
sion when bound to angiotensin II receptor type 1, which triggered downstream profibrotic
signalling pathways such as JAK-STAT and ERK [161,163]. Various ACEi and ARB target a
wide range of pathways to exert their actions. For example, Captopril, one of the ACEi,
hindered the phosphorylation and activation of JAK and STAT proteins in glomeruli, which
suppressed apoptosis and fibrosis in diabetic nephropathies [162,164]. The anti-fibrotic
activity was subsequently reflected by a decline in renal profibrotic agents, including CTGF
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and VEGF [162]. Gross and his team recognized a similar anti-fibrotic effect of Ramipril and
Candesartan on non-hypertensive progressive renal fibrosis, indicated by reduced CTGF
and TGFβ [165]. Additionally, restoration of renal function was observed through a signifi-
cant reduction in kidney-related complications from diabetes, including albuminuria and
glomerulosclerosis. Moreover, telmisartan downregulated type I and type IV collagen gene
expression [166]. As a result, podocyte injury was ameliorated due to the halt in albumin
cytoplasmic granule accumulation, and aggravation of albuminuria was prevented. The
anti-fibrotic activity of ACEi is also exemplified by Imidapril, which inhibited DPP-4 and
TGFβ signalling, subsequently upregulating the interaction among antifibrotic microRNAs
(miR-29 and miR-let-7 family) in endothelial cells to weaken fibrosis [167].

3.5. Sodium-Glucose Co-Transporter 2

SGLT2 inhibitors, including canagliflozin, dapagliflozin, and empagliflozin, act as
hypoglycaemic agents by inhibiting SGLT2 in the kidneys. This action reduces renal
glucose reabsorption, leading to lower blood glucose levels without increasing insulin re-
lease [168,169]. Beyond their glucose-lowering effects, SGLT2 inhibitors have demonstrated
beneficial effects on the kidneys by reducing the reabsorption of glucose in the kidneys.
They alleviate the workload on the kidneys and reduce the production of ROS and inflam-
matory cytokines, which can cause oxidative stress-induced tubular impairment [170].

In light of the growing prevalence of diabetic nephropathies in T2DM patients, several
meta-analyses have offered insights into the clinical utility of SGLT2 inhibitors. During
the drug treatment course, an initial decrease in eGFR in the first weeks of the therapy is
observed, followed by a stabilization of sustained kidney protection over time [171,172].
Compared with other drugs, it is effective in patients with very low eGFR (30 to 45 mL/min
per 1.73 m2, ineligible for treatments) [173]. Moreover, the renoprotective outcome of
the drug is boosted when combined with other interventions, notably RAS blockade for
marked eGFR reduction. Clinically, the drug slowed down the progression of albuminuria
and reduced the kidney-to-body weight ratio, indicating a reduced risk of kidney-related
complications development and potential cardiovascular benefits, resulting in a lower
overall mortality rate [174,175].

SGLT2 inhibitors counter ROS by acting as antioxidants. In DKD patients, SGLT2 is
overactivated and subsequently causes increased glucose and sodium reabsorption. This
results in hypertension and a heightened energy demand of renal cells, contributing to
excess ROS generation [170]. By inhibiting the overreacting SGLT2, SGLT2 inhibitors lower
the accumulation of ROS. Additionally, the drug modulates antioxidant and prooxidant
activities. For instance, canagliflozin diminished high-glucose-induced ROS production
through the PKC-NAD(P)H oxidase pathway by upregulating PKC and NOX4, thereby
improving albuminuria and mesangial expansion [176]. Phlorizin is also found to reduce
free radical species such as 3-nitrotyrosine (3-NT) and raise the antioxidant activities of
catalase and glutathione peroxidase [177].

Moreover, SGLT2 inhibitors exert anti-inflammatory and anti-fibrotic activities to pre-
vent DKD progression. This is exemplified by Dapagliflozin, which limited the elevated
levels of HIF-1α and HIF-2α in renal proximal tubules, consequently suppressing inflam-
matory activities, such as macrophage infiltration, and fibrosis [178–180]. Such action also
stopped PCT transitioning from fatty acid utilization to glycolysis and lipid accumula-
tion, tackling the underlying cause of renal damage [180,181]. Hence, the drug improved
diabetes-induced tubulointerstitial damage symptoms. Moreover, empagliflozin is found
to work against proteinuric and non-proteinuric DKD through the modulation of ketone
body level [181–183]. Within the damaged tubular cells, it suppressed the overreacting
mTORC1 pathway, hence shifting the cells’ ATP production source from lipid to ketone.
As endogenous blood ketone body levels, such as β-OHB, elevate under ketolysis, they
prevent mTORC1-associated inflammation, which causes podocyte damage. As a result,
renal function is improved.
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Table 1. Therapeutic agents related to anti-inflammatory and antioxidant properties used for CKD management. Studies are organized according to the drug type to
compare their targeted metabolic pathways or targets involving oxidative stress and the key findings summarise the anti-inflammatory and antioxidant effects of the
drugs on different kidney disease models. The dosages and treatment duration are also outlined for each study.

Author Therapeutic
Agents Name Dose Targeted Kidney

Disease Kidney Disease Model Targeted Metabolic
Targets/Pathway Key Findings

Tamura et al. [105]

Statin

Pitavastatin,
Rosuvastatin, and

Pravastatin

0.005% (w/w)
pravastatin, pitavastatin

or rosuvastatin for
8 weeks

Diabetic
nephropathy db/db mice Urinary8-OHdG levels

Pitavastatin, Rosuvastatin, and
Pravastatin reduced oxidative
stress by decreasing urinary

8-OHdG levels, with the added
benefits of reduced albuminuria

and glomerular hypertrophy.

Bruder-Nascimento
et al. [102] Atorvastatin 10 mg/kg/day

for 2 weeks DKD db/db mice ERK1/2, Akt/GSK3β,
Nox4

Reduced oxidative stress, as
evidenced by downregulation of
ERK1/2, Nox4, upregulation of
Akt/GSK3β, and reduction of

ROS generation.

Zahr et al. [109] Atorvastatin 10 mg/kg/day
for 8 weeks

Sickle Cell
Nephropathy

Townes humanized
sickle-cell mice

NADPH oxidases, Cybb
and Nox4

Reduced oxidative stress by a
downregulation of NADPH
oxidases, Cybb, and Nox4.

Singh et al. [103] Atorvastatin 20 mg/kg/day
for 8 weeks

Diabetic
Nephropathy

Streptozotocin-treated
Wistar

rats fed with a
cholesterol-supplemented

diet

Histone deacetylase
(HDAC)

Reduced diabetes-induced renal
injury by the downregulation of

HDAC activity and increased
renal E-cadherin expression.

Zhang et al. [108] Simvastatin

0, 0.1, 1, or 10 µM of
Simvastatin and then
exposed to Ang II for

24 h

CKD

Inflammation and oxidative
stress induced by

angiotensin II (Ang II) in
human mesangial cells

(HMCs)

COX-2, PKCs, NADPH
oxidase, NF-κB p65,

PPARγ, prostaglandin E2,
TNF-α, IL-1β,

and IL-6

Reduced inflammation and
oxidative stress by downregulated

COX 2, TNF-α, and NADPH
oxidase activity.

Ota et al. [110] Cerivastatin 0.1, 1.0 mg/kg/day for
12 weeks

Diabetic
nephropathy

Spontaneously
hypertensive rats (SHR)

with
streptozotocin-induced

diabetes

MCP-1 and TGF-β

Reduced levels of inflammation
marker MCP-1 and fibrosis marker

TGF-β, with an added decrease
in albuminuria
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Table 1. Cont.

Author Therapeutic
Agents Name Dose Targeted Kidney

Disease Kidney Disease Model Targeted Metabolic
Targets/Pathway Key Findings

Yi et al. [127]

Metformin

2 mM/mL for 4 h for
cell treatment,

0.4 mg/mL in drinking
water for 14 days for

mouse model

Renal
tubulointerstitial

fibrosis

HK2 cells, folic
acid-induced
mouse model

of nephropathy

Smad3, ERK1/2, and P38,
TGF-β1, MCP-1, F4/80

Reduced overexpression of
TGF-β1 and improved renal
injuries, inflammation, and

fibrosis by targeting the TGF-β1
signalling pathway.

Lu et al. [128] 10 mM metformin for 0,
0.5, 1, 6, 12 h

Renal interstitial
fibrosis

Primary cultured mouse
renal fibroblasts

renal fibroblast collagen
type I, CTGF, Smad3,

AMPK

Reduced TGF-β1-induced
collagen production through
AMPK to limit Smad3-driven

CTGF expression.

Yi et al. [124]

0.4 mg/mL
metformin in drinking

water
for 21 days

Renal interstitial
fibrosis

Adenine-induced renal
injury mouse model

MCP-1, F4/80, ICAM1,
type IV collagen and
fibronectin, Smad3,

ERK1/2, P38, AMPK

Decreased inflammatory and
fibrotic indicators while inhibiting
phosphorylation of molecules like

Smad3, ERK1/2, and P38.

Thongnak et al. [131] 30 mg/kg/day
for 8 weeks renal dysfunction

Wistar rats with high-fat
diet-induced

insulin-resistant

AMPK, PPARα, SREBP1,
FAS, Oat3

Combating renal lipotoxicity by
activating AMPK/PPARα and

inhibiting lipid metabolism
pathways like SREBP1 and FAS.

Morales et al. [123] 150 mg/kg for
3 and 6 days

Gentamicin-induced
acute

renal failure
Gentamicin-treated rats

N-acetyl-β-D-
glucosaminidase,

cytochrome- c, and
Mitochondrial
NADH levels

Reduced gentamicin-induced
nephrotoxicity by reducing

N-acetyl-β-D-glucosaminidase
activity against mitochondrial

oxidative stress.

Ren et al. [133] 250 mg/kg/day
for 8 weeks

Type 2 Diabetes
Mellitus (T2DM)

High-fat diet and low-dose
streptozotocin diabetic rat
model and rat mesangial

cells (RMCs) cultured with
high glucose

AMPK, SIRT1, FoxO1

Reduced oxidative stress,
increased autophagy, and reduced

abnormal cell proliferation
through the

AMPK/SIRT1-FoxO1 pathway.

Zhang et al. [129] 70 mg/kg/day for
13 weeks

Type 2 diabetic
nephropathy

High-fat diet and low-dose
streptozotocin

diabetic rat model
TGF-β1, CTGF

Ameliorated kidney dysfunctions
and reduced levels of markers like
TGF-β1 and CTGF, highlighting its
renoprotective effects attributed to
anti-inflammatory, anti-oxidative,
and lipid-modulatory activities.
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Table 1. Cont.

Author Therapeutic
Agents Name Dose Targeted Kidney

Disease Kidney Disease Model Targeted Metabolic
Targets/Pathway Key Findings

Li et al. [146]

GLP-1

Liraglutide 300 µg/kg every
12 h for 7 days Renal fibrosis

Unilateral ureteral
obstruction mouse model
and TGF-β1-treated renal

tubular epithelial cells

TGF-β1, Smad3, ERK1/2

Interrupts the
epithelial-mesenchymal transition
(EMT) process in renal fibrosis by
downregulating TGF-β1 and its

receptor and inhibiting molecules
like pSmad3 and pERK1/2.

Dalbøge et al. [150] Semaglutide 30 nmol/kg/day for
11 weeks Type 2 diabetes

adeno-associated
virus-mediated renin
overexpression in the

uninephrectomized diabetic
db/db mouse

kidney injury molecule-1
(KIM-1)

Reduced hyperglycemia,
hypertension, and albuminuria;

enhanced kidney
function by reducing levels of

kidney
injury molecule-1 (KIM-1).

Chen et al. [142] Semaglutide 30 nmol/kg/day for
13 weeks

Obesity-related
glomerulopathy

High-fat diet C57BL/6J
mice model

Adenosine, NAD+, IL-6,
IL-1β, and TNF-α

Ameliorated kidney injury by
enhancing oxidative stress and
inflammation-related kidney

metabolites, specifically NAD+
and adenosine.

Yeung et al. [143] Dulaglutide 0.6 mg/kg every
7 days for 4 weeks

Type 2 diabetes
mellitus

High-fat diet C57BL/6J
mice model

CDS1, PGPS, CLS, and
TAZ

Protected against renal
dysfunction by

enhancing cardiolipin levels and
upregulating cardiolipin synthesis

genes, crucial for mitochondrial
respiratory complexes.

Ougaard et al. [144] Liraglutide
Accumulated

1 mg/kg within
4 days

Human CKD
without metabolic

syndrome
(hyperglycaemia,
dyslipidemia, and

obesity),

Enalapril-treated mice

MAS1, CCL2, C3, C5aR1,
CD3d, CD68, CXCL10,

IL33, Itgam, JAK1, TNFα,
Nox4 and VACM1

Improved eGFR and reduced renal
fibrosis and inflammation by

downregulating
inflammatory genes like C3, CCL2,

and TNFα and modulating
angiogenesis,

fibrosis, inflammation, and
proliferation pathways.

Yin et al. [151] Beinaglutide
1.5 pmol/kg/min for

12 weeks by
osmotic pumps

Diabetic
nephropathy

Streptozotocin-induced
diabetes rats PKC-β and PKA

Countered diabetic nephropathy
by inhibiting PKC-β, boosting

PKA activities, and affecting the
expression of re-absorption

proteins megalin and cubilin.
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Table 1. Cont.

Author Therapeutic
Agents Name Dose Targeted Kidney

Disease Kidney Disease Model Targeted Metabolic
Targets/Pathway Key Findings

Zhang et al. [162]

ARBs

Captopril 10 mg/kg
for 8 weeks Diabetes mellitus

Lprdb/db (db/db) and
Lprdb/+ (db/+) mice in

C57BL/6-KS
CTGF and VEGF

Reduced profibrotic markers,
CTGF, and VEGF, and potentially

inhibiting the
synthesis of ANG II.

Nishiyama et al. [166] Telmisartan 10 mg/kg/day
for 9, 22 weeks

Diabetic
nephropathy

Otsuka Long–Evans
Tokushima Fatty rats

type I collagen,
type IV collagen

Blocked angiotensin II, leading to
a reduction in systolic blood

pressure, downregulation of type I
and type IV collagen genes, and

prevention of
albuminuria increase.

Srivastava et al. [167] Imidapril +
AcSDKP

2.5 mg/kg/day
(Imidapril) and
500 µg/kg/day

(AcSDKP)

Fibrotic DKD streptozotocin (STZ)-treated
CD-1 mice

DPP-4, TGFβ,
miR-29, miR-let-7

Inhibited markers of DPP-4 and
TGFβ

signalling and preserved miR-29
and

miR-let-7 family interactions in
endothelial cells.

Banes et al. [164] Candesartan or
Captopril

75–85 mg/kg/day for
2 week

(Captopril) and
10 mg/kg/day for

2 weeks

Diabetes mellitus Streptozotocin-induced
diabetes rats

JAK2, STAT1, STAT3, and
STAT5

Inhibited the activation of JAK and
STAT proteins in rat glomeruli and

suppressed phosphorylation of
JAK2, STAT1, STAT3, and STAT5.

Gross et al. [165] Ramipril or
Candesartan

10 mg/kg/day for
3–6 weeks

(Ramipril and
Candesartan)

Non-hypertensive
progressive renal

fibrosis
COL4A3−/− mice CTGF, TGFβ

Ramipril and Candesartan
reduced renal fibrosis, and

profibrotic markers, CTGF and
TGFβ. Ramipril showed a
stronger antifibrotic effect.
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Author Therapeutic
Agents Name Dose Targeted Kidney

Disease Kidney Disease Model Targeted Metabolic
Targets/Pathway Key Findings

Cai et al. [180]

SGLT2
inhibitors

Dapagliflozin 1.5 mg/kg/day for
12 weeks DKD

Streptozotocin-induced
experimental mouse model

and primarily cultured
proximal tubule
epithelial cells

HIF-1α

Limited the elevated levels of
HIF-1α in the renal proximal

tubule; improved symptoms of
tubulointerstitial damage and

suggested its potential as a
therapeutic strategy for kidney

tubule issues in DKD.

Tomita et al. [182] Empagliflozin 30 mg/kg/day
for 8 weeks DKD

Damaged proximal tubules
of high-fat diet-fed

ApoE-knockout mice
Blood β-OHB level

Increased blood levels of the
ketone body β-OHB, which might

play a key role in its
kidney-protective effects

Inada et al. [179] Canagliflozin 40 mg/kg/day
for 20–37 weeks

Diabetic
nephropathy

Inducible cAMP early
repressor transgenic

(Tg) mice
HIF-1α and HIF-2α

Counteracted glomerulosclerosis
and interstitial fibrosis by

restoring abnormal HIF-1α and
HIF-2α expressions.

Maki et al. [176] Canagliflozin
0.01, 0.1, 1.0,

3.0 mg/kg/day
for 8 weeks

Diabetic
nephropathy db/db mice PKC, NOX4,

fibronectin

Diminished high-glucose-induced
ROS production and reduced

TGF-β1 and
fibronectin, indicating its

reno-protective capabilities
through possible inhibition

of mesangial SGLT2.

Matthews et al. [184]
Dapagliflozin,
Canagliflozin,
Empagliflozin

25 mg/kg/day
for 8 weeks DKD Kimba and Akimba

mouse models SGLT2

Slowed the progression of kidney
disease, showcasing the

therapeutic potential of these
SGLT2 inhibitors for

kidney health.

Lu et al. [185] Empagliflozin 10 mg/kg/day
for 12 weeks DKD db/db mice (C57BLKS/J-

leprdb/leprdb)

Renal purine
metabolism,
Pyrimidine
metabolism,
Tryptophan
metabolism,

Nicotinate and
nicotinamide

metabolism, Glycine,
serine, and threonine
metabolism in serum

Modulated various renal
metabolic pathways, indicating its

potential in renoprotection by
reducing oxidative stress and

influencing specific amino acid
transporters and enzymes in DKD.
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4. Evaluating the Potential of Bioactive Supplements and Herbs as Antioxidative Agents
in CKD Therapeutics

In the context of CKD, oxidative stress and inflammation are pivotal players in the
advancement of renal dysfunction. Driven by metabolic abnormalities such as obesity,
hypertension, and diabetes, these pathways inflict cellular damage and tissue fibrosis,
worsening the intricate pathophysiological of CKD. While conventional pharmacother-
apeutics such as statins, metformin, GLP-1, ACEi, ARBs, and SGLT2 inhibitors were
initially developed to ameliorate metabolic syndromes, their renoprotective effects through
antioxidative and anti-inflammatory mechanisms have been well discussed in the pre-
vious section. Consequently, this section shifts its focus to evaluating specific bioac-
tive supplements and herbs, including Lactoferrin, Boerhaavia diffusa, Amauroderma ru-
gosum, and Ganoderma lucidum, as potential adjuncts in the treatment of CKD with an
emphasis on antioxidative effects. These compounds serve as examples of natural antioxi-
dants that have shown potent anti-oxidative and anti-inflammatory properties in different
disease models.

Lactoferrin is an iron-chelating glycoprotein found exogenously in bovine milk or
endogenously in body secretions such as saliva [186]. Known to possess a variety of
beneficial properties, exemplified by their anti-inflammatory, immunomodulatory, and
anti-cancer properties, they have a wide spectrum of applications for improving human
health [186,187]. It is often used in the pharmaceutical industry for disease therapy such as
iron-deficiency anaemia and COVID-19 [188,189]. Recently, the utilization of lactoferrin
as an additive in supplements that serve medical purposes, including infant formula
and nutrient supplements, is also common in the food industry [187]. Nevertheless, as
lactoferrin exhibits antioxidative and anti-inflammatory activities, potentially proving it as
a potent renoprotective supplement by related mechanisms, its clinical applicability awaits
further validation through human trials.

Boerhaavia diffusa (BD) has a long history of use in Ayurvedic medicine and is also
utilized in other regions such as South America and Africa [190]. BD is rich in nutri-
tional supplements and contains various beneficial compounds, including isoflavonoids,
steroids, and phenolic compounds like Boervinones, quercetin, caffeoyltartaric acid, and
terpenoids [191,192]. Experiments on in vitro and in vivo models have also suggested
many therapeutic functions of BD such as anti-diabetic, anti-inflammatory, anti-cancer, and
hepatoprotective and renoprotective properties [193]. These compounds extracted from
BD function as direct antioxidants, attractants, and defence response chemicals [194]. They
are crucial in combating damaging effects such as oxidative stress, ageing, and inflam-
mation in the human body [194,195]. As a result, BD has been traditionally used in the
treatment of various conditions, including asthma [196], gynaecological disorders [197],
and urinary tract infections [198]. Given its traditional use and reported phytochemistry,
BD is a promising potential candidate as a bioactive supplement for CKD.

Amauroderma rugosum (AR) is a type of polypore fungus that is used in traditional
Chinese medicine. It belongs to the Ganodermataceae family [199]. In the traditional practices
of the Temuan tribe in Peninsular Malaysia, AR is worn as a necklace to prevent fits, which
are commonly known as epilepsy. It has also been associated with inflammation [200].
AR contains various phenolic compounds and triterpenes that have been shown to have
antioxidant, anti-inflammatory, anti-apoptotic, anti-fibrotic, and immunomodulatory ef-
fects [200,201]. Neuroprotective, anti-cancer, anti-hyperlipidemic, anti-epileptic, and more
recently, gastroprotective effects have been reported [199,202,203]. To the best knowledge
of the authors, there are no reports of the renoprotective effects of AR hitherto, but the
bioactivities of AR may potentially benefit patients with CKD, a condition characterized
by oxidative stress, inflammation, fibrosis, and dysfunctional immunity [204,205]. It is
also noteworthy that the antioxidative effect was shown to be even higher than Ganoderma
lucidum, a more widely studied member of the same family, which could be attributed
to more concentrated phenolic compounds in AR [206]. Therefore, AR is anticipated
to have potent renoprotective effects and is considered a promising bioactive supple-
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ment that should be further investigated in clinical studies for its potential to manage
and prevent the progression of CKD in humans. Ganoderma lucidum (GL) is a medic-
inal mushroom that originated from Chinese medicine and was believed to improve
longevity. Containing bioactive compounds such as triterpenoids, LZ-8, polysaccharides,
and polypeptides throughout different parts of the mushroom, GL commercial products
were produced from the mushroom’s mycelia, spores, and fruit body [207,208]. Bioactive
components in GL exhibit a large variety of health-promoting activities such as antioxi-
dant, hypoglycaemic, anti-tumour, cardioprotective, and immunomodulatory effects in
combination [209–211]. Nowadays, it is commonly used to treat a variety of highly preva-
lent diseases with high mortality rates such as cancer and cardiovascular and metabolic
syndromes [210,212]. As GL consists of bioactive compounds with antioxidant and anti-
inflammatory activity, its ability to ameliorate CKD has been widely investigated in recent
years [212,213].

Despite their potential, the clinical translation of these bioactive supplements and herbs
is limited by a lack of human studies, necessitating rigorous clinical trials for mechanistic
explanation and therapeutic validation. A comprehensive overview of these bioactive
supplements and herbs, summarizing current findings on targeting various diseases, related
metabolic targets/pathways involving oxidant stress, and key findings of supplements and
herbs has been provided in Table 2.

4.1. Lactoferrin

Lactoferrin, originally known as lactotransferrin, stands as a multifunctional iron-
binding glycoprotein belonging to the transferrin protein family. It was first isolated from
bovine milk in 1939 and later identified as the primary iron-binding protein in human
milk [214,215]. Interestingly, it has also been found in different mammalian species includ-
ing bovines, cows, goats, horses, and non-mammalian species like fish [216]. Lactoferrin
is a multipurpose protein involved in a range of physiological and protective functions,
such as regulating iron absorption in the gut and displaying antioxidant, anticancer, anti-
inflammatory, and antimicrobial activities [217–225]. Aside from its abundance in mam-
malian milk and colostrum, lactoferrin is widely distributed in various bodily secretions
like tears, saliva, and semen, as well as in neutrophil granules [226–228]. Structurally, the
protein has a molecular weight of 80 kDa and is comprised of approximately 700 amino
acids, with a high degree of homology observed between different species [222,229–232].
Given its broad physiological functions and high tolerance in humans, it has received
FDA and European Food Safety Authority approval as a dietary supplement in food
products [233].

The antioxidative effects of lactoferrin as well as its protective effects in various renal
pathologies have been demonstrated in a number of studies. These studies showed that
lactoferrin administration reduced albuminuria, blood urea, and creatinine levels in the
renal disease model, which implied improved renal function [234–237]. Alleviation of
renal damage by lactoferrin was further demonstrated by the reduction of kidney injury
markers and histological findings [234–236]. Moreover, lactoferrin reduced inflamma-
tory cytokine levels (e.g., IL-6), downregulated ERK1/2 and NF-κB pathways [236], and
lowered CTGF levels [235,237], proving the anti-inflammatory and anti-fibrotic roles of
lactoferrin. Notably, lactoferrin exerted antioxidative actions in its protection against renal
diseases. It was shown to decrease oxidative stress and enhance antioxidative capacity by
upregulating the Nrf2/HO-1 pathway [235,237]. As oxidative damages caused by ROS
were prevented, kidney injury and failure could be alleviated, associated with the reduced
morbidity and mortality of CKD patients [238]. Some studies suggested that other biologi-
cal processes might also be involved in the protective effects of lactoferrin against renal
diseases, including enhancing autophagy and reduction of necroptosis [234,237].
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Despite these encouraging results, there are limitations to consider. The majority
of studies [234–237] have predominantly used animal models or in vitro setups, which
may not fully represent human physiology. Furthermore, the diverse range of metabolic
markers targeted in these studies—AMPK, SREBP1, SREBP2, CSF2/CENPE, HIF-1α/VEGF,
Akt/mTOR, IL-6, and now Nrf2/HO-1—suggests that our current understanding of lacto-
ferrin’s antioxidant mechanisms remains incomplete. In summary, lactoferrin has demon-
strated antioxidative and anti-inflammatory impacts through multiple biochemical mark-
ers and pathways across numerous studies. However, the need for more human clini-
cal trials is evident to further validate these promising yet preliminary findings and to
provide a more complete understanding of lactoferrin’s therapeutic potential, especially
in CKD.

4.2. Boerhaavia diffusa

BD, also known as Punarnava, is a perennial creeping herb belonging to the Nyctagi-
naceae family. It is commonly found in various tropical and subtropical regions, including
India, Brazil, Africa, Australia, and multiple countries in the Middle East. [239]. The six
Boerhaavia species found in India include B. diffusa, B. chinensis, B. erecta, B. repens, B. rependa,
and B. rubicunda [240]. Known by the Sanskrit name Punarnava, which translates to “one
that rejuvenates the old body”, B. diffusa is a unique plant that dries up during the sum-
mer only to regenerate in the rainy season. It was named in honour of the 18th-century
Dutch physician Hermann Boerhaave [240]. The plant is characterized by its sprawling
branches and stout, fusiform roots. Its leaves are thick, fleshy, and hairy, while its small
flowers range from pink to pinkish-red in colour [241]. Notably, the whole plant serves
as the source for the drug Punarnava, which is recognized in the Indian Pharmacopoeia
for its diuretic properties. BD holds significant ethnobotanical value and is traditionally
used to treat different diseases, ranging from liver complaints and kidney disorders to
cardiac conditions and general debility [242–244]. Its resilience and extensive therapeu-
tic applications make it a subject of immense interest for both traditional medicine and
scientific research.

BD has been extensively studied for its antioxidant and renoprotective properties in
various kidney diseases. In CKD, it downregulated TGF-β, a marker commonly associated
with renal fibrosis, signifying its antifibrotic and antioxidant potential [245]. In diabetic
nephropathy, BD significantly impacts key antioxidant enzymes such as GPx, CAT, SOD,
and GSH, restoring renal antioxidant status [246]. Remarkably, its effect on antioxidant
enzymes rivals or surpasses that of metformin in targeting diabetes mellitus [247]. In the
case of urolithiasis, BD protects against the oxidative stress and renal cell injury induced by
calcium oxalate crystal formation [248]. Notably, Pareta et al. focused on hyperoxaluria
and demonstrated that BD reduced oxalate excretion and malondialdehyde (MDA) and
different antioxidant enzymes including SOD, CAT, GST, and GPx [249]. Oburai et al.
further extended the research to treating chronic renal failure in dogs and found BD to be
comparable to enalapril in reducing several markers of kidney function, such as serum
creatinine, urea nitrogen, phosphorus, and urinary protein [250]. In particular, this herb
was effective in normalizing potassium levels. Integrating the findings of these studies,
it is signified that BD exerts its renoprotective effects by countering fibrosis and ROS
accumulation in CKD conditions.

While these studies offer compelling insights into BD’s potential, they also echo limita-
tions similar to those found in lactoferrin research. Many of these investigations [245–250]
have been restricted to animal models, and the precise biochemical pathways underlying
BD’s antioxidant mechanisms are still only partially understood. Hence, more human
clinical trials are necessary for a detailed understanding of these mechanisms.
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4.3. Amauroderma rugosum

AR, commonly referred to as “jiazhi” or “wuzhi” in traditional Chinese medicine, be-
longs to the Ganodermataceae family and is a unique basidiomycete mushroom. The fungus
is found predominantly in tropical and subtropical zones, including regions such as China,
South Pacific, South Atlantic, Indonesia, Taiwan, Equatorial Guinea, and Australia [199].
Characterized by its distinctive taupe-to-black cap, which is rugged and tomentose with
a width ranging from 6–9 cm in diameter and 0.7–1.3 cm in thickness, AR has a hyme-
nium that turns dark red upon being scratched, earning the name “Blood Lingzhi” in
Chinese culture [251]. Despite being relatively underexplored in the scientific literature,
existing literature reveals a complex phytochemical profile that includes sterols, flavonoids,
fatty acids, phenolic compounds, and other bioactive elements [199–201,252–254]. These
compounds have shown promise in preliminary research for their anti-proliferative, anti-
inflammatory, and antioxidant properties, thereby suggesting potential applications for
AR in the treatment of cancer and inflammatory diseases [199]. Given the limited scope of
current research on AR, further studies are needed to validate these findings and explore
additional therapeutic applications.

AR has demonstrated considerable promise in its antioxidant capabilities across var-
ious medical conditions, especially in age-related diseases [199]. In a study focused on
gastric ulcers, Mai et al. observed that AR significantly reduced the size of gastric ulcers
in ethanol and indomethacin-treated rats while lowering levels of inflammatory mark-
ers such as TNF-α, IL-6, and IL-1β [255]. Additionally, their study revealed that AR
inhibited NF-κB P65 nuclear migration and downregulated NLRP3 gene expression. Li
et al. focused on Parkinson’s disease and found that AR’s aqueous extract not only scav-
enged ROS in 6-OHDA-treated PC12 cells but also restored the downregulated Akt/mTOR
and MEK/ERK signalling pathways [201]. Furthermore, Li et al. found upregulation of
Nrf2 and HO-1 in Doxorubicin-induced cardiotoxicity models after AR extract admin-
istration [256]. Chan et al. presented its anti-inflammatory and antioxidant activity in
LPS-treated murine macrophage RAW264.7 cells, through the effective scavenging of ni-
tric oxide, ABTS, and DPPH radicals [200]. Similarly, another study conducted by Chan
et al. confirmed AR’s ability to scavenge DPPH and ABTS radicals in the LPS-treated
murine macrophage RAW264.7 cells [254]. Meanwhile, Shiu et al. demonstrated that
AR reduced intracellular ROS levels and inhibited the release of oxidant-stress-related
cytokines and chemokines like IL-1β and IL-8 in TNF-α- and IFN-γ-stimulated HaCaT
keratinocytes [257]. The study also identified that AR can downregulate key signalling
pathways related to oxidant stress, including NF-κB, MEK1/2, ERK1/2, and Akt/mTOR.
Despite these promising findings, the existing studies often target specific metabolic path-
ways or markers without offering a comprehensive view of AR’s antioxidative mechanisms.
This targeted focus limits our complete understanding of how AR functions as an antiox-
idant. Moreover, given that AR exhibits antioxidant effects, its action on the kidney has
yet to be discussed in previous studies. As kidney damage is aggravated by ROS- and
inflammation-related pathways, AR could exert a beneficial effect on renoprotection in CKD.
Therefore, future research should adopt a holistic approach to better elucidate AR’s full
antioxidative potential.

4.4. Ganoderma lucidum

GL, also known as “lingzhi” or “reishi”, a medicinal mushroom revered for its diverse
bioactive components, has been a cornerstone in traditional Chinese medicine for over
2400 years. This fungus is highly esteemed for its capacity to promote health, longevity, and
cognitive growth, primarily due to its potent immune-boosting attributes [258]. Among
the bioactive compounds in GL, triterpenoids and polysaccharides are the most phar-
macologically active, showing a range of medicinal effects like antimicrobial, antitumor,
anti-inflammatory, and hypolipidemic activities [259–269]. Modern scientific research has
further underscored its immunostimulant and antioxidant properties [270]. Polysaccharides
derived from GL have been particularly noted for their antioxidant capabilities [271–273],
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and triterpenoids are recognized for their complex and highly oxidized chemical structures
that contribute to the mushroom’s biological capacity [274,275]. Various purification meth-
ods, such as trichloroacetic acid (TCA) precipitation, enzymatic methods, and lead acetate
precipitation have been used to purify these polysaccharides, each with its advantages
and limitations [276–280]. Given the mushroom’s multifaceted bioactivity and historical
relevance, GL continues to be an object of extensive research and a promising candidate for
future nutraceutical and medicinal applications.

GL has garnered significant interest for its potential therapeutic applications in a
range of diseases, particularly those affecting the liver and kidneys. This interest stems
primarily from its antioxidant and anti-inflammatory properties. In terms of diabetic
nephropathy, He et al. demonstrated that Ganoderma lucidum polysaccharides (GL-
PS) significantly ameliorated metabolic abnormalities in streptozotocin-induced diabetic
mice [281]. Specifically, GL-PS reduced serum creatinine and blood urea nitrogen levels
while reducing oxidative stress regulation markers such as MDA and SOD. Pan et al. also
reported a substantial increase in kidney antioxidant enzymes such as SOD, GSH-px, and
CAT when treated with GL proteoglycan [282]. Similarly, Zhong et al. found that GL
improved renal function in a renal ischemia-reperfusion injury model by diminishing
ROS production and inhibiting stress-induced apoptosis [283]. Overall, these findings
revealed GL’s potential to restore renal function, mainly through its antioxidative and
anti-apoptotic actions.

For liver diseases, Wu et al. showed that GL extract reversed thioacetamide-induced
liver fibrosis in mice, likely through enhancing collagenase activity [284]. Shi et al. found
that GL-PS protected against chronic liver injury in D-galactosamine-treated mice by
reducing oxidative stress markers such as MDA and liver damage markers such as AST and
ALT [285]. Lin and Lin indicated that GLE effectively reduced carbon tetrachloride-induced
liver fibrosis and oxidative stress, as evidenced by decreased MDA levels [286]. Lai et al.
showed that GL reduced oxidative damage in proximal tubular epithelial cells, although
their study focused more on inflammatory markers like IL-8 and sICAM-1 rather than on
oxidative stress markers [287].

Despite the promising data on GL’s potential therapeutic benefits, gaps remain in
the existing research, particularly with respect to understanding its antioxidant mech-
anisms. While the studies conducted by He et al. [281] and Pan et al. [282] highlight
the potential antioxidant benefits of GL in treating kidney diseases, they did not iden-
tify the specific active components responsible for the antioxidant effects. On the other
hand, Seto et al. focused on its impact on diabetes mellitus but did not explore its an-
tioxidant pathways [288]. This lack of comprehensive analysis leaves important ques-
tions unanswered, particularly concerning the identification of the active components
and the exact antioxidant mechanisms at play. These limitations suggest that existing
research provided only a partial understanding of the specific antioxidant pathways
and active components responsible for GL’s beneficial effects. To fully elucidate its
mechanisms, particularly concerning its antioxidant effects, more comprehensive studies
are needed.
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Table 2. The potential of bioactive supplements and herbs in CKD antioxidative therapeutics. Studies are organized according to the supplement/herb type
to compare their targeted metabolic pathways involving oxidative stress and the key finding summarises the anti-inflammatory and antioxidant effects of the
supplement/herbs on different disease models. The dosages and treatment duration are also outlined for each study.

Author Supplement/Herbs Dose Targeted Disease Disease Model Targeted Metabolic Targets Key Findings

Aoyoma et al.
[289]

Lactoferrin

0, 100, or
500 mg/kg/day for

17 weeks

Non-alcoholic
steatohepatitis (NASH)

Connexin 32 dominant
negative transgenic

(Cx32∆Tg) rats fed with a
high-fat diet (HFD)

TNF-α, IL-6, IL-18, IL-1β,
TGF-β1, TIMP2, COL1a1,

(NF)-κB

Reduced inflammation and fibrosis in a NASH
rat model, potentially via NF-κB and TGF-β1

signalling pathways.

Alnahdi et al.
[290]

0, 50 mg/kg/day for
30 days

Diabetic nephropathy and
cardiomyopathy

Streptozotocintreated
Wistar rats AGEP, CTGF, TNFα, IL-6

Improved kidney and heart function in diabetic
rats by suppressing CTGF expression and
inflammatory cytokines TNF-α and IL-6.

Singh et al.
[236]

22.07% LF diet for
8 weeks

Hypertensive stroke and
nephropathy

High-fat-fed spontaneously
hypertensive stroke-prone

rats

Renin, osteopontin, MCP-1,
IL-6

Decreased renal damage and delayed stroke
onset in rats, with a significant reduction in

glucose levels and downregulation of kidney
damage markers.

Hsu et al.
[237]

0, 100, 150,
200 µg/mL for 24 h

(cells); 2, 4 mg/mouse
twice a week for
five weeks (mice)

Acute kidney injury HK-2 cell, Folic acid-treated
C57BL/6 mice

LTF, AMPK, Akt, mTOR,
CTGF, PAI-1, and Collagen I

Obstructed renal fibrosis and reduced oxidative
stress in kidney cells, notably inducing
autophagy via the activation of AMPK.

Mohamed et al.
[235]

0, 300 mg/kg/day for
7 days

Cyclophosphamide-
induced nephrotoxicity

Cyclophosphamide-treated
Sprague Dawley rats

Nrf2, HO-1, p-ERK1,
p-ERK2, TNFα, IL-6, NF-κB,

Wnt4, β-catenin, GSK-3β,
klotho, caspase-3 and Bcl2

Lowered creatinine and blood urea nitrogen
(BUN) levels in cyclophosphamide-treated rats,

while modulating several kidneys protective
signalling pathways such as downregulating

ERK1/2 and NF-κB and enhancement in
Nrf2/HO-1 signalling led to increased

antioxidant capacity.

Liu et al. [234]

0, 10, 20, 30,
40 µg/mL for 6 h (cell

treatment); 0, 2,
4 mg/mouse twice

a week for 10 weeks
(mice)

Particulate matter-induced
nephrotoxicity

HK-2 cells and C57BL/6
mice exposed to particulate

matter
CSF2, CENPE

Prevented particulate matter-induced kidney cell
death by inhibiting necroptosis, while inducing
autophagy through the CSF2/CENPE pathway.

Guo et al.
[291]

0, 4 mg/kg/day for
40 days

Non-alcoholic fatty
liver disease

Leptin-deficient (ob/ob)
C57BL/6J mice

SREBP2, HIF-1α, VEGF,
SOD1, JAK2, IL-6, Bax,

Caspase3

Improved hepatosteatosis in ob/ob mice by
regulating lipid and iron homeostasis,

suppressing oxidative stress and inflammation
and inducing hepatic autophagy.
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Table 2. Cont.

Author Supplement/Herbs Dose Targeted Disease Disease Model Targeted Metabolic Targets Key Findings

Pareta et al.
[249]

Boerhaavia diffusa

100, 200 mg/kg/day
for 28 days Hyperoxaluria Ethylene glycol (EG)-treated

Wistar albino rats

Urinary oxalate, serum
creatinine, blood urea
nitrogen (BUN), MDA,
SOD, CAT, GST, GPx

Inhibited oxalate synthesizing enzymes,
reducing urinary oxalate. The diuretic effect

reduced oxalate saturation and prevented CaOx
precipitation. Improved renal function markers
(BUN, creatinine clearance). Mitigated oxidative
stress markers and restored antioxidant enzyme
activity. Inhibited crystal deposition in kidneys.

Sathees-h &
Pari [246]

0, 200 mg/kg/day for
4 weeks Diabetes mellitus Alloxan treated rats SOD, CAT, GPx, GST, GSH

Reduced lipid peroxidation markers (TBARS,
hydroperoxides). Increased levels of Glutathione
(GSH) and activity of antioxidant enzymes (SOD,

CAT, GPx, GST). Contains compounds like
alkaloids and sterols, responsible for antioxidant

and antidiabetic effects.

Oburai et al.
[250]

500 mg/dog/day for
90 days Chronic renal failure (CRF) Dogs suffering from CRF

Serum Creatinine, urea
nitrogen, phosphorus,

urinary protein, ALP, GGT

Improved symptoms and fewer deaths
compared to the enalapril group. Reduced

systolic and diastolic blood pressure.
Normalized serum levels of urea nitrogen,

creatinine, sodium, phosphorus, and potassium.
Reduced markers of renal damage (ALP, GGT,

urinary protein levels).

Sadayan et al.
[245]

400 mg/kg/day for
14 days CKD Adenine-treated Wistar

albino rat
Urea, serum creatinine,

TGF-β

Reduced harmful serum markers like creatinine,
urea, and glucose. Improved haematological

parameters including red blood cells, epithelial
cells, and urinary parameters including albumin

levels. Downregulated TGF-β expression,
indicating antifibrotic potential.

Singh et al.
[247]

500 mg/kg/day for
30 days Diabetic nephropathy Alloxan-treated Wistar

albino rat
Serum urea, creatinine, GPx,

Catalase, SOD, GSH

Reversed loss of body weight and renal protein
content. Reduced diabetic symptoms like

increased water and food intake. Significant
hypoglycaemic effect and increased insulin

levels. Improved ionic homeostasis and enzyme
activity (Na+–K+ ATPase).

Pareta et al.
[248]

100, 200 mg/kg/day
for 28 days Urolithiasis Ethylene glycol-treated

Wistar rats
Calcium oxalate (CaOx)

crystallization

Fewer and smaller CaOx crystals in urine
post-treatment. Beneficial impact on crystal

morphology. Prevented elevated oxalate and
calcium levels associated with kidney damage.
Protected against oxidative stress and renal cell

injury induced by crystal formation.
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Table 2. Cont.

Author Supplement/Herbs Dose Targeted Disease Disease Model Targeted Metabolic Targets Key Findings

Mai et al.
[255]

Amauroderma rugosum

50, 100, 200 mg/kg
for 7 days Gastric ulcer Ethanol and indomethacin

treated Sprague Dawley rat
TNF-α, IL-6, IL-1β, PGE2,

NLRP3, NF-κB

Reduced ethanol-induced gastric injuries and
reversed elevated serum NO levels, implicating

antioxidant properties for ulcer healing.
Increased serum PGE2 levels, further aiding in
ulcer healing. Lowered inflammatory cytokines

such as TNF-α, IL-6, and IL-1β, while
suppressing NLRP3 and NF-κB signalling

pathways, indicating comprehensive
anti-inflammatory mechanisms

Chan et al.
[200]

0.01–100 µg/mL for
24 h Inflammatory disorders LPS-treated murine

macrophage RAW264.7 cells DPPH, ABTS, Nitric Oxide

A. rugosum mycelia are nutrient-rich,
antioxidant, and anti-inflammatory properties.

Ethyl linoleate and ergosterol contribute to
anti-inflammatory effects

Chan et al.
[254]

0.1–100 µg/mL for
24 h Chronic inflammation LPS-treated murine

macrophage RAW264.7 cells
TNF-α, IL-10, NF-κB,

DPPH, ABTS

Both wild and domesticated versions of
Amauroderma rugosum downregulated TNF-α

proinflammatory cytokines and upregulated
IL-10 anti-inflammatory cytokines, but did not

affect NF-κB translocation

Seto et al.
[288]

Ganoderma lucidum

0.003, 0.03 and
0.3 g/kg/day for

4 weeks
Type 2 diabetes mellitus db/db mice PEPCK

Reduced plasma glucose levels without affecting
insulin, suggesting that hypoglycaemic effects
are not insulin dependent. Suppressed hepatic

PEPCK gene expression, contributing to glucose
regulation. It did not impact HMG CoA

reductase, dismissing its role in cholesterol
synthesis. Reduced body weight in

obese/diabetic mice, likely due to abdominal
fat reduction.

Pan et al.
[282]

75, 250,
450 mg/kg/day for

8 weeks
Diabetic nephropathy C57BL/6J db/db mice

serum creatinine, urea
nitrogen, urea acid,
albuminuria, SOD,

GSH-px, CAT

Lowered blood glucose levels and protected
pancreatic β-cells, implying potential in

managing diabetes. Exhibited
hypotriglyceridaemia and hypocholesterolaemia

effects, potentially preventing diabetic
complications. Confirmed renal-protective roles

against diabetic nephropathy by altering key
biochemical markers and suppressing

oxidative stress.



Antioxidants 2024, 13, 751 25 of 38

Table 2. Cont.

Author Supplement/Herbs Dose Targeted Disease Disease Model Targeted Metabolic Targets Key Findings

Zhong et al.
[283]

Ganoderma lucidum

100 mg/kg/day for
7 day

Renal ischemia-reperfusion
injury

C57BL/6J mice with renal
ischemia-reperfusion injury

and tunicamycin-treated
NRK-52E cells

Bax, Bcl-2, caspase-3,
GRP78, CHOP,

caspase-12, JNK

Mitigated renal ischemia-reperfusion injury by
balancing oxidative stress markers and inhibiting
ROS production. Alleviated mitochondrial and

endoplasmic reticulum stress-induced apoptosis,
suggesting broad renal protective activities.

Lai et al. [287] 4, 8, 16, 32, 64 µg/mL
for 24 h Tubulointerstitial injury

Albumin-treated human
proximal tubular epithelial

cells
IL-8, sICAM-1

Demonstrated immunomodulatory effects and
protected against cytotoxicity and DNA damage

in renal cells. Indicated anti-inflammatory
properties by reducing specific cytokine release.

He et al. [281] 125, 250 mg/kg/day
for 8 weeks Diabetic nephropathy Streptozotocin-treated

C57bl/6J mice MDA, SOD, TGF-β

Reduced urinary albumin excretion and
improved key renal function markers,

supporting a protective role in diabetic
nephropathy. Also ameliorated hyperglycaemia

and oxidative stress

Wu et al.
[284]

0.5, 1.0 g/kg/day for
4 weeks Liver fibrosis Thioacetamide-treated

BABL/c mice
MMP-13, TIMP-1,

collagen a1

Reversed liver fibrosis and modulated
extracellular matrix degradation in mice.

Improved body and liver weight, suggesting
hepatic recovery. Altered the MMP-13/TIMP-1

ratio, implying a role in extracellular
matrix remodelling.

Shi et al. [285]
60, 120, and

180 mg/kg/day for
2 weeks

Chronic liver injury D-galactosamine-treated
Kunming mice AST, ALT, MDA, SOD, GSH

Reduced liver damage markers AST and ALT,
indicating hepatoprotective effects.

Demonstrated antioxidative capacities by
maintaining liver enzyme activities and reducing

MDA oxidative stress marker

Lin & Lin [286] 600, 1600 mg/kg/day
for 8 weeks Liver fibrosis

Carbon
tetrachloride-treated Wistar

rats

MAT1A, MAT2A,
TGF-β1, MDA

Prevented liver injury by reducing plasma ALT
and AST levels, and reduced MDA oxidative

stress marker. Modified hepatic enzyme
expression, indicating hepatoprotective effects.

Improved liver protein and albumin levels,
suggesting reduced liver inflammation

and fibrosis.
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5. Conclusions

This review evaluated existing evidence on the potential of antioxidative therapies in
treating CKD by addressing inflammation and oxidative stress. Clinically used drugs like
statins, metformin, GLP-1 agonists, ACEi, ARBs, and SGLT2 inhibitors show promise due
to their renoprotective effects linked to anti-inflammatory and antioxidant activities. In
addition, natural supplements and herbal medicines, such as lactoferrin, B. diffusa, A. rugo-
sum, and G. lucidum, have been shown to exhibit antioxidative properties in disease models,
both in vitro and in vivo. Animal disease models include HFD-Wistar rats, C57BL/6 mice,
Sprague Dawley rats, dogs, db/db mice, and human proximal tubular epithelial cell tissue
culture. These studies have demonstrated the ability of these compounds to modulate
cytokines, oxidative stress markers, and antioxidant enzymes, showcasing their potential
therapeutic benefits. While preliminary data are encouraging, there remain gaps in fully
elucidating the underlying antioxidant mechanisms of these therapies. Further research
using comprehensive approaches is needed to identify specific active components and
their modes of action. Comprehensive human clinical trials are also required to validate
promising findings from animal and cell studies. Quantification methods such as measur-
ing the biomarkers of oxidative stress/damage (e.g., markers of lipid peroxidation, protein
oxidation, DNA damage), antioxidants levels (e.g., glutathione, superoxide dismutase),
and inflammatory cytokines using techniques like enzyme-linked immunosorbent assays
(ELISAs) and multiplex immunoassays could help characterize the specific antioxidant
pathways modulated and determine the magnitude of response to these therapies. If modu-
lating oxidative stress and inflammation are validated as an effective strategy for managing
CKD progression, it may expand therapeutic options. Integrated treatment approaches
combining pharmacotherapies, natural products, lifestyle modifications, and anti-oxidative
supplementation warrant investigation. Ongoing research in this area has the potential to
establish modifiable oxidative balance as a modifiable risk factor, improving CKD outcomes
through multi-target therapies aimed at restoring redox homeostasis. Further exploration
of anti-oxidative strategies holds promise for developing practical applications supporting
kidney health.
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