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Abstract: Gastric cancer (GC) ranks as the third most prevalent malignancy and a leading cause
of cancer-related mortality worldwide. However, the majority of patients with GC are diagnosed
at an advanced stage, highlighting the urgent need for effective perioperative and postoperative
chemotherapy to prevent relapse and metastasis. The current treatment strategies have limited
overall efficacy because of intrinsic or acquired drug resistance. Recent evidence suggests that
dysregulated long non-coding RNAs (lncRNAs) play a significant role in mediating drug resistance
in GC. Therefore, there is an imperative to explore novel molecular mechanisms underlying drug
resistance in order to overcome this challenging issue. With advancements in deep transcriptome
sequencing technology, lncRNAs—once considered transcriptional noise—have garnered widespread
attention as potential regulators of carcinogenesis, including tumor cell proliferation, metastasis,
and sensitivity to chemo- or radiotherapy through multiple regulatory mechanisms. In light of
these findings, we aim to review the mechanisms by which lncRNAs contribute to drug therapy
resistance in GC with the goal of providing new insights and breakthroughs toward overcoming this
formidable obstacle.
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1. Introduction

GC ranks as the third most prevalent malignancy globally and represents a significant
cause of cancer-related mortality [1]. A good prognosis of patients with GC benefits from
the early diagnosis and treatment including drug and surgical treatments. However, the
majority of patients with gastric cancer are typically diagnosed at an advanced stage [1,2].
Perioperative and postoperative chemotherapies play a key role in preventing relapse and
metastasis for these patients with middle- and late-stage GC [1]. The overall treatment
effect, however, remains efficacious with a mere 20–40% five-year overall survival (OS)
rate observed in patients with advanced GC undergoing standard therapy [3]. The main
obstacle in GC therapy is intrinsic or acquired chemoresistance [4]. Hence, exploring some
novel molecular mechanisms of chemoresistance is urgently needed.

With the improvement in deep transcriptome sequencing technology, lncRNAs, which
were initially considered transcriptional noise, have attracted widespread research atten-
tion [5]. LncRNAs are longer than 200 nucleotides and exert important roles during the
universal biological processes, including cell differentiation, chromatin reorganization
and modification, immune responses, and carcinogenesis [6,7]. In particular, lncRNAs
significantly contribute to transcription and splicing, as well as organellar biogenesis, sub-
cellular molecular trafficking, and cell differentiation [8,9]. Although lncRNAs are not
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translated into proteins, they can function as oncogenes or tumor suppressors by upregulat-
ing or downregulating the expression of protein-coding genes in cancers [10]. Furthermore,
mounting evidence suggests that dysregulated lncRNAs are intricately associated with the
development of chemoresistance in various types of cancers [11].

In recent decades, significant advancements have been made in chemotherapy reg-
imens and the management of drug side effects for the treatment of advanced GC, with
commonly used drugs such as 5-fluorouracil (5-Fu), cisplatin (DDP), or paclitaxel. Never-
theless, the effectiveness of chemotherapy remains limited, and the 5-year overall survival
rate for advanced patients with gastric cancer undergoing this treatment modality still
remains low [12]. The main reason leading to a struggle with chemotherapy is still tumor
drug resistance in GC [13]. It is known that drug resistance in tumor cells includes primary
resistance (existing without exposure to the drug) and acquired resistance (gradual devel-
opment induced by chemotherapy drugs), which seriously affect the treatment effect on
patients with cancer [14].

Drugs can also develop cross-resistance, also known as multidrug resistance (MDR).
Tumor cells may evade effective chemotherapy through many different strategies, such
as increased anti-apoptotic ability, abnormal deoxyribonucleic acid (DNA) damage repair
ability, upregulation of adenosine triphosphate (ATP)-dependent drug transport pump,
and changes in drug metabolisms [15,16]. Recent studies have shown that lncRNAs acting
as carcinogenic or tumor suppressor genes can increase or decrease the fight against tumor
sensitivity to drugs. To further explore the mechanism of lncRNAs related to chemotherapy
resistance in GC, we reviewed the mechanisms of lncRNA-related drug resistance to
provide new ideas and breakthroughs for solving the difficult problem of drug resistance
in GC.

2. Overview of lncRNAs

RNA is between DNA and protein and acts as a bridge during the processes driving
genetic information and biological functions induced by most proteins. Studies have
shown that about 98% of the DNA sequence in the whole genome is a non-coding sequence,
but less than 2% of the genes encode proteins [17]. These lncRNAs were previously
regarded as “transcriptional noise” in vivo. With the continuous development and updates
in sequencing technology in recent years, researchers have gradually paid attention to
lncRNAs and found that they have special functions in the vast majority of biological
processes in the body [18,19].

According to different sequence lengths, ncRNA includes the following two cate-
gories: small ncRNA and lncRNA. LncRNAs are non-coding RNAs that are longer than
200 nt [20–22]. Although there are some ncRNAs that encode protein functions, most of
them do not encode proteins [23]. So far it is believed that lncRNAs are mainly derived from
the following pathways: (1) the frame of the protein-coding gene is disrupted and is trans-
formed into a functional non-coding RNA that incorporates some previous coding sequence;
(2) following chromosomal rearrangement, two previously distant and transcriptionally
inactive sequence regions become juxtaposed, resulting in the formation of a multi-exonic
non-coding RNA; (3) the duplication of a non-coding gene through retro-transposition
results in the formation of either a functional non-coding retrogene or a nonfunctional
non-coding retro-pseudogene; (4) adjacent repetitive sequences in non-coding RNA origi-
nate from two tandem duplication events; and (5) the insertion of a transposable element
form the functional non-coding RNA [18]. LncRNAs have a stable structure and function
because of their short flanking sequences. Although they are numerous in quantity, they
are poorly conserved [19,24–27].
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LncRNAs consist of nuclear lncRNAs and cytoplasmic lncRNAs according to their
cellular localization. Nuclear lncRNAs are responsible for modulating chromatin structure
and function, regulating the transcription of neighboring and distant genes, and affecting
RNA splicing, stability, and translation [28]. Cytoplasmic lncRNAs can maintain the stabil-
ity and transcription efficiency of their target mRNA through RNA–protein interactions [29].
In addition, some functions of cytoplasmic lncRNAs are also associated with ribosomes,
mitochondria, and other organelles including exosomes [28,29]. Based on their genomic
location relative to protein-coding genes, lncRNAs can be categorized into different groups
as follows: intergenic lncRNA, intronic lncRNA, divergent lncRNA, antisense lncRNA, and
enhancer lncRNA [26,30] (Figure 1).
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Figure 1. Overview and malignant phenotypes of drug resistance-related lncRNAs in GC. Zone A:
Metastasis and drug resistance-related lncRNAs. Zone B: Apoptosis and drug resistance-related
lncRNAs. Zone C: Proliferation and drug resistance-related lncRNAs.GC: gastric cancer.

3. Drug Resistance-Related lncRNAs and Malignant Phenotypes in GC

It is widely acknowledged that lncRNAs with “genetic noise” characteristics play
crucial roles in the initiation and progression of GC. By affecting genetic modification
and transcriptional regulation, lncRNAs relate to multiple biological processes in GC
including proliferation, metastasis, apoptosis, and drug resistance. Especially in drug
resistance regulation, lncRNAs often induce changes in drug-resistant cells in the malignant
phenotype with the help of the abnormal expression of lncRNAs, which eventually leads to
drug resistance and disease progression in patients with GC after drug treatment (Table 1).
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Table 1. Drug-resistant lncRNAs and their functions in gastric cancer.

LncRNA Resistance (Sensitivity) Functions Refs.

ABL paclitaxel, 5-FU apoptosis [31]
ADAMTS9-AS2 (cisplatin) proliferation, apoptosis [32]

AK022798 cisplatin apoptosis [33]
ANRIL cisplatin, 5-FU proliferation, metastasis, apoptosis [34,35]

ARHGAP5-AS
cisplatin, 5-FU, rapamycin, proliferation, apoptosis [36]doxorubicin, actinomycin D

ASB16-AS1 cisplatin proliferation, stemness [37]
BCAR4 cisplatin stemness [38]

BLACAT1 oxaliplatin metastasis, apoptosis [39]
CBSLR cisplatin ferroptosis [40]

CRART16 bevacizumab proliferation [41]
CRNDE oxaliplatin, 5-FU apoptosis, autophagy [42,43]
DANCR cisplatin proliferation, apoptosis [44]

DUSP5P1 oxaliplatin proliferation, metastasis [45]
D63785 doxorubicin proliferation, metastasis [46]

EIF3J-DT oxaliplatin, 5-FU apoptosis, autophagy [47]
FAM84B-AS cisplatin proliferation, metastasis, apoptosis [48]
FEZF1-AS1 cisplatin, 5-FU proliferation, autophagy [49]
FGD5-AS1 5-FU proliferation [50,51]

FOXD1-AS1 cisplatin proliferation [52]
GAS5 (adriamycin) proliferation, apoptosis [53]

HAGLR 5-FU proliferation [54]
HCP5 oxaliplatin, cisplatin,5-FU proliferation, apoptosis, stemness [55–57]

HMGA1P4 cisplatin proliferation, apoptosis [58]
HNF1A-AS1 5-FU proliferation, metastasis [59]

HOTAIR cisplatin, oxaliplatin proliferation, metastasis, apoptosis [60–64]
HOTTIP cisplatin proliferation, metastasis, apoptosis [65]
HULC cisplatin proliferation, apoptosis, autophagy [66,67]

H19 adriamycin apoptosis [68]
KLF3-AS1 cisplatin proliferation, metastasis [69]

LEIGC 5-FU proliferation, metastasis [70]
LINC01572 cisplatin autophagy [71]
LINC-PINT cisplatin proliferation, metastasis, autophagy [72]
LINC00922 cisplatin proliferation, metastasis, apoptosis [73]
LINC00942 cisplatin apoptosis, stemness [74]

MACC1-AS1 5-FU stemness [75]

MALAT1 cisplatin, oxaliplatin, vincristine proliferation, metastasis, apoptosis,
autophagy, stemness [76–81]

MRUL doxorubicin proliferation, apoptosis [82]
MVIH gemcitabine proliferation, metastasis, apoptosis [83]
NEAT1 adriamycin proliferation, metastasis, apoptosis [84]

NUTM2A-AS1 PD-1 proliferation, metastasis [85]
PANDAR oxaliplatin, 5-FU proliferation, apoptosis [86]

PITPNA-AS1 cisplatin proliferation, apoptosis [87]
PVT1 cisplatin, 5-FU proliferation, metastasis, apoptosis [88–90]

SLCO1C1 oxaliplatin proliferation, metastasis [91]
SNHG1 paclitaxel metastasis [54]
SNHG5 cisplatin apoptosis [92]
SNHG6 cisplatin proliferation, metastasis, apoptosis [93]
SNHG12 oxaliplatin, 5-FU proliferation [94]
ST7-AS1 cisplatin proliferation, metastasis, apoptosis [93]

SUMO1P3 cisplatin, 5-FU proliferation, metastasis [95]
THOR cisplatin stemness [96]
UCA1 cisplatin, doxorubicin proliferation, apoptosis [97–100]
ZFAS1 cisplatin, paclitaxel proliferation, metastasis, apoptosis [101]
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3.1. Drug Resistance-Related lncRNAs and Metastasis

Cancer metastasis occurs frequently in solid tumors, namely, because of the spread of
a tumor to distant parts of the body from its original site, which remains the cause of 90%
of deaths from solid tumors [102]. The complex processes enable tumor cells to achieve
metastasis. A considerable amount of evidence indicates that ncRNAs including lncRNAs
may participate in cancer metastasis [103,104]. Particularly in drug-resistant tumors, the
alteration in the tumor microenvironment (TME) induced by various mechanisms of drug
resistance facilitates interactions among tumor cells, stromal cells, and the secretion of
soluble inflammatory molecules. These interactions mediate the recruitment of immune
cells that enhance tumor cell survival and promote metastasis [105]. Therefore, lncRNAs
associated with drug resistance play an outstanding functional role in regulating metastasis
in GC.

In DDP-resistant GC cell lines, 12 lncRNAs were found to be involved in the reg-
ulation and promotion of invasion and metastasis. They are HOTAIR [60–62], HOT-
TIP [65], FAM84B-AS [48], KLF3-AS1 [69], SNHG6 [93], ST7-AS1 [106], LINC-PINT [72],
and LINC00922 [73]. Six lncRNAs are implicated in the multidrug resistance of gastric
cancer cells and facilitate the invasion and metastasis of these drug-resistant cells. They are
PVT1 [88–90], ANRIL [34,35], MALAT1 [76–81], ZFAS1 [101], SUMO1P3 [95], D63785 [46],
and SNHG1 [107], which mediate the invasion and metastasis of taxane-resistant GC cell
lines through the upregulation of their own expression. LEIGC [70] and HNF1A-AS1 [59]
are also vital in promoting the invasion and metastasis of fluorouracil-resistant GC cell
lines. This literature review revealed the involvement of three distinct lncRNAs in the
mechanism underlying invasion and metastasis in platinum-resistant gastric cancer cell
lines. These are BLACAT1 [39], DUSP5P1 [45], and SLCO1C1 [91]. PD1 monoclonal an-
tibody treatment is a new tumor immunotherapy method checkpoint blockade therapy.
Anti-PD-1 monoclonal antibody is a new method for tumor immunotherapy [108,109].
The efficacy of anti-PD-1 antibody monotherapy in advanced GC has been confirmed and
supported by several trials [110,111]. In this literature review, lncRNAs were also found to
be involved in the regulation of invasion and metastasis of PD-1-resistant GC cell lines, such
as NUTM2A-AS1 [85]. In addition, the invasion and metastasis of some drug-resistant cell
lines that are uncommon in the treatment of GC are regulated by lncRNAs. For example,
NEAT1 can promote the invasion and metastasis of Adriamycin-resistant cell lines [84],
and MVIH plays a crucial part in positively regulating the invasion and metastasis of GC
gemcitabine-resistant cell lines [83].

The majority of studies have suggested that a distinct subpopulation of tumor cells
possessing stem-like properties actively participates in the initiation, invasive growth, and
metastasis of tumors [112]. It should be noted that there are still some lncRNAs that alter the
TME by regulating cancer stem cell activity and then promoting the invasion and metastasis
of drug-resistant GC cell lines. For example, BCAR4 [38], THOR [96], and LINC00942 [74]
participate in the positive regulation of invasion and metastasis of GC platinum-resistant
cell lines by promoting the activation of tumor stem cells. Similarly, the pivotal involvement
of MALAT1 [76–81], MACC1-AS1 [75], and HCP5 [55–57] in orchestrating the invasion and
metastasis of multidrug-resistant cell lines in GC cannot be overstated.

The epithelial-to-mesenchymal transition (EMT) has been acknowledged as a pivotal
characteristic of tumor metastasis [113,114]. The process of EMT facilitates the detachment
of tumor cells from the primary mass by diminishing their cell adhesive properties, ulti-
mately promoting local invasion, intravasation into blood or lymph vessels, extravasation,
and subsequent re-establishment of the primary mass at distant sites [113]. Based on the
redifferentiation properties of cancer stem cells themselves, researchers have found that
the metastatic outcome of EMT may be caused by the colonization and redifferentiation
of tumor stem cells in distant organs [112,115]. In our review, some lncRNAs were also
observed to be involved in mediating the EMT of GC drug-resistant cell lines to cause inva-
sion and metastasis. For example, LEIGC [70], ZFAS1 [101], HOTAIR [63], MALAT1 [78,79],
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MVIH [83], H19 [68], KLF3-AS1 [69], SNHG6 [93], HNF1A-AS1 [59], and ST7-AS1 [106]
(Figure 1).

3.2. Drug Resistance-Related lncRNAs and Proliferation

Malignancy is considered a disease in which proliferation is a loss of management.
Uncontrolled proliferation assumes a pivotal role in the progression of tumorigenesis [116].
The abnormal regulation of mitosis, proliferation signal-related gene mutations, and other
abnormalities of proliferation signaling pathways eventually lead to a significantly short-
ened cell cycle and accelerate abnormal cell proliferation [117]. In this review, we also found
that many lncRNAs were involved in regulating the proliferation of multiple drug-resistant
GC cell lines. For example, in DDP-resistant cell lines, 14 lncRNAs were involved in regu-
lating the proliferation in GC cell lines. These lncRNAs are HOTAIR [60–63], HULC [66,67],
HOTTIP [65], DANCR [44], FAM84B-AS [48], HMGA1P4 [58], ASB16-AS1 [37], KLF3-
AS1 [69], SNHG6 [93], FOXD1-AS1 [37], PITPNA-AS1 [87], ST7-AS1 [106], LINC-PINT [72],
an LINC00922 [73]. In 5-FU-, oxaliplatin-, and docetaxel-resistant cell lines, there were five
cases (LEIGC [70], MACC1-AS1 [75], FGD5-AS1 [50], HAGLR [54], and HNF1A-AS1 [59]),
and two cases (lncRNA), respectively, (DUSP5P1 [45] and SLCO1C1 [91]), and two lncR-
NAs (MRUL [82], D63785 [46]) were involved in regulating the proliferation of these
drug-resistant GC cell lines. In addition, 11 lncRNAs have been found to regulate mul-
tidrug resistance of GC, these lncRNAs are PVT1 [88–90], UCA1 [97–100], ANRIL [34,35],
MALAT1 [76,78–81,118], PANDAR [86], ZFAS1 [101], ARHGAP5-AS [36], HCP5 [55–57],
FEZF1-AS1 [49], SNHG12 [94], and SUMO1P3 [95]. In Adriamycin-resistant GC cells,
NEAT1 can promote cell proliferation [84], and MVIH can also promote the proliferation of
gemcitabine-resistant GC cell lines [83]. For the targeted therapy of GC, this review also
found that two lncRNAs were involved in promoting the proliferation of drug-resistant cell
lines. Among them, NUTM2A-AS1 can increase the proliferation ability of PD-1-resistant
GC cell lines [85]. CRART16 can accelerate the proliferation of bevacizumab-resistant GC
cell lines [41]. It is worth noting that some lncRNAs, such as GAS5 [53] and ADAMTS9-
AS2 [32], were found to have inhibitory effects on the proliferation of drug-resistant gastric
cancer cell lines in this review. Numerous articles have shown that GAS5 can control the
proliferation of Adriamycin-resistant gastric cancer cell lines [53]. ADAMTS9-AS2 can
restrain the proliferation of platinum-resistant GC cell lines [32].

Similarly, some lncRNAs also indirectly promote the proliferation of drug-resistant
gastric cancer cell lines by regulating cancer stem cell properties. For example, in a platinum-
resistant GC cell line, these lncRNAs include BCAR4 [38], THOR [96], MACC1-AS17 [75],
HCP5 [55–57], ASB16-AS1 [37], and LINC00942 [74] (Figure 1).

3.3. Drug Resistance-Related lncRNAs and Apoptosis

The dysregulation of apoptosis in tumors represents a pivotal hallmark of cancer. The
aberrant regulation of multiple apoptotic signaling pathways is implicated in the sustained
survival of tumor cells following detachment from apoptosis. Apoptosis is regulated
through the following two principal pathways: the intrinsic or mitochondrial pathway,
predominantly activated by intracellular stress signals, and the extrinsic or death receptor
pathway, triggered by extracellular signals [119]. Research shows that among the various
mechanisms that facilitate MDR, disordered apoptosis and programmed cell death have
disastrous consequences for drug therapy [119]. At the same time, a variety of apoptosis-
related proteins in the apoptotic signaling pathway closely take part in the regulation
of GC drug resistance such as Bcl-2 [120], inhibitors of apoptosis family members [121],
and p53 [122]. The dysregulation of apoptosis is a crucial phenomenon that confers drug
resistance to cancer cells [123]. LncRNAs have a pivotal role in governing the apoptosis of
drug-resistant GC cell lines.

In this review, we found that the mechanism by which most lncRNAs regulate apopto-
sis in drug-resistant GC cell lines is mainly concentrated in the intrinsic or mitochondrial
pathway. MRUL [82], AK022798 [33], PVT1 [88–90], UCA1 [97–100], CASC9 [124], HO-
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TAIR [61–64], BLACAT1 [39], SNHG5 [92], FAM84B-AS [48], SNHG6 [93], APAF1 [31] and
SNHG8 [74] have demonstrated the ability to downregulate protein levels of caspase 3,
caspase 7, caspase 8, and caspase 9, thereby inhibiting cleaved PARP protein expression
while promoting the expression of the anti-apoptotic protein Bcl-2. These events eventually
make the corresponding drug-resistant GC cell lines show a high survival state and induce
drug resistance. Moreover, certain lncRNAs have been identified to exert their influence
on drug-resistant GC cell lines by modulating DNA damage repair pathways, including
lncRNA CRAL, thereby impeding apoptosis [125].

In addition, in platinum-resistant GC cell lines, HULC [66,67], HOTTIP [65], DANCR [44],
HMGA1P4 [58], PITPNA-AS1 [37], ST7-AS1 [106], LINC00922 [88], and LINC00942 [74]
could inhibit the apoptosis of drug-insensitive GC cell lines. In multidrug-resistant GC
cell lines, some lncRNAs can also inhibit apoptosis from occurring, such as ANRIL [34,35],
MALAT1 [76–81], PANDAR [86], ZFAS1 [101], ARHGAP5-AS [36], HCP5 [55–57], EIF3J-
DT [47], CRNDE [42,43], and ABL [31]. In Adriamycin-resistant cell lines, NEAT1 [84] and
H19 have an inhibitory effect on cell apoptosis [68]. In gemcitabine-resistant cell lines,
lncRNA MVIH [83] can also play an inhibitory role in cell line apoptosis. On the contrary,
some lncRNAs also can make GC cells more sensitive to drugs and reduce their apoptotic
effects, such as GAS5 [53] and ADAMTS9-AS2 [32].

There are still some lncRNAs that affect the apoptosis function of drug-resistant GC
cell lines through some special regulatory ways as follows: (1) By regulating the stemness of
GC cells: These lncRNAs include BCAR4 [38], THOR [96], MACC1-AS1 [75], MALAT1 [78],
and ASB16-AS1 [37]. These lncRNAs can regulate the expression of cancer stem cell mark-
ers including β-catenin, c-Myc, and Klf4 to induce and enhance the stem-like characteristics
of drug-resistant GC cell lines and inhibit apoptosis to regulate the drug resistance. (2) By
regulating the autophagy of GC cells: Autophagy is a multi-stage conservative dysfunc-
tional process that contributes to maintaining cellular homeostasis. Aberrant autophagy
is intricately associated with the onset, progression, and acquisition of drug resistance in
tumors. During the action of autophagy, tumor cells are more able to tolerate external stress
stimulation such as hypoxia and starvation and enhance the proliferation and prolong the
survival of cancer cells [126]. Autophagy is closely related to GC resistance. On the one
hand, autophagy can facilitate chemoresistance and prolong GC cell life, whereas in others,
it can also promote chemosensitivity and accelerate cell death [127]. Multiple factors are
involved in the regulation of autophagy, such as AMPK, MAPK, PI3K-AKT, BECN1, and
ATG proteins. Pro-survival autophagy can ensure that cancer cells are protected as much
as possible from the toxic and damaging effects of chemotherapy drugs. Considering the
extensive regulatory role of lncRNAs in tumorigenesis and development, it is noteworthy
that lncRNAs also exert an influence on autophagy function in drug-resistant GC cell
lines. For example, MALAT1 facilitates drug resistance by modulating the expression of
autophagy-related proteins, thereby inducing autophagy and subsequently suppressing
apoptosis in drug-resistant GC cell lines [76,77,80]. In platinum-resistant GC cell lines,
HULC promotes autophagy by managing FoxM1 expression, thereby inhibiting apoptosis
in drug-resistant cell lines [67]. In oxaliplatin and fluorouracil-resistant GC cell lines, EIF3J-
DT promotes autophagy by increasing the expression of ATG14 protein, which eventually
leads to a reduction in apoptosis in the two dru- resistant cell lines and mediates drug
resistance [47]. Similar regulatory mechanisms have also been found in the regulation of
autophagy by lncRNA 01572 [71] and FEZF1-AS1 [49]. In addition to inducing autophagy,
some lncRNAs can also regulate drug sensitivity through autophagy in drug-resistant cell
lines. For example, CRNDE [43] and PINT [72]. (3) By regulating ferroptosis of tumor cells:
The process of ferroptosis involves iron-dependent lipid peroxidation, leading to cell death.
The discovery of ferroptosis significantly expanded the repertoire of cell death modalities,
offering novel insights for further investigation into the biological behaviors of gastric
cancer, including proliferation, metastasis, invasion, and drug resistance. Iron-dependent
lipid peroxidation is an important marker of ferroptosis [128]. Many studies reveal that the
drug resistance of GC cells can be modulated through ferroptosis metabolism. The study
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conducted by Xiao et al. demonstrated that the utilization of a model based on differentially
expressed lncRNAs associated with ferroptosis exhibited significant predictive efficacy
in determining the response to drug treatment for GC [129]. In platinum-resistant GC
cell lines, CBSLR can inhibit ferroptosis under the induction of a hypoxia environment,
contributing to the resistance of GC cells [40].

It can be seen that lncRNAs are often involved in the regulation of the apoptosis of
drug-resistant GC cells in a multi-pathway and complex manner, which also indicates that
lncRNAs have a very important position in the effect on the apoptosis of drug-resistant GC
cells (Figure 1).

4. Mechanisms of Drug Resistance-Related lncRNAs in GC

Previous studies have demonstrated the extensive involvement of lncRNAs in the
regulation of chemoresistance mechanisms in gastric cancer. The underlying mechanisms
by which lncRNAs contribute to drug resistance in GC primarily encompass oncogene
amplification and overexpression, anti-apoptosis, immune escape, epigenetic modification,
upregulation of multiple drug resistance (MDR)-related genes, and so on [130–132].

4.1. The lncRNA-miRNA(-mRNA) Network
4.1.1. ceRNA Network

Since the concept of “ceRNA” was proposed in 2011, ceRNA network regulation has
acted as an important function in gene post-transcriptional regulation. ncRNAs con-
taining miRNA response elements (MREs) compete with miRNA target gene-mRNA
to bind miRNAs, eventually leading to the weakening or disappearance of the inhi-
bition of downstream target genes and the release of the inhibition of target mRNA
expression [132]. The ceRNA network regulation mechanism contains ncRNAs (lncR-
NAs/circRNAs/pseudogenicRNAs), microRNAs, and mRNAs. In the regulatory mech-
anism of drug resistance in GC, this review also identified that many lncRNAs can form
the ceRNA network with other ncRNAs, which is a vital mechanism of drug resistance
regulation in GC [132] (Table 2).

As shown in Table 2, a total of 33 lncRNAs regulate drug resistance in GC cell lines
through the ceRNA management mechanism. LncRNAs induce the upregulation of down-
stream target genes, which eventually leads to different regulatory mechanisms and then
induces drug resistance of GC. The ceRNA regulatory network eventually leads to dif-
ferent pathological processes in drug-resistant cell lines, mainly including upregulating
the expression of target genes, regulating the signaling pathway, increasing activity of
transcription factors, inducing autophagy, regulating epigenetic modification, increasing
metabolic regulation, promoting metastasis and angiogenesis, reducing the immune re-
sponse, and regulating proliferation. We also found that the lncRNA-miRNA-mRNA inter-
action is not one-to-one binding but one-to-many binding, for example, HOTAIR [61,63,64],
MALAT1 [76,77,80,81], NUTM2A-AS1 [85], ASB16-AS1 [37], and SLCO1C1 [91]. There-
fore, this ceRNA regulatory network is not a single regulation but a complex multi-path
regulation. This result is also consistent with Arancio W et al. [133]. It is worth noting
that there are also some lncRNAs that increase the sensitivity of GC chemotherapy drugs
through the ceRNA regulation mechanism, such as CRAL [125]. Wang et al. showed that
lncRNA CRAL could increase the sensitivity of GC cell lines to DDP by adsorbing miR-505
to promote CYLD gene expression and inhibit AKT signaling pathway activation. The
details are shown in Table 2.
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Table 2. The ceRNA network formed by drug resistance-related lncRNAs and their function in gastric cancer.

LncRNAs Expression Sponging miRNAs Targets Functions Drugs Refs.

Upregulating the expression of target genes
BLACAT1 ↑ miR-361 ABCB1 upregulating ABCB1 expression OXA [39]
CRART16 ↑ miR-122-5p FOS upregulating VEGFD expression Bevacizumab [41]
FENDRR ↑ miR-4700-3p FOXC2 upregulating FOXC2 expression VCR, ADM [131]

HIF1A-AS2 ↑ miR-29c LOX upregulating LOX expression MDR [134]
HOTAIR ↑ miR-195-5p ABCG2 upregulating ABCG2 expression OXA [64]

LINC00922 ↑ miR-874-3p GDPD5 upregulating GDPD5 expression DDP [73]
MALAT1 ↑ miR-22-3p ZFP91 upregulating ZFP91 expression OXA [78]
PCAT-1 ↑ miR-128 ZEB1 upregulating ZEB1 expression DDP [130]
PVT1 ↑ miR-3619-5p TBL1XR1 upregulating TBL1XR1 expression DDP [88]

Activating signaling pathways
ASB16-AS1 ↑ miR-3918, miR-4676-3p TRIM37 activating NF-kappa B pathway DDP [37]

CRAL ↓ miR-505 CYLD suppressed AKT activation DDP [125]
D63785 ↑ miR-422a MEF2D activating VEGF/TGF-β1 pathway DOX [46]

FOXD1-AS1 ↑ miR-466 PIK3CA activating PI3K/AKT/mTOR pathway DDP [52]
HCP5 ↑ miR-3619-5p PPARGC1A activating AMPK pathway 5-FU, OXA [96]

HOTAIR ↑ miR-126 VEGFA, PIK3R2 activating PI3K/AKT/MRP1 pathway DDP [61]
SNHG17 ↑ miR-23b-3p Notch2 activating Notch2 pathway DDP [135]

TMEM44-AS1 ↑ miR-2355-5p PPP1R13L inhibiting p53 pathway 5-FU [136]
Regulating the activity of transcription factors

EIF3J-DT ↑ miR-188-3p ATG14 inducing autophagy 5-FU, OXA [92]
FGD5-AS1 ↑ miR-153-3p CITED2 increasing transactivator activity 5-FU [50]

HCP5 ↑ miR-128 HMGA2 increasing transcriptional activity DDP [56]
↑ miR-519d HMGA1 increasing transcriptional activity DDP [57]

HOTTIP ↑ miR-218 HMGA1 upregulating transcriptional regulator expression DDP [65]
Inducing autophagy

LINC01572 ↑ miR-497-5p ATG14 inducing autophagy DDP [71]
MALAT1 ↑ miR-23b-3p ATG12 inducing autophagy DDP, VCR, 5-FU [76]

↑ miR-30b ATG5 inducing autophagy DDP [77]
↑ miR-30e ATG5 inducing autophagy DDP [80]

Epigenetic modification
CRAL ↓ miR-505 CYLD suppressing AKT activation DDP [125]

HOTAIR ↑ miR-17-5p PTEN inhibiting the PTEN phosphatase activity DDP, ADM, MMC, 5-FU [63]
Metabolic regulation

HAGLR ↑ miR-338-3p LDHA increasing glycolysis 5-FU [54]
HCP5 ↑ miR-3619-5p PPARGC1A increasing fatty acid oxidation 5-FU, OXA [55]
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Table 2. Cont.

LncRNAs Expression Sponging miRNAs Targets Functions Drugs Refs.

SNHG1 ↑ miR-216b-5p HK2 increasing glycolysis PTX [107]
SNHG7 ↑ miR-34a LDHA increasing glycolysis DDP [137]

SNHG16 ↑ miR-506-3p PTBP1 increasing glycolysis 5-FU [138]
Metastasis and angiogenesis

CRART16 ↑ miR-122-5p FOS increasing angiogenesis Bevacizumab [41]
HNF1A-AS1 ↑ miR-30b-5p EIF5A2 promoting EIF5A2-induced EMT process 5-FU [59]

Apoptosis regulation
ADAMTS9-AS2 ↑ miR-223-3p NLRP3 activating NLRP3 mediated pyroptotic cell death DDP [32]

SNHG6 ↑ miR-1297 Bcl-2 inhibiting apoptosis DDP [93]
UCA1 ↑ miR-513a-3p CYP1B1 inhibiting apoptosis DDP [100]

Immune response regulation
NUTM2A-AS1 ↑ miR-376a TET1, HIF-1A inhibiting immune responses PD-L1 [85]

SNHG15 ↑ miR-141 PD-L1 inhibiting immune responses PD-L1 [139]
Proliferation regulation

ANRIL ↑ miR-181a-5p CCNG1 inhibiting proliferation DDP [35]
SLCO1C1 ↑ miR-204-5p, miR-211-5p SSRP1 enhancing cell growth, preventing DNA damage OXA [91]

Abbreviations: DDP: cisplatin; ADM: Adriamycin; MMC: mitomycin; 5-Fu: fluorouracil; VCR: vincristine; OXA: oxaliplatin; MDR: multidrug resistance; ↑: high expression;
↓: low expression.
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4.1.2. lncRNA-miRNA

There are also some lncRNAs that regulate the drug resistance of GC by adsorbing
miRNA. This lncRNA-miRNA interaction mechanism is essentially derived from the
mechanism in which lncRNAs containing MREs bind to miRNAs. For example, the
overexpression of lncRNA CASC2 increased the resistance effect for DDP in GC by sponging
miR-19a [140]. He et al. demonstrated that mesenchymal stem cells (MSCs) secrete TGF-
β1, which induces the upregulation of MACC1-AS1 at the RNA level. This upregulation
activates fatty acid oxidation-dependent stemness and chemoresistance by antagonizing
miR-145-5p in patients with gastric cancer undergoing FOLFOX treatment [140]. LncRNA
KLF3-AS1 enhanced chemosensitivity to cisplatin by inhibiting miR-223 expression [69].
The exosome-mediated transfer of FGD5-AS1 disseminates the DDP resistance effect among
GC cells by absorbing miR-195 [51]. Although these lncRNA-miRNA interactions do not
find downstream target mRNAs, based on the complex information regulatory network in
organisms, this does not mean that lncRNA-miRNA interactions exist alone and do not
affect downstream factors or pathways.

4.2. Upstream Regulation of Drug Resistance-Related lncRNAs in GC

In addition to the spatial expression limitation of lncRNA expression, a variety of
molecules can affect the level of lncRNA through the regulation of the lncRNA gene
promoter [19]. These [141] molecules include signaling pathway receptors, cytokines,
bio-enzymes, modified proteins, transcription factors, and exogenous molecules.

For instance, Notch 1 can increase the transcription of gene targets by interacting with
Notch ligands. Notch 1 protein binds to lncRNA AK022798 and increases the expression
of AK022798, which promotes cisplatin-resistant gastric cancer formation, resulting in
the upregulating expression of MRP1 and P-glycoprotein and reduces the apoptosis of
DDP-resistant cells [33]. Cytokines, such as TGF-β1 and midkine, play a crucial role in the
regulation of lncRNA expression and the induction of drug resistance. TGF-β1 derived
from MSCs activates SMAD2/3 signaling by binding to TGF-β receptors, thereby upreg-
ulating the expression of lncRNA MACC1-AS1 in GC cells. This activation leads to fatty
acid oxidation-dependent stemness and chemoresistance by antagonizing miR-145-5p [75].
Yang et al. demonstrated that cancer-associated fibroblast (CAF)-derived midkine (MK)
could induce the upregulation of long non-coding RNA ST7-AS1 in DDP-resistant GC cells,
resulting in enhanced phosphorylation of PI3K and AKT and subsequent activation of
the PI3K/AKT pathway, thereby facilitating resistance to DDP [106]. Furthermore, certain
enzymes have been identified to facilitate aberrant lncRNA expression. For instance, me-
thioninase (METase), also known as l-methionine-α-amino-γ- mercaptoethane lyase, has
been documented to play significant roles in suppressing cancer growth and overcoming
drug resistance [135]. In DDP-resistant gastric cancer cells, overexpressed METase could
downregulate the expression of lncRNA HULC, thus decreasing the protein level of FoxM1
and suppressing autophagy and cisplatin resistance [67]. Also in DDP-resistant GC cell
lines, HDAC3, as a class of histone deacetylase, plays important roles in epigenetic regula-
tion and gene transcription [142]. A study by Ren et al. suggested that HDAC3 promoted
the transcription of lncRNA LOC101928316 by decreasing the level of acetylation of H3K4
on its promoter, resulting in GC cell resistance to cisplatin by promoting the PI3K-Akt-
mTOR pathway [143]. In addition, some modifier proteins can also modify the upstream
transcription process of lncRNA to affect the expression of lncRNA. SUMO1 protein was
found to inhibit the SUMOylation level of SP1, which led to upregulated lncRNA SNHG17
expression in the SNHG17 promoter. The high level of lncRNA SNHG17 can bind to
miR-23b-3p as a sponge, leading to decreased inhibition of the target gene Notch2, which
finally promotes the resistance of GC to DDP [144]. As a member of RNA-binding proteins,
transcription factors were also closely related to the regulation of lncRNA expression. E2F6,
one of the known E2F transcription factor families, has a classical transcriptional inhibitor
function by downregulating the transcription of downstream genes [145]. A study by
Zhang et al. determined that E2F6 could decrease the expression of CRNDE by binding to



Biomolecules 2024, 14, 608 12 of 35

the CRNDE promoter at nucleotides 660–670, thereby promoting autophagy and inhibiting
apoptosis [42]. In this review, we also found that some exogenous molecules are involved
in the regulation of lncRNA expression. For example, Ma et al. showed that dioscin, an
active ingredient identified in edible medicinal plants, might block the cell cycle of GC by
downregulating the expression level of HOTAIR [60].

So, it follows that lncRNA can bind to a variety of molecules, including proteins. It
is regulated by epigenetic modification, the transcriptional level, and other mechanisms,
which eventually leads to changes in lncRNA expression and induced drug resistance
(Figure 2A).
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in the nucleus and transcription/translation functions of lncRNAs in the cytoplasm. (C) Down-
stream regulation of drug resistance-related lncRNAs on enhancer-like lncRNAs in the nucleus
(S/T: stabilize/transcribe).

4.3. Downstream Regulation of Drug Resistance-Related lncRNAs in GC

The function of lncRNAs is intricately linked to their subcellular localization [146].
Nuclear lncRNAs are involved in nuclear processes such as chromatin organization, RNA
transcription, and splicing. Cytoplasmic lncRNAs regulate mRNA transport, as well
as protein stability, and posttranslational modification [26]. In this review, some drug
resistance-related lncRNAs were found to play different roles in mediating drug resistance
because of their different spatial locations. LncRNAs related to drug resistance located
in the nucleus can exert scaffolding or enhancer functions to affect the expression of
downstream genes or proteins. Cytoplasmic lncRNAs can act as signal transduction or
post-transcriptional modifiers to affect the expression of downstream genes or proteins.

4.3.1. Scaffold-like lncRNAs in the Nucleus

For instance, PANDAR exerts regulatory control over the transcription of the CDKN1A
gene by competitively binding with the p53 protein at the CDKN1A promoter in a p53-
dependent manner, thereby augmenting the resistance of gastric cancer cell lines to ox-
aliplatin [86]. The interaction between lncRNA HULC and FoxM1 contributes to the
enhancement of cisplatin resistance in drug-resistant GC cells by regulating FoxM1 gene
expression and facilitating autophagy [67]. Enhanced by zeste homolog 2 (EZH2), a mem-
ber of the polycomb group genes (PcGs) family, exerts epigenetic modifications on gene
expression through transcriptional repression [147]. Many EZH2-related drug-resistant
lncRNAs in the nucleus have scaffolding functions that affect gene or protein expression.
UCA1 inhibits cisplatin-induced apoptosis by interacting with EZH2 and regulating EZH2
expression, thus activating the PI3K/AKT pathway [99]. PCAT1 decreases PTEN by bind-
ing to EZH2 at the PTEN promoter, thus increasing H3K27me3 and promoting cisplatin
resistance in GC cells [148]. LINC-PINT attracted an enhancer of EZH2 at the promotor
of ATG5 to downregulate the transcription level of ATG5, leading to the suppression of
autophagy and DDP resensitization [72]. Other drug resistance-associated lncRNAs also
function as scaffolding and play important roles in regulating gene expression. For exam-
ple, CRNDE functions as a scaffold to recruit NEDD4-1 to PTEN, thereby facilitating the
NEDD4-1-mediated degradation of PTEN and subsequently reducing its protein levels.
This molecular mechanism significantly impacts cisplatin resistance in gastric cancer [149].
In addition, CRNDE also functions as a proteasome and could interact with SRSF6. CRNDE
can degrade the SRSF6 protein through ubiquitination and then affect the cleavage of
SRSF6 in the nucleus, ultimately promoting autophagy and regulating chemotherapy re-
sistance [43]. SNHG8 was found to interact with hnRNPA1, an RNA binding protein,
enhanced the stability of the TROY protein, and regulated the level of the TROY protein in
GC cell lines [150] (Figure 2B).

4.3.2. Enhancer-like lncRNAs in the Nucleus

As a small region of DNA, enhancers can bind to the protein, which strengthens the
transcription of a gene. Some lncRNAs associated with drug resistance also bind with
enhancers to enhance gene transcription. For instance, MURL has an enhancer-like role
by inducing ABCB1 transcription in MDR gastric cancer cells [82]. THOR was found to be
directly bound to the 3′ UTR region of the SOX9 gene and thus increased SOX9 expression
and mRNA stability in the DDP drug resistance of GC cells [96]. Studies have shown that
in the stemness regulation of GC, lncRNA MALTAT1 can regulate the expression of dry
marker protein family genes upstream [78]. DANCR accelerated the multidrug resistance
of GC by upregulating the expressions of MDR1 and MRP1 [44]. FEZF1-AS1 was found
to be closely related to autophagy and could regulate the chemo-resistance of GC cells by
directly targeting ATG5 and increasing the expression of ATG5 [49]. SNHG12 was found to
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be bound to HuR and compose a “SNHG12-HuR” complex in the cytoplasm. Then, the
complex increased the stability of YWHAZ mRNA, thus promoting GC cell proliferation
and chemoresistance [94]. HIT000218960 was found to activate AKT/mTOR/P70S6 kinase
(P70S6K) by regulating HMGA2 expression, thus enhancing resistance to 5-Fu in GC
cells [151]. SUMO1P3 could directly interact with CNBP, which activated its downstream
oncogenes such as c-myc and cyclin D1, and promoted drug resistance in GC [95]. DUSP5P1
promoted ARHGAP5 transcription by gathering with the promoter of ARHGAP5 and focal
adhesion and MAPK pathway, which promoted metastasis and platinum drug resistance
in GC [45] (Figure 2C).

4.3.3. Transcription and Translation Functions of lncRNAs in the Cytoplasm

Although lncRNAs mainly function in the nucleus, cytoplasmic lncRNAs also per-
form some special roles in mRNA spatial regulation, transcription, and translation. But
mainly, most lncRNAs related to drug resistance are transmitted from the nucleus to the
cytoplasm to stabilize some important proteins in the cytoplasm. LncRNAs associated
with drug resistance that function similarly include the following: ARHGAP5-AS1 [36],
SNHG12 [94], OVAAL [152], and CBSLR [40]. By recruiting METTL3, ARHGAP5-AS1
stabilizes ARHGAP5 mRNA in the cytoplasm, thereby stimulating m6A modification of
ARHGAP5 mRNA and upregulating the expression of the ARHGAP5 protein in drug-
resistant cells [36]. SNHG12 can bind to HuR and form a “SNHG12-HuR” complex in
the cytoplasm, thus increasing the relative HuR expression at the RNA and protein levels
and enhancing the stability of YWHAZ mRNA, which promotes GC cell proliferation and
chemoresistance [94]. In the cytoplasm, OVAAL can interact with PC (pyruvate carboxy-
lase) and inhibit the ubiquitination of PC mediated by the complex formed by HSC70 and
CHIP protein, thereby stabilizing the level of PC protein, which decreases sensitivity to
5-FU treatment [152]. CBSLR combines with YTHDF2 to form a compound that destroys
the stability of CBS mRNA by increasing the binding of YTHDF2 with the m6A-modified
coding sequence (CDS) of CBS mRNA, which keeps GC cells away from ferroptosis and
contributes to chem-resistance in GC [40] (Figure 2B).

4.4. Epigenetics and Drug Resistance-Related lncRNAs

As an important epigenetic factor, lncRNAs also play a vital role in epigenetic pro-
cesses. For example, some drug resistance-related lncRNAs can be found to participate in
biological processes such as gene methylation, histone modification, DNA modification,
DNA damage repair, and protein ubiquitination. (1) DNA methylation: GAS5 has been
shown to promote gene methylation. In ADM-resistant cell lines, GAS5 can sensitize GC
cells to Adriamycin (ADM) by increasing the promoter hypermethylation of downstream
genes [53]. It is well known that the modification of histones regulates many critical bi-
ological processes, usually via chromatin modification that promotes the upregulation
or downregulation of target genes [153]. (2) Histone modification: Many lncRNAs are
related to the drug resistance of GC-regulated histone modification. For instance, it is well
known that EZH2 can act as a histone methyltransferase, which epigenetically inhibits
gene expression by increasing H3K27me3 [154,155]. EZH2 can act as a epigenetic regulator
together with many lncRNAs, which finally mediate drug resistance in GC. In GC cisplatin-
resistant cells, PCAT-1 epigenetically silences PTEN by binding to EZH2, thus increasing
H3K27me3 and cisplatin resistance in GC [150]. LINC-PINT recruits the EZH2 protein
to the promotor of ATG5, epigenetically increasing the levels of H3K27me3 to restrict
its transcription, leading to the suppression of autophagy and DDP resensitization [72].
Histone acetylation is a typical epigenetic way [156]. Histone acetylation often regulates
lncRNA-mediated drug resistance in GC. HDAC3 inhibits the LOC101928316 promoter
H3K4ac level to suppress lncRNA-LOC101928316 transcription and activates the PI3K-Akt-
mTOR signaling pathway to promote cell activity, invasion, migration, and apoptosis of
cisplatin-resistant cell lines [143]. (3) RNA m6A modification: m6A methylation, the most
prevalent modification found in both mRNAs and non-coding RNAs, exerts widespread
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effects on RNA stability, splicing, localization, and translation. In GC multidrug-resistant
cell lines, METTL3 can increase the m6A levels of ABL, which interact with IGF2BP1 (a
distinct family of m6A readers) and protect APAF1 from forming an apoptotic body, thus
inhibiting apoptosis and promoting drug resistance [31]. In a hypoxic tumor microen-
vironment, CBSLR exerts its potential to promote the survival of GC cells by inhibiting
ferroptosis. Mechanistically, CBSLR interacts with YTHDF2 to form a CBSLR/YTHDF2
complex that promotes the destabilization of CBS mRNA by facilitating the enhanced bind-
ing of YTHDF2 to the m6A-modified coding sequence (CDS) region of CBS mRNA. Low
CBS expression reduces methylation and subsequent ubiquitination degradation of ACSL4
protein [40]. (4) DNA repair: The DNA repair process plays a vital role in carcinogenesis,
and its aberrant regulation is responsible for genomic instability [157]. In OXA-resistant
cell lines, SLCO1C1 prevents DNA damage. The SLCO1C1 protein acts as a structural
support for the SSRP1/H2A/H2B complex, thereby regulating the functional role of SSRP1
in DNA damage inhibition and consequently enhancing oxaliplatin resistance in GC cell
lines [91]. SNHG8 in the cytoplasm interacts with hnRNPA1 and enhances its stability by
binding to HNRNPA1, thus increasing the level of TROY and damaging DNA damage
repair in gastric cancer cell lines during chemotherapy [150]. (5) Protein ubiquitination: As
an important component of gene post-transcriptional modification, ubiquitination plays a
core function in protein degradation. In the process of the ubiquitin–proteasome system,
proteins located in cells are destabilized and degraded through a cascade mediated by ubiq-
uitin initiation [158]. Numerous studies have demonstrated a close association between
lncRNAs and ubiquitination, with both entities playing a pivotal role in the modulation
of signaling pathways involved in cancer regulation [159,160]. In the regulation of the
drug resistance mechanism of gastric cancer, lncRNAs also participate in the regulation
of protein ubiquitination. For instance, HULC was found to interact with FoxM1 and
modulate the protein level of FoxM1 by inhibiting its ubiquitination process and stabilizing
its expression, thereby mitigating cisplatin resistance in gastric cancer [67]. CRNDE in
TAM-derived exosomes regulated PTEN expression by modulating NEDD4-1-mediated
PTEN ubiquitylation, thus influencing the DDP resistance in GC [149]. OVAAL enhanced
5-FU resistance in GC by upregulating the levels of PC (pyruvate carboxylase) protein at
the post-transcriptional level, thereby inhibiting the ubiquitin-mediated degradation of the
PC protein [152]. In addition, the lncRNA CBSLR-YTHDF2 protein complex destabilized
CBS mRNA by promoting the interaction between YTHDF2 and the m6A-modified CDS
region of CBS mRNA, eventually leading to the high ubiquitination of the ACSL4 protein
in GC cells [40] (Figure 3).
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4.5. Drug Resistance-Related lncRNA-Mediated Regulation of Cell Signaling in GC

In addition to the above regulatory mechanisms of GC drug resistance, lncRNAs
can also mediate drug resistance by managing the activity of downstream signaling path-
ways. It is well known that many signaling pathways have been found in cells, and
they are very important for a cascade of biological reactions and gene expression. Exten-
sive research suggests that drug resistance-related lncRNAs are closely related to various
pathways directly or indirectly. In summary, these signaling pathways involved in GC
resistance-related lncRNAs include the following: the wnt/β-catenin signaling pathway,
the PI3K/AKT/GSK-3β signaling pathway, the NF-κB signaling pathway, the ERK1/2
signaling pathway, the Notch2 signaling pathway, the MAPK signaling pathway, and the
p53 signaling pathway. The wnt/β-catenin signaling pathway is considered one of the
most canonical signaling pathways, which manages the occurrence and development of
tumors. Some studies have indicated that wnt co-current is over-activated in several kinds
of solid tumors from humans, and the wnt/β-catenin signaling pathway may be a common
pathway for many tumors. In DDP-resistant cell lines, BCAR4 [38], HOTAIR [62], and
ZFAS1 [101] can activate the wnt/β-catenin signaling pathway by upregulating their ex-
pressions to increase the drug resistance of GC. Currently, the PI3K/AKT/mTOR signaling
pathway is the focus of research. In addition to regulating cell growth and survival, protein
transcription, glucose metabolism, and a variety of programmed cell death types such as
apoptosis, autophagy, and iron death, the abnormal activation of this pathway affects the
occurrence and progression of tumors including GC [161]. There are nine lncRNAs involved
in the process of lncRNAs mediating the cellular mechanism of drug resistance in GC,
namely, MALAT1 [79], CRAL [125], LOC101928316 [143], FOXD1-AS1 [52], ST7-AS1 [106],
HOTAIR [62], SNHG12 [94], FAM84B-AS [48], and HIT000218960 [151]. These lncRNAs
regulate the PI3K/AKT/mTOR signaling pathway through their abnormal expression. In
addition to CRAL inhibiting the activity of the signaling pathway, the expression of the
other six lncRNAs is upregulated to activate the signaling pathway, which ultimately lead
to the occurrence of drug resistance in gastric cancer. The NF-κB signaling pathway refers
to a variety of biological processes, including the development of cancer. Through a series
of kinase activation and phosphorylation, NF-κB is activated [162,163]. As a transcrip-
tion factor, NF-κB can bind to target genes in the nucleus and initiate the transcription
of downstream genes. The NF-κB signaling pathway has been demonstrated to play a
crucial role in regulating the expression of cytokines, immune-related receptors, and other
factors, thereby influencing cell proliferation, apoptosis, and drug resistance [136,164]. In
a cisplatin-resistant GC cell line, ASB16-AS1 can increase the activity of the NF-κB path-
way by combining with ATM to promote TRIM37 phosphorylation, thus activating the
resistance of GC [37]. As the first cell signaling pathway to be discovered, ERK1/2 is the
core of many extracellular signals that promote cell proliferation [165]. Once ERK1/2 is
abnormally activated, it will promote the proliferation and malignant transformation of
cells and then cause abnormal expression of downstream target genes. In GC cells, a high
expression level of BANCR was found to mediate gastric cancer cell cisplatin resistance
by increasing the phosphorylation of the ERK protein [166]. In addition, DUSP5P1 pro-
motes platinum resistance in gastric cancer cell lines by activating the ERK1/2 signaling
pathway [45]. Regarding the role of drug resistance in gastric cancer, we also found that
other signaling pathways are involved, such as the Notch signaling pathway and the
p53 signaling pathway, by reviewing the documents selected for this review. In terms of
the Notch signaling pathway, SNHG17 can positively regulate Notch2 protein expression
through the ceRNA mechanism and then activate the Notch signaling pathway to induce
drug resistance in gastric cancer [144]. Some lncRNAs that negatively regulate signaling
pathways have also been found to regulate drug resistance mechanisms in gastric cancer.
For example, TMEM44-AS1 can inhibit the p53 signaling pathway through the ceRNA
mechanism to induce 5-FU drug resistance in gastric cancer [167].

Although a single lncRNA can mediate drug resistance through clear signaling path-
ways, the regulatory network between lncRNAs and signaling pathways plays a more
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important role. The clear regulatory axis also provides more evidence supporting the
involvement of lncRNA regulatory signaling pathways in drug resistance mechanisms
(Figure 4).

Biomolecules 2024, 14, x FOR PEER REVIEW 17 of 37 
 

NF-κB pathway by combining with ATM to promote TRIM37 phosphorylation, thus acti-
vating the resistance of GC [37]. As the first cell signaling pathway to be discovered, 
ERK1/2 is the core of many extracellular signals that promote cell proliferation [165]. Once 
ERK1/2 is abnormally activated, it will promote the proliferation and malignant transfor-
mation of cells and then cause abnormal expression of downstream target genes. In GC 
cells, a high expression level of BANCR was found to mediate gastric cancer cell cisplatin 
resistance by increasing the phosphorylation of the ERK protein [166]. In addition, 
DUSP5P1 promotes platinum resistance in gastric cancer cell lines by activating the 
ERK1/2 signaling pathway [45]. Regarding the role of drug resistance in gastric cancer, 
we also found that other signaling pathways are involved, such as the Notch signaling 
pathway and the p53 signaling pathway, by reviewing the documents selected for this 
review. In terms of the Notch signaling pathway, SNHG17 can positively regulate Notch2 
protein expression through the ceRNA mechanism and then activate the Notch signaling 
pathway to induce drug resistance in gastric cancer [144]. Some lncRNAs that negatively 
regulate signaling pathways have also been found to regulate drug resistance mechanisms 
in gastric cancer. For example, TMEM44-AS1 can inhibit the p53 signaling pathway 
through the ceRNA mechanism to induce 5-FU drug resistance in gastric cancer [167]. 

Although a single lncRNA can mediate drug resistance through clear signaling path-
ways, the regulatory network between lncRNAs and signaling pathways plays a more 
important role. The clear regulatory axis also provides more evidence supporting the in-
volvement of lncRNA regulatory signaling pathways in drug resistance mechanisms (Fig-
ure 4). 

 
Figure 4. Drug resistance-related lncRNA-mediated regulation of cell signaling (DR: drug re-
sistance; DS: drug sensitivity). 

5. Metabolism, Tumor Microenvironment, and Drug Resistance-Related lncRNAs 
Metabolism and the tumor microenvironment perform vital roles during carcinogen-

esis. Changes in the TME caused by the dysfunction of immune cells and vascular and 
stromal cells result in the hypoxia, high acid, and high interstitial fluid pressure environ-
ment around tumor cells [168,169]. Metabolism is closely related to the TME. Communi-
cation within the TME is dependent on tumor metabolic activity [170]. For instance, gly-
colytic metabolism of glucose (now known as the ”Warburg effect”) increases the level of 
lactic acid, thus acidifying the TME [171]. Tumor-associated hypoxia can further upregu-
late cellular glycolysis and lactic acid production, leading to an accumulation of acid and 

Figure 4. Drug resistance-related lncRNA-mediated regulation of cell signaling (DR: drug resistance;
DS: drug sensitivity).

5. Metabolism, Tumor Microenvironment, and Drug Resistance-Related lncRNAs

Metabolism and the tumor microenvironment perform vital roles during carcino-
genesis. Changes in the TME caused by the dysfunction of immune cells and vascular
and stromal cells result in the hypoxia, high acid, and high interstitial fluid pressure
environment around tumor cells [168,169]. Metabolism is closely related to the TME. Com-
munication within the TME is dependent on tumor metabolic activity [170]. For instance,
glycolytic metabolism of glucose (now known as the ”Warburg effect”) increases the level
of lactic acid, thus acidifying the TME [171]. Tumor-associated hypoxia can further up-
regulate cellular glycolysis and lactic acid production, leading to an accumulation of acid
and a change in the pH in the tumor microenvironment. Acidosis and hypoxia profoundly
modulate cancer cell metabolism and disease progression to ensure significant metabolic
reprogramming, which is beneficial to tumor progression [172]. Studies have indicated that
lncRNAs function in metabolism and the TME, thus promoting carcinogenesis [173].

5.1. Metabolism and Drug Resistance-Related lncRNAs

Tumor cells are dependent on different metabolic networks including glucose, fatty
acid, amino acid, and nucleic acid metabolism. It is widely known that lncRNAs play
important roles in modulating metabolic processes [174]. In this review, several drug
resistance-associated lncRNAs involved in metabolism were identified in GC. For lipid
metabolism, fatty acid oxidation (FAO) is a vital process in the regulation of drug resistance.
As a major pathway, FAO can promote fatty acid (FA) degradation and increase ATP and
NADPH production [175]. In the process of FAO, FAs are important energy resources. The
FAO process in mitochondria produces 2.5 times as much ATP compared with the glucose
oxidation reaction [176]. Two lncRNAs are closely related to FAO metabolism and involved
in the drug resistance of GC. The study by He et al. indicated that MACC1-AS1 is involved
in the 5-Fu resistance of GC cells by regulating lipid metabolism [75]. In their study, He
et al. found that the TGF-β1 secreted by MSCs could induce MACC1-AS1 expression
in GC cells. After that, MACC1-AS1 could promote stemness and chemoresistance in
FAO dependence [75]. Another study by Wu et al. pointed out that HCP5 contributed to
stemness and drug resistance in GC by increasing the FAO reaction. Mechanistically, HCP5
and miR-3619-5p constitute the ceRNA regulatory network to upregulate PPARGC1A
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expression, which prompted FAO in GC cells [55]. For glucose metabolism in tumor cells,
the Warburg effect plays an important role, even under aerobic conditions [177]. Some
lncRNAs participate in the glucose metabolism in tumor cells through different mechanisms.
Some lncRNAs affect the glycolysis process by regulating the expression of key enzymes
of glycolysis and inducing drug resistance in gastric cancer cell lines; these include, for
instance, SNHG7 [137], HAGLR [54], and SNHG1 [107]. SNHG7 desensitizes gastric cancer
cells to cisplatin via the miR-34a/LDHA-glycolysis axis [137]. SNHG16 decreases miR-506-
3p by sponging it, forming a ceRNA network to regulate PTBP1 expression in GC cells, thus
mediating expressions of multiple glycolysis enzymes and including GLUT1, HK2, and
LDHA [138]. HAGLR can function in oncogenic roles by sponging miR-338-3p to activate
the LDHA-glycolysis pathway in the 5-Fu resistance of GC cells [54]. In Taxol-resistant cell
line, SNHG1 can act as a ceRNA of miR-216b-5p to upregulate HK2, a glucose metabolism
key enzyme, thus targeting the HK2–glycolysis axis and promoting Taxol resistance [107].
In addition to the lipid metabolism and glucose metabolism involved in drug resistance
mechanisms, lncRNAs also affect nucleotide metabolism in gastric cancer. For instance, Tan
et al. indicated that GC cells with high expression of OVAAL were more resistant to 5-FU
and became resistant to 5-FU treatment. OVAAL binds to PC and stabilizes PC against
HSC70/CHIP-mediated cytoplasmic ubiquitination and degradation in the cytoplasm. The
above process eventually triggers the production of oxaloacetate from pyruvate and the
following accumulation of malate and aspartate, leading to 5-Fu resistance [152] (Figure 5).
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5.2. Tumor Immune Microenvironment and Drug Resistance-Related lncRNAs

The tumor immune microenvironment covered in the TME has been proven as a
special microenvironment that can recombine the cancer biology process. The changes
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in the tumor immune microenvironment finally affect cancer prognosis and response to
drug treatment [178]. The tumor immune microenvironment contains not only tumor
cells but also myeloid cells and lymphocytes. These infiltrations of immune cells can
exchange immune phenotypes in the TME and influence immune escape and therapy
resistance [179,180]. Studies have shown that lncRNAs not only affect protein expression
involved in the immune response through different mechanisms but can also regulate the
functional maintenance of immune cells, thus facilitating the escape of tumor cells from
immune surveillance [181]. In this review, several drug resistance-associated lncRNA were
found to be involved in immune regulation in GC. (1) Regulation of the programmed
cell death protein 1 (PD)-L1 protein expression and induction of drug resistance: As a
ligand of PD-1, PD-L1 is mainly synthesized from activated T and B cells and acts as a
co-suppressor receptor molecule, which can inhibit the function of PD-1-expressing T cells
and suppress the immune response [182,183]. PD-L1 is often observed to have a high-level
status and is associated with immune evasion of cancer cells [184]. Two lncRNAs regulate
PD-L1 expression by means of different mechanisms to affect the immune response and
then induce the drug resistance of GC. Dang et al. indicated that SNHG15 could absorb
the miR-141 increasing PD-L1 expression, which promoted the resistance of GC cells to
immune therapy [139]. In gastric cancer, SNHG15 is usually highly expressed. Through the
regulatory mechanism of ceRNA, upregulated SNHG15 positively promotes the expression
of PD-L1 on the surface of dendritic cells, macrophages, or gastric cancer cells in gastric
cancer tissues, induces apoptosis, non-response, and dysfunction of T cells, and eventually
leads to an increase in the immune escape activity of gastric cancer cells and promotes
immunotherapy resistance [139]. NUTM2A-AS1 positively regulates the expression of
target genes TET1 and HIF-1A by forming ceRNA with miR-376a. TET1 can combine
with HIF-1A to modulate PD-L1 expression positively. Once the expression level of PD-L1
is upregulated, the immune escape function of gastric cancer cells is increased, which
promotes the drug resistance of immunotherapy in gastric cancer [85]. (2) M2 macrophage
polarization: As the major component of the TME, TAMs play an essential role in the
occurrence, development, metastasis, and chemoresistance of tumors [185]. In patients
with GC, TAMs are polarized to the M2 phenotype and contribute to tumor cell proliferation,
resistance, and a poor prognosis [186]. In GC cells, HIF1A-AS2 and RP11-366L20.2 both
absorb miR-29c, resulting in the upregulation of the LOX gene [134]. Studies have shown
that LOX family members are involved in the establishment and maturation of the tumor
microenvironment [187]. A high level of LOX can facilitate macrophage polarization toward
the M2 phenotype, which results in the immune escape of cancer cells and drug resistance
in GC [134]. In addition, M2-polarized macrophages can secrete CRNDE-rich exosomes to
facilitate NEDD4-1-mediated PTEN ubiquitination, resulting in drug resistance in GC [149]
(Figure 5).

5.3. “Cross-Talk” in TME and Drug Resistance-Related lncRNAs

PhD Whiteside pointed out that there is a close cross-talk among various cells including
tumor cells in the TME. This important medium of close communication in the TME mainly
relies on small vesicles secreted by cells (also called exosomes). As a major component of
the TME, MSCs play a vital role in facilitating tumor progression. These small vesicles
induced by tumor cells can re-program the functional profile of MSCs from normally
trophic to pro-tumorigenic. At the same time, MSCs affected by cancer cell signals also give
back to tumor cells by producing their own exosomes carrying and delivering molecular
signals, further promoting the malignant phenotype of tumor cells [188]. In this review, we
also found that several lncRNAs play important roles in this cross-talk and induce drug
resistance in GC. For instance, one study found that MSCs secreted TGF-β1, which induced
MACC1-AS1 expression and promoted FAO-dependent stemness and chemoresistance [75].
In MDR GC cell lines, MSCs were found to secret exosomes containing HCP5 to confer
chemo-resistance and enhance the FAO-dependent stemness of GC cells by adsorbing miR-
3619-5p to increase PPARGC1A expression, finally leading to the transactivation of CPT1
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by the PGC1α/CEBPB complex [55]. In DDP-resistant cells, GC cells secreted high levels
of exosomal FGD5-AS1 and transmitted these exosomes to parental cells, thus inducing
DDP resistance by sponging miR-195 [51]. In addition, M2 macrophages were also found to
secret exosomes containing CRNDE to facilitate NEDD4-1-mediated PTEN ubiquitination,
thus inducing the CDDP resistance of GC cells [149] (Figure 5).

6. Clinical Application of Drug Resistance-Related lncRNAs

Drug resistance-associated lncRNAs take part in regulating drug resistance through
a variety of mechanisms in GC. At the same time, these lncRNAs also play an important
role in clinical diagnosis, therapeutic evaluation, and the prediction of therapeutic efficacy.
(1) Diagnosis: In paclitaxel-resistant cell lines, the expression of PVT1 can indicate whether
there is paclitaxel resistance and lymph node metastasis [189]. Chen et al. applied the
non-negative matrix factorization (NMF) algorithm using the TCGA database to identify
a new cluster of survival-related GC and found that ZFPMA-AS1 could regulate TIME
and drug sensitivity associated with anticancer treatment. Patients with high ZFPM2-AS1
expression had worse survival than those with low ZFPM2-AS1 expression in STAD [190].
(2) Prognostic risk assessment and efficacy prediction: Compared with the limitations of a
single marker in the diagnosis and prediction of GC, a gene set or model prediction is cur-
rently widely used in clinical practice. In this review, a total of 17 articles (Table 3) used the
differential expression of different functionally related lncRNAs to construct algorithms, so
as to provide a basis for guiding clinical prognosis and predicting therapeutic effects. Four
articles [191–194] used drug-resistant tissues or cells (PR, MDR, and DCSR) for differential
lncRNA screening to construct a model. Four articles [193–196] constructed prediction
models based on pyroptosis-related lncRNAs (PRlncRNAs). These research studies all
conducted the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm to con-
struct the PRlncRNA model. The data in a high-risk group indicated that these patients had
adverse prognoses compared with a low-risk group. The high-risk group patients always
prompted a lower tumor mutation burden and gene mutation frequency, which predicted
prognosis and immunotherapy or chemotherapy drug sensitivity. Two articles [197,198]
constructed prediction models based on stemness-related lncRNAs (SRlncRNAs). In the
models, a higher score might hint at a better performance in predicting therapy response
including immunotherapy and chemotherapy. Three articles [129,199,200] constructed
prediction models based on ferroptosis- or cuproptosis-related lncRNAs (F/CRlncRNAs).
These models were usually established to be used to predict the prognosis of GC. Patients
with a high-risk score were associated with immune escape based on integrated bioinfor-
matics analyses including low genomic instability, low tumor mutation burden (TMB), and
worse immunotherapy response. The evaluation of genomic instability, which is closely
related to the efficacy of immunotherapy, was also studied in two articles [201,202]. Using
RNA sequencing and single nucleotide variant (SNV) data from TCGA datasets, the authors
established the genomic instability-associated lncRNA signature (GILncSig) based on the
accumulation of gene mutation counts to evaluate chemotherapy drug sensitivity and im-
mune landscape changes, providing a basis for clinical immunotherapy efficacy evaluation.
In addition, some algorithm-based models using other functionally related lncRNAs, such
as autophagy-related lncRNAs (ARlncRNAs) and PLT-related lncRNAs (PLTRlncRNAs),
have been applied to clinical prediction. For example, a nine-optimal gene risk model based
on ARlncRNAs was constructed, and the results indicated that high-risk patients gained
higher PD-1/PD-L1 expressions and higher sensitivity to chemotherapy agents compared
with the low-risk group [203]. Another prediction model based on PLTRlncRNAs data
suggested that high-risk individuals had a poorer prognosis because of a low infiltration
of immune cells and a poor response to immunotherapy [204] (Table 3). Unfortunately,
these models are limited to theoretical predictions and are not applied in clinical practice.
This also provides more ideas for subsequent researchers to conduct in-depth research in
related fields.
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Table 3. Clinical application of drug resistance-related lncRNAs in gastric cancer.

LncRNA or Model LncRNA Name or ID Functions Data Experimental Methods Clinical Application Refs.

A 9-ARlncRNA signature
AL357054.4, AC018682.1, A2M-AS1, AP001107.5,
CAPN10-DT, HAND2-AS1, LINC01081, PIK3CD-AS1,
ZNF710-AS1

ARlncRNAs TCGA HTS, algorithm
predicting prognosis and
efficacy of immunotherapy and
chemotherapy

[203]

A 13-SRlncRNA signature
AC026369.2, AC024267.4, AC017074.1, AC0104695.4,
AC016394.3, AC009022.1, AC112484.3, AC005391.1,
LINC00941, LINC02532, LINC01614, LINC01943, SMIM25

SRlncRNAs TCGA HTS, algorithm predicting immunotherapy
response [197]

A 23-SRlncRNA signature

AP000873.4, AC116158.1, RNF144A-AS1, LINC01094,
MAPKAPK5-AS1, AL136115.1, AL391152.1, AC147067.2,
AL356215.1, ADAMTS9-AS1, AC011747.1, AL353796.1,
AC104695.4, AC087521.1, AC078860.2, AC027682.6,
AC104809.2, AC129507.1, AC010768.2, AC026412.3,
LINC01614, LINC00519, LINC00449

SRlncRNAs TCGA/Zhongshan/
IMvigor210 HTS, algorithm predicting chemotherapy and

immunotherapy response [198]

A 6-GIRlncRNA signature AC010789.1, HOXA10-AS, LINC02678, LINC01150,
RHOXF1-AS1, TGFB2-AS1 GIRlncRNAs TCGA HTS, algorithm predicting immunotherapy

response [201]

A 17-FRlncRNA signature

AC104260.2, AP000438.1, AL022316.1, AL391152.1,
AC021106.3, AC131391.1, AL355001.1, AP000695.1,
AP001107.6, AC007391.1, AL021154.1, AC104758.1,
FP700111.1, MACORIS, RFS1-IT2, SPATA13-AS1, SCAT8

FRlncRNAs TCGA/GEO HTS, algorithm predicting prognosis and
therapeutic response [129]

A 14-PRlncRNA signature

AC074286.1, AC013275.2, C10orf91, CTD-2377D24.6,
LINC00607, LINC01094, LINC00607, LINC01588,
MMP25-AS1, MLLT4-AS1, RP3-522D1.1, RP11-61A14.1,
TUSC8, TRPM2-AS

PRlncRNAs TCGA/GEO HTS, algorithm
predicting differential
sensitivity to multiple
chemotherapeutic agents

[195]

A CElncRNA-GC1 and
AJCC stage lncRNA-GC1 MRRlncRNAs Central data HTS, algorithm

predicting prognosis and
chemotherapy response after
surgery

[191]

A 12-F/CRlncRNA
signature

ENSG00000221819.5, ENSG00000230387.2,
ENSG00000233262.1, ENSG00000239265.4,
ENSG00000241111.1, ENSG00000248279.4,
ENSG00000248356.1, ENSG00000249807.1,
ENSG00000250303.3, ENSG00000256220.1,
ENSG00000265194.1, ENSG00000266957.1

F/CRlncRNAs TCGA and literature HTS, algorithm predicting chemotherapy
response [199]

A 3-PRlncRNA signature AC017076.1, CYMP-AS1, PVT1 PRlncRNAs GSEA and literature HTS, algorithm predicting immunotherapy and
chemotherapy drug sensitivity [193]

A 10-CRlncRNA signature
AC016737.1, AL391152.1, AL121748.1, AL512506.1,
AC104809.2, AL353804.2, AL353796.1, AL355574.1,
LINC01980, TYMSOS

CRlncRNAs TCGA HTS, algorithm predicting prognosis and
presenting immune landscape [200]
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Table 3. Cont.

LncRNA or Model LncRNA Name or ID Functions Data Experimental Methods Clinical Application Refs.

A 4-PRlncRNA signature HAND2-AS1, LINC01354, PGM5-AS1, RP11-276H19.1 PRlncRNAs TCGA HTS, algorithm
predicting prognosis and
immune microenvironment
status

[194]

A 11-PRlncRNA signature
AL353804.1, AC147067.2, AP001318.2, AC018752.1,
ACTA2-AS1, AL121772.1, AC005332.4, AC245041.2,
HAGLR, RRN3P2, UBL7-AS1

PRlncRNAs TCGA HTS, algorithm predicting prognosis and
immune landscape [196]

A 8-GIRlncRNA signature AC078883.2, AL049838.1, AL359182.1, AL365181.3,
LINC01436, LINC01833, LINC01614, RHOXF1-AS1 GIRlncRNAs TCGA/GEO HTS, algorithm predicting prognosis and

immunotherapy response [202]

A 7-PLTRlncRNA signature AC002401.4, AC129507.1, AL513123.1, AL355574.1,
AL356417.2, LINC01697, LINC01094 PLTRlncRNAs TCGA HTS, algorithm predicting prognosis and

immunotherapy response [204]

A 11-DCSRlncRNA
signature

AC007277.1, AC005324.4, AL512506.1, AC068790.7,
AC022509.2, AC113139.1, LINC02532, LINC00106,
AC005165.1, MIR100HG, UBE2R2-AS1

DCSRlncRNAs TCGA/GEO HTS, algorithm
predicting chemotherapy
response and immune
infiltration in patients with GC

[192]

PVT1 PVT1 PRRlncRNAs DE SGC7901/
SGC7901P HTS predicting lymph node invasion [189]

ZFPM2-AS1 ZFPM2-AS1 IRlncRNAs TCGA HTS, algorithm
predicting survival and
reducing the sensitivity
to cisplatin

[190]

Abbreviations: DElncRNA: differentially expressed lncRNA; ARlncRNA: autophagy-related lncRNA; SRlncRNA: stemness-related lncRNA; GIRlncRNA: Genomic instability-related
lncRNA; FRlncRNA: ferroptosis-related lncRNA; PRlncRNA: pyroptosis-related lncRNA; CRlncRNA: cuproptosis-related lncRNA; PLTRlncRNA: platelet-related lncRNA; TCGA: The
Cancer Genome Atlas; GEO: Gene Expression Omnibus; HTS: high-throughput sequencing; DCSRlncRNA: docetaxel, cisplatin, and S-1-related lncRNA.
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In addition to their diagnostic and prediction functionalities, the aberrant expression
of certain drug resistance-associated lncRNAs identified in this study exhibits a significant
correlation with clinicopathological characteristics and prognostic outcomes among patients
diagnosed with gastric cancer. In terms of clinicopathological characteristics, the high
expression levels of six drug resistance-associated lncRNAs, namely, ADAMTS9-AS2 [32],
BCAR4 [38], FGD5-AS1 [51], PANDAR [86], SLCO1C1 [91], and UCA1 [97], were found
to be positively correlated with tumor size. The expression of four lncRNAs including
BCAR4 [38], FAM84B-AS [48], SLCO1C1 [91], and UCA1 [97] is closely associated with
histological grade and differentiation. The expression of some drug resistance-associated
lncRNAs is also closely related to Lauren classification and Borrman type. These lncRNAs
include BCAR4 [38] and UCA1 [97]. Just as we introduced the close relationship between
drug-resistant lncRNA and the malignant phenotype of gastric cancer at the cellular level, in
terms of the clinical tissue expression level, the abnormal expression of some drug-resistant
lncRNAs is also closely related to neurovascular invasion, lymphatic metastasis, and distant
metastasis. These lncRNAs include ADAMTS9-AS2 [32], BCAR4 [38], FAM84B-AS [48],
and UCA1 [97,99]. As shown in Table 4, there are 15 lncRNAs whose abnormal expression
is closely related to the TNM stage.

Table 4. Relationship between drug resistance-associated lncRNA and prognosis of gastric cancer.

LncRNA Sources Expression Prognosis Refs.

ABL Microarray (T vs. no-T) ↑ TNM(+), OS(+), IPF [31]

ADAMTS9-AS2 Literature search ↑ Size(+), lymphatic invasion(+),
TNM(+), OS(+) [32]

ARHGAP5-AS Microarray (R-c vs. S-c) ↑ Gender(+), TNM(+), OS(+),
PFS(+), IPF [36]

BCAR4 Literature search ↑

Size(+), Lauren type(+), histological
grade(+), lymph node metastasis(+),
distant metastasis(+), TNM(+), 3-y

RFS(+), IPF

[38]

CBSLR Microarray (H vs. no-H) ↑ OS(+), DFS(+) [40]
CRART16 Microarray (T vs. no-T) ↑ TNM(+), OS(+) [41]
CRNDE Literature search ↓ OS(+), DFS(+) [42]

DUSP5P1 CHIP-sequencing ↑ TNM(+), OS(+), PFS(+), IPF [45]
D63785 Microarray (T vs. no-T) ↑ 3-y OS(+) [46]

EIF3J-DT Microarray (R-c vs. S-c) ↑ RFS(+) [47]

FAM84B-AS Microarray (R-t vs. S-t) ↑
Differentiation(+), vascular cancer

thrombus(+), nerve invasion(+),
TNM(+), IPF

[48]

FEZF1-AS1 Literature search ↑ OS(+) [49]
FGD5-AS1 Size(+), TNM(+) [51]

HCP5 Literature search ↑ 5-y OS(+) [56]
HULC Literature search ↑ 5-y OS(+) [66]

LINC-PINT Literature search ↓ Recurrence(+), OS(+) [72]
MACC1-AS1 Literature search ↑ TNM(+), DFS(+), OS(+), IPF [75]

MALAT1 Literature search ↑ OS(+), DFS(+) [76]
TCGA (T vs. no-T) ↑ OS(+), IPF [79]

NUTM2A-AS1 Literature search ↑ TMN(+), OS(+) [85]
PANDAR Microarray (T vs. no-T) ↑ Size(+), TNM(+), 5-y OS(+), IPF [86]

PVT1 TCGA/GEO (T vs. no-T) ↑ TNM(+), OS(+), PFS(+) [89]
PITPNA-AS1 Microarray (T vs. no-T) ↑ OS(+) [87]

SLCO1C1 Microarray (T vs. no-T) ↑ Size(+), differentiation(+), OS(+) [91]
SNHG12 Literature search ↑ TNM(+), OS(+) [94]

SUMO1P3 Literature search ↑ TNM(+), OS(+) [95]

UCA1 Microarray (T vs. no-T) ↑
Size(+), differentiation(+), Borrman
type(+), Lauren type(+), invasion(+),

TNM(+), IPF
[97]
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Table 4. Cont.

LncRNA Sources Expression Prognosis Refs.

TCGA/GEO (T vs. no-T) ↑ Lymph node metastasis(+), distant
metastasis(+), TNM(+), 5-y OS(+), IPF [99]

GEO (T vs. no-T) ↑ 3-y OS(+) [100]

Abbreviations: T: tumor; no-T: no-tumor; R-t: drug resistance tissue; S-t: drug sensitivity tissue; R-c: drug
resistance cell line; S-c: drug sensitivity cell line; TNM: TNM stage; OS: overall survival; PFS: progress-
free survival; DFS: disease-free survival; RFS: recurrence-free survival; IPF: independent prognostic factor;
(+): positive correlation; ↑: high expression; ↓: low expression.

In terms of prognosis evaluation, the expression of some drug-resistant lncRNAs in
this review is also closely related to poor prognosis. The aberrant expression of 22 lncRNAs
(ABL, ADAMTS9-AS2, ARHGAP5-AS, CBSLR, CRART16, CRNDE, DUSP5P1, D63785,
FAM84B-AS, FEZF1-AS1, HCP5, HULC, LINC-PINT, MACC1-AS1, MALAT1, NUTM2A-
AS1, PANDAR, PVT1, PITPNA-AS1, SLCO1C1, SNHG12, SUMO1P3, and UCA1) were
found to be significantly associated with overall survival (OS). The expression levels of
three lncRNAs (ARHGAP5-AS, DUSP5P1, and PVT1) were found to be correlated with
progression-free survival (PFS), while another four lncRNAs (CBSLR, CRNDE, MACC1-
AS1, MALAT1) showed a significant association with disease-free survival (DFS). Addition-
ally, the expression patterns of three lncRNAs were linked to recurrence-free survival (RFS)
(BCAR4 and EIF3J-DT) and tumor recurrence (LINC-PINT). Furthermore, nine lncRNAs
(ABL, ARHGAP5-AS, BCAR4, DUSP5P1, FAM84B-AS, MACC1-AS1, MALAT1, PANDAR,
and UCA1) exhibited potential as independent prognostic factors for predicting adverse
outcomes in gastric cancer. The above results are detailed in Table 4.

In this review, most of the identified lncRNAs that regulate the drug resistance of
gastric cancer may become therapeutic targets for clinical application in the future. The
majority of these lncRNAs, which exert a crucial role in the regulation of drug resistance in
gastric cancer, mediate their effects on target genes through mechanisms such as vector-
mediated overexpression and RNAi (RNA interference) methods (siRNA and shRNA).
Ultimately, this leads to enhanced chemosensitivity, suppression of drug resistance, and
inhibition of malignant phenotypes. LncRNAs, which play the role of tumor suppressor
genes in the regulation of drug resistance in gastric cancer, can increase the sensitivity of
chemotherapy drugs and improve the therapeutic effect under the action of overexpression
vectors. RNAi has become an important means for studying gene function in mammalian
cells. The downregulation effect of target genes is achieved through the action of exogenous
double-stranded RNA or short hairpin RNA (shRNA) molecules [205,206]. The CRISPR-
Cas9 system has been discovered as a groundbreaking genome editing tool for use in
cancer treatment to suppress and activate long non-coding RNA [207]. As shown in
Supplementary Table S1, the knockdown of PANDAR by the CRISPR-Cas9 system inhibited
multidrug resistance in GC [86]. Furthermore, RNAi technology can effectively inhibit
certain lncRNAs associated with drug resistance in gastric cancer such as HOTTIP [65] and
FGD5-AS1 [51], which play a crucial role in the delivery of exosomes. The lncRNAs that
play pivotal roles in drug resistance hold promising potential as therapeutic targets for
overcoming GC drug resistance (Supplementary Table S1).

7. Conclusions and Perspectives

Although the current treatment drugs and regimens for advanced GC are continuously
updated, there has been limited improvement in overall patient outcomes over the past
few decades. Chemoresistance remains a major obstacle to achieving effective treatment in
these patients. Whether intrinsic or acquired, drug resistance is a complex and multifac-
torial process closely associated with cancer cells and the tumor microenvironment [208].
The molecular mechanism of chemoresistance in GC has garnered increasing attention
from researchers. Currently, it is established that lncRNAs play crucial regulatory roles
in various physiological and pathological processes, including chemoresistance. Accumu-
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lating evidence suggests that lncRNAs are implicated in the regulation of drug resistance
in gastric cancer through diverse mechanisms. In this comprehensive and systematic
review, we aimed to elucidate the role of lncRNAs in drug resistance comprehensively.
These lncRNAs associated with drug resistance exert significant effects on the proliferation,
invasion, metastasis, and apoptosis of drug-resistant GC cell lines because of their aberrant
expression patterns. With drug resistance-related lncRNAs as a central focus, multiple
mechanisms encompassing upstream and downstream regulations mediate drug resistance
in GC. Within this intricate regulatory network, alterations in numerous molecules and mi-
croenvironments contribute to some extent toward the development of GC drug resistance.
Furthermore, different prediction models based on high-throughput sequencing results
also provide a clinical foundation for guiding future drug therapy for GC.

Although the involvement of lncRNAs in GC drug resistance has been extensively
investigated for several decades, significant progress has been made only in understanding
a fraction of the underlying mechanisms. At the same time, in order to improve the overall
survival of patients with gastric cancer as much as possible with the application of new
drugs or off-label drugs in the treatment of gastric cancer, more mechanisms need to be
discovered. For instance, lncRNAs are also involved in the regulation of bevacizumab in GC
drug resistance [41]. Highly expressed CRART16 in gastric cancer tissues can adsorb miR-
122-5p and upregulate the expression of downstream oncogene FOS through the ceRNA
mechanism. A high level of FOS expression, which eventually leads to the upregulation
of VEGFD expression, inhibits the inhibitory effect of bevacizumab on gastric cancer cells.
In addition, in the intricate TME, elucidating the precise role of lncRNAs in regulating
GC drug resistance is inevitably confronted with numerous challenges. However, these
research gaps also offer abundant opportunities for future investigations. For instance,
recent discoveries highlighting metal-dependent programmed cell death (PCD)-related
lncRNAs hold great promise for advancing personalized care based on chemosensitivity
models of GC cells and facilitating the development of novel therapeutic strategies to
overcome chemoresistance. Overall, it is crucial to recognize that drug resistance in GC
represents a dynamic process closely intertwined with changes occurring within the TME.
Unraveling the intricate involvement of lncRNAs in this process remains an imperative
direction for future researchers.

Below is a simple summary of this review and some remaining open questions:

• Gastric cancer, being one of the most prevalent malignant neoplasms, significantly
impacts global population health.

• Drug resistance poses a significant impediment to achieving optimal therapeutic
outcomes in the treatment of malignant tumors.

• Long non-coding RNAs (lncRNAs) play a pivotal role in a wide range of pathological
and physiological processes, encompassing the regulation of drug resistance.

• What special role do drug-resistant lncRNAs play in the malignant phenotype of
gastric cancer?

• Can the ceRNA model be considered as the exclusive regulatory mechanism utilized
by lncRNAs in conferring drug resistance to gastric cancer?

• What is the functional significance of lncRNAs among the tumor microenvironment,
metabolism, and drug resistance mechanisms in gastric cancer?

• How are drug-resistant lncRNAs used to guide the diagnosis and treatment of
gastric cancer?

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom14060608/s1, Supplementary Table S1: Mechanisms and effects
of potential clinical targets in drug resistance progress.
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Abbreviations

ABCB1 ATP binding cassette subfamily B member 1
ACSL4 acyl-CoA synthetase long chain family member 4
AKT AKT serine/threonine kinase
AMPK protein kinase AMP-activated catalytic subunit alpha 1
APAF1 apoptotic peptidase activating factor 1
ARHGAP5 Rho GTPase activating protein 5
ATG5 autophagy related 5
ATM ATM serine/threonine kinase
ATP Adenosine triphosphate
BECN1 beclin 1
CAF cancer-associated fibroblast
CBS cystathionine beta-synthase
CDKN1A cyclin dependent kinase inhibitor 1A
ceRNA competing endogenous RNAs
CHIP STIP1 homology and U-box containing protein 1
CNBP CCHC-type zinc finger nucleic acid binding protein
CYLD CYLD lysine 63 deubiquitinase
DDP cisplatin
DNA Deoxyribonucleic acid
E2F6 E2F transcription factor 6
EMT Epithelial to mesenchymal transition
EZH2 enhanced by zeste homolog 2
FAO fatty acid oxidation
FOLFOX a chemotherapy regimen
FOXM1 forkhead box M1
GLUT1 solute carrier family 2 member 1
HDAC3 histone deacetylase 3
HK2 hexokinase 2
HMGA2 high mobility group AT-hook 2
hnRNPA1 heterogeneous nuclear ribonucleoprotein A1
HSP70 heat shock protein family A (Hsp70) member 8
HuR ELAV-like RNA binding protein 1
IGF2BP1 insulin-like growth factor 2 mRNA binding protein 1
LDHA lactate dehydrogenase A
lncRNA long non-coding RNA
LOX lysyl oxidase
MDR multidrug resistance
METase methioninase
MK midkine
MREs miRNA response elements
mRNA messenger RNA
MSCs mesenchymal stem cells
ncRNA non-coding RNA
NEDD4-1 NEDD4 E3 ubiquitin protein ligase
PC pyruvate carboxylase
PDCD4 programmed cell death 4
PPARGC1A PPARG coactivator 1 alpha
PTBP1 polypyrimidine tract binding protein 1
PTEN phosphatase and tensin homolog
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RNA ribonucleic acid
sncRNA small non-coding RNA
SOX2 SRY-box transcription factor 2
SOX9 SRY-box transcription factor 9
SRSF6 serine and arginine rich splicing factor 6
TAM tumor-associated macrophage
TET1 tet methylcytosine dioxygenase 1
TIME tumor immune microenvironment
TME tumor microenvironment
TRIM37 tripartite motif containing 37
TROY TNF receptor superfamily member 19
YWHAZ tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta
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