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Simple Summary: Pancreatic Ductal Adenocarcinoma (PDAC) remains one of the deadliest forms of
cancer, characterized by high rates of metastasis, late detection, and poor prognoses. Artificial intelli-
gence and machine learning (AI/ML) have proven to be highly effective in improving the current
standard of care for many cancers, including PDAC. This review article provides a holistic overview
of high-impact, transformative AI/ML applications in various areas of PDAC care. Reflecting a
patient’s medical journey, these areas include screening, diagnosis, treatment, and post-treatment
surveillance. Obstacles and limitations in AI/ML applications within the context of PDAC are also
discussed, along with potential solutions and future directions. Collectively, this review article offers
novel approaches and meaningful insights, potentially leading to solutions for the multifaceted
challenges inherent in PDAC.

Abstract: Pancreatic Ductal Adenocarcinoma (PDAC) remains one of the most formidable challenges
in oncology, characterized by its late detection and poor prognosis. Artificial intelligence (AI) and
machine learning (ML) are emerging as pivotal tools in revolutionizing PDAC care across various
dimensions. Consequently, many studies have focused on using AI to improve the standard of PDAC
care. This review article attempts to consolidate the literature from the past five years to identify
high-impact, novel, and meaningful studies focusing on their transformative potential in PDAC
management. Our analysis spans a broad spectrum of applications, including but not limited to
patient risk stratification, early detection, and prediction of treatment outcomes, thereby highlighting
AI’s potential role in enhancing the quality and precision of PDAC care. By categorizing the literature
into discrete sections reflective of a patient’s journey from screening and diagnosis through treatment
and survivorship, this review offers a comprehensive examination of AI-driven methodologies in
addressing the multifaceted challenges of PDAC. Each study is summarized by explaining the dataset,
ML model, evaluation metrics, and impact the study has on improving PDAC-related outcomes. We
also discuss prevailing obstacles and limitations inherent in the application of AI within the PDAC
context, offering insightful perspectives on potential future directions and innovations.

Keywords: PDAC; artificial intelligence; machine learning; screening; diagnosis; treatment; surveillance;
intraductal papillary mucinous neoplasms

1. Introduction

Pancreatic Ductal Adenocarcinoma (PDAC) is an extremely deadly form of pancreatic
cancer that accounts for over 90% of cancers in the pancreas [1]. When the exocrine duct
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cells that line the pancreas become cancerous, the cancer is termed Pancreatic Ductal Ade-
nocarcinoma or PDAC. As the name suggests, the disease is of epithelial origin, describing
a malignant form of pancreatic glandular tissues. There were 62,210 new cases reported in
the United States in 2023, with 49,380 deaths in 2022 [2]. Of the 57,600 reported cases in
2020, 55% had already progressed to metastatic disease [3]. PDAC accounts for 2% of all
cancer cases and results in 5% of all cancer deaths in the United States, thus underlining
the critical need for earlier detection [4].

The mortality rates of PDAC are on the rise, increasing 1% annually, and are projected
to become the second-leading cause of cancer deaths by 2030 [2,3,5,6]. Currently, pancreatic
cancer is the third-leading cause of cancer death in the age groups 50–64 and 65–79 [5].
The 5-year overall survival rate for PDAC remains dismally low, under 10.8% for both
metastatic and resectable cases [2]. Globally, the incidence of PDAC varies significantly,
with rates exceeding 7.4 per 100,000 person-years in the United States compared to just
2.3 per 100,000 in Africa and parts of Asia. Age also plays a critical role, with mortality rates
ranging from 2 deaths per 100,000 person-years among those aged 35 to 39 to 90 deaths
per 100,000 for individuals over 80 [7]. Similarly, race and ethnicity are highly determinant
factors in differing PDAC rates. Compared to Hispanic and Caucasian populations, African
Americans have significantly greater PDAC incidence and mortality rates, as many studies
present a 40 to 90% greater incidence and 10 to 20% worse survival in African American
patients compared to Caucasian patients [8,9]. Variations in PDAC statistics are largely
attributed to the prevalence of high-risk factors. Notably, high alcohol consumption,
cigarette smoking, and type 2 diabetes have been identified as significant contributors to
PDAC [10,11]. Research indicates that diabetes doubles the risk of PDAC, with 55% of
patients in one study having diabetes and 25% presenting with new-onset diabetes—a
frequent precursor to PDAC diagnosis [10]. Furthermore, cigarette smoking for 50 pack-
years has been shown to increase the risk of PDAC by 91%, and the risk is decreased by 9%
for every year quit [12].

Due to the ambiguity of the symptoms presented by pancreatic cancer patients and
the low incidence of the disease, there is no standard universally accepted screening
or early detection procedures for sporadically formed PDAC [13]. Guidelines exist for
identifying individuals at increased risk of developing PDAC because of a familial or
inherited predisposition [14]. These individuals usually fall into the following categories:
having first-degree relatives with the disease, family members with early onset pancreatic
cancer, family members with an inherited genetic syndrome of PDAC, family members
diagnosed with PDAC in two or more generations prior [14]. According to McGuigan et al.,
individuals with a familial risk of pancreatic cancer are advised to begin screening at the
age of 50 for suspicious and non-suspicious cysts or lesions [15]. The screening involves
histopathological examination or radiological imaging via Computed Tomography (CT),
Magnetic Resonance Imaging (MRI), or Endoscopic Ultrasound (EUS) [15,16].

The cysts and lesions that are screened via MRI, CT, or EUS/CE-EUS usually fall into
three categories that may result in PDAC pathogenesis: Intraductal Papillary Mucinous
Neoplasms (IPMNs), Pancreatic Intraepithelial Neoplasia (PanIN), and mucinous cystic
neoplasms [17,18]. PanINs and IPMNs involve the ductal system, while mucinous cystic
neoplasms do not [13]. PanINs are microcystic lesions <5 mm, while IPMNs and mucinous
cystic neoplasms are macrocystic lesions >5 mm [13]. Importantly, precursor lesions are
common, as PanINs occur in over 75% of older adults [13]. This signifies that only a small
percentage of pancreatic lesions serve as precursors for PDAC. Unlike PanIN lesions, IPMNs
are observable on CT/MRI/EUS imaging, and 20–30% of PDAC cases result from these
lesions [19,20]. Pancreatic lesions with the potential for malignancy are characterized based
on their neoplastic status, where they develop within the pancreas, and/or their cell type or
physiological role [17]. For example, a branch duct IPMN is an intraductal neoplastic cyst in
the branch duct of the pancreas that produces mucin [17]. The resulting characteristics are
defined through the imaging modalities mentioned previously [17,18]. Standard procedures
for detecting invasive carcinoma in IPMNs and other lesions include pathology-based
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staining, typically employing Hematoxylin and Eosin (H&E) and immunohistochemistry
(IHC) [16]. After a confirmed diagnosis of PDAC, the pancreas of patients is usually
screened using imaging-based methods such as EUS, CT, and MRI. [15,21]. Some studies
highlight that out of these choices, EUS provides better sensitivity [15]. In contrast, others
emphasize the advantage of CT, which has an average detection sensitivity of approximately
86% and can delineate the hypodense tissue characteristic of PDAC [13].

The standard approach for patients with resectable tumors is surgery followed by
FOLFIRINOX chemotherapy (54.4 months overall survival) or single-agent gemcitabine
treatment (35 months overall survival) [22]. For tumors that are borderline resectable,
neoadjuvant systemic therapy that is either accompanied or not accompanied by radiation
is considered the standard procedure [22]. One reason is the possible recurrence of distant
metastases that are not completely resected [3]. The patients with locally advanced tumors
are given systemic therapy followed by radiation [22]. Lastly, patients with advanced-
stage tumors are given a combination of non-surgical interventions, including multiagent
chemotherapy regiments, PDAC, and gemcitabine [22]. The most common chemotherapy
regimens administered for PDAC are gemcitabine, FOLFORINOX, and nab-paclitaxel,
and can be administered combinatorially with other forms of therapy [23]. Targeted
therapies could also be administered alongside a chemotherapy agent, and the use of EGFR
(Epithelial Growth Factor Receptor) inhibitors (erlotinib) in combination with gemcitabine
is a focus of many clinical trials [24,25]. In patients that harbor BRCA (Breast Cancer
Gene) mutations (about 5%), Olaparib has recently become FDA-approved as a form of
maintenance therapy [3].

The use of artificial intelligence (AI) and machine learning (ML) has significantly
increased in the healthcare space in recent years [26–29]. Like many other cancers, PDAC
screening, diagnosis, and treatment planning can be aided by AI models and ML algo-
rithms. Consequently, this application has been the focus of many clinical trials. Table 1
highlights the current clinical trials involving pancreatic cancer and artificial intelligence.
The purpose of our study is to consolidate current literature highlighting the use of AI
to aid in the screening, diagnosis, and treatment of patients with PDAC. Although other
studies exist that have summarized applications of AI in pancreatic cancer, this review
differs by aggregating this information according to a patient’s chronological timeline
and concurrently providing a detailed overview of how each AI/ML application aims to
aid in the process [30–33]. Just as a patient first receives screening, receives a confirmed
diagnosis, and then is placed on a treatment plan, the review’s sections correspond to a
patient’s odyssey.

Table 1. Summary of clinical trials involving AI/ML and pancreatic cancer.

Trial ID Location Study Study Start Date Enrollment
NCT04743479 Shanghai, China ESPRIT-AI 20 December 2020 5000

NCT03452774 New York, NY, USA SYNERGY-AI 1 January 2018 50,000

NCT06055010 Utrecht, The
Netherlands IMPACT 1 January 2014 5000

NCT06320717 Buffalo, NY, USA

AI Derived Biomarker
to Select Neoadjuvant Treatment for
Borderline Resectable
Pancreatic Ductal Adenocarcinoma

2 January 2024 100

NCT04899739 Strasbourg, France EchoSurg 5 December 2021 45

NCT06256705 Clichy, France OPERANDI-NET 25 March 2024 80

NCT05729737 Beijing, China

Radiographic Response to
Chemotherapy in
Unresected Localized
Pancreatic Cancer

1 January 2022 100
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The review is organized as follows. Section 2 describes the applications of AI in
PDAC screening, and Section 3 describes applications in the monitoring and progression
of IPMNs. Later, in Section 4 we focus on PDAC diagnosis, and in Section 5 we focus
on models for PDAC treatment. In Section 6, post-treatment surveillance is addressed.
Section 7 presents the key challenges related to applying AI models for PDAC screening,
diagnosis, and treatment and the future directions where additional AI applications could
potentially help. Finally, Section 8 concludes the review.

2. Application of AI/ML Models in PDAC Screening and Early Detection

Numerous studies highlight the significant challenge in the early detection of PDAC,
which is frequently diagnosed at and therefore results in predominantly unresectable
cases [10,30]. Compounding this issue is the lack of biomarkers outside of the CA-19-9
biomarker, the only FDA-approved biomarker for PDAC [15,34]. Given that approximately
10% of PDAC cases stem from hereditary mutations, there is a pressing need for improv-
ing screening methods to identify the remaining 90% of patients who develop sporadic
PDAC [35]. The fact that most patients remain asymptomatic until the disease progresses
to an unresectable stage necessitates the utilization of known risk factors in PDAC patho-
genesis as a basis for early detection of high-risk individuals [30]. For instance, with studies
indicating that 25% of PDAC patients exhibit new-onset diabetes and 50% already have the
disease at diagnosis, diabetes mellitus emerges as a significant risk factor and a potential
clinical marker for predicting PDAC risk in the future [10]. A summary of recent studies
and details of AI models, datasets, and evaluation metrics is presented in Table 2.

Table 2. Various AI/ML models proposed for PDAC risk prediction or screening.

Category Ref Dataset AI/ML Model Metrics
Classical
ML

[36] NHIS features ANN AUC = 0.85
[37] EHR Logistic Regression AUC = 0.71

NLP

[38] Medical Textbooks,
Patient Records Dependency Parser Sens = 0.99

[39] Pathology Reports
Encoder/Decoder +
Autoregressive
Transformer

F-1 = 0.89

[40] ICD-8 + ICD-10 Transformer AUC = 0.88

CV
[41] CT Scans 3-D U-Net DSC = 0.87
[42] CT Scans Naive Bayes Acc = 0.86

Abbreviations used: ML—Machine Learning, NLP—Natural Language Processing, CV—Computer Vision,
ANN—Artificial Neural Network, Sens—Sensitivity, EHR—Electronic Health Record, AUC—Area Under the
Curve, NHIS—National Health Interview Survey. Acc—Accuracy, ICD—International Classification of Disease,
DSC—Dice Similarity Coefficient.

2.1. Classical ML Models for PDAC Risk Prediction

PDAC risk prediction is the first step in screening and surveillance, as a risk score
above a certain threshold can alert primary care physicians, oncologists, pathologists,
and radiologists to examine the pancreas. Several studies using classical ML for predicting
PDAC risk were summarized by Hayashi et al. in their review article [30].

More recently, Muhammad et al. developed an Artificial Neural Network (ANN)
model to stratify patients into low-, medium-, and high-risk categories for PDAC based
on a range of personal health features collected from a cohort of PDAC patients before
diagnosis [36]. Given the often asymptomatic nature of PDAC, this study holds consider-
able clinical significance, as individuals classified within the high-risk category could be
prioritized for comprehensive screening programs aimed at early malignancy detection.
The authors used a dataset comprising 800,114 samples from the National Health Interview
Survey (NHIS) database, allocated into a 70–30% training-testing split. The model demon-
strated a sensitivity and specificity of 80.7% and an Area Under the Curve (AUC) of 0.85
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on the test dataset. The ANN was trained using 18 features encompassing personal health
data, dietary habits, and genetic history from patients enrolled in the National Cancer
Institute’s (NCI) prostate, lung, colorectal, and ovarian cancer trials in 2018. The model
architecture included an input layer of 18 neurons, two hidden layers with 12 neurons each,
and a single output neuron. A specific threshold was employed to categorize patients as
either at risk of cancer or not. Subsequently, these categorizations were adjusted to capture
low-, medium-, and high-risk, enabling the immediate initiation of screening procedures
for those identified as high-risk.

Applebaum et al. developed a logistic regression model to predict the risk of PDAC us-
ing 18 clinically relevant features extracted from EHR (Electronic Health Record) data [37].
These features include pancreatitis, diabetes, jaundice, chest pain, abdominal pain, and oth-
ers. Given the relatively low incidence rate of PDAC, EHR data from patients before
diagnosis are both highly valuable and scarce. The inclusion of direct symptoms of PDAC,
such as pancreatitis, jaundice, and abdominal pain, alongside the occurrence of diabetes
in the model, underlines its clinical relevance. With an AUC of 0.71, the model demon-
strates good efficacy in identifying high-risk individuals. The logistic regression model was
trained using a dataset comprising 594 PDAC cases and slightly over 100,000 non-PDAC
cases. Model validation was performed with 408 PDAC and 160,185 non-PDAC cases.
The findings revealed that the model identified three to five times more high-risk patients
than initially captured by the dataset.

2.2. Natural Language Processing (NLP) for PDAC Risk Prediction

Using patient’s medical records, clinical characteristics, and other text-based data
archived in EHR is emerging as a significant resource for the risk prediction and early
detection of PDAC [43,44]. This approach is particularly advantageous when contrasted
with the complexities associated with imaging techniques for PDAC detection [38,43].

The descriptors of the word pancreatic cyst from the National Library of Medicine
(NLM) and the Unified Medical Language System (UMLS) were used as concepts to identify
patients diagnosed with cysts [38]. The authors collected a dataset of 566,233 medical
reports describing pancreatic cysts to identify keywords. Later, these were manually refined
by adding relevant descriptors and removing irrelevant ones [38]. The study utilized a
rule-based algorithm to identify whether each sentence in each medical record contained
one of the identified descriptors, which used a query-based technique. A dependency
parser was also created to validate whether the descriptors were affirmed or negated based
on the surrounding words using a probabilistic framework [38,43].

The use of NLP techniques applied to pathology reports may help with better risk
prediction for PDAC outcomes. Pathology reports contain information about a cyst or
tumor’s size, location, and diagnostic conclusions by the pathologist [39]. Recently, a study
demonstrated the use of named entity recognition (NER) alongside generative ML compre-
hension to construct a prognosis prediction model. The study used TCGA-PDAC pathology
reports—1044 for model training, 448 for internal validation, and 165 for external validation.
The model used a pre-trained encoder-decoder framework and an autoregressive Trans-
former to identify and generate entities alongside their corresponding tag indices. These
entities and sequence tags, encapsulating morphological features of the PDAC, were subse-
quently utilized as key indicators for the Tumor, Node, Metastasis, Other, and Resection
(TNMOR) classification system. The model demonstrated robust performance, achieving
precision and recall scores of 88.83% and 89.39%, respectively. Although the study used
data from patients who were already diagnosed with PDAC, the entities and sequence tags
generated through the model could be used in the risk prediction of patients containing
suspicious cysts and lesions such as IPMNs and allow pathologists to place such patients
into the proper treatment plans depending on their severity.

In another study, the International Classification of Diseases (ICD-8 and ICD-10)
codes were used as features for analyzing the health records of approximately 8.6 million
patients [40]. The data, drawn from the Danish National Patient Registry and the United
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States Veterans Affairs system, were processed using Transformer models to predict PDAC
risk over various time frames [40]. The dataset was partitioned using an 80-10-10 split for
the model training, validation, and testing. The model achieved an AUC of 0.88 on the
test data. The study’s findings suggest the potential of the Transformer-based model for
PDAC screening and early detection. Specifically, among the top 1000 patients ranked by
risk, 70 additional individuals were identified as high-risk by the modes based on their
EHR data [40].

2.3. Computer Vision (CV) for PDAC Risk Prediction

CV techniques include AI/ML models specialized for processing imaging data. The CV
techniques for screening high-risk individuals for PDAC may involve various imaging
modalities [43]. The evolution of PDAC is marked by numerous morphological and textural
transformations, including the emergence of IPMNs, other neoplastic changes, pancreatitis,
or dilation of the pancreatic duct. These transformations and early indicators can be poten-
tially monitored with imaging techniques before a clinical diagnosis is established [21,31].
Despite CT scans being the gold standard for precancerous imaging in PDAC, physicians
often face challenges in identifying these critical features unaided, as many changes are
not discernible to the naked eye [31]. CV models can help recognize these subtle cues,
thereby identifying high-risk individuals. Indirectly, this capability not only facilitates
more informed treatment decisions but also aids in pinpointing potential biomarkers for
PDAC’s onset and progression [31].

The Felix Project focuses on detecting PDAC from CT scans containing smaller tumors,
which are typically difficult to detect [43]. The project used manually segmented CT images
and a specialized deep neural network, U-Net, for pixel-level segmentation of objects of
interest in an image [42]. First, the model was trained to recognize the normal pancreas and
neighboring abdominal organs and then identify PDAC within the pancreas [42]. The model
was trained on 3192 scans and tested on 1846 scans, yielding sensitivity, specificity, and Dice
Score Coefficient (DSC) scores of 93%, 99%, and 0.653, respectively [42]. The study claims it
has the capabilities of a second-reader, an additional independent reader, who can point out
lesions of interest [42].

Qureshi et al. conducted a retrospective study focused on patient stratification based
on risk, utilizing CT scans to compare pre-diagnostic PDAC images with post-diagnostic
counterparts [41]. The study used a relatively small cohort of 108 cases but extracted a
comprehensive set of 4000 radiomics features from these images. Using Recursive Feature
Elimination (RFE), the features were distilled to those exhibiting significant statistical
trends, with either steady increases or decreases in their values, reducing the number of
features to only 4.5% of the original features. Naive Bayes classifiers with an ensemble
learning framework were trained using five features at a time to classify patients into
healthy or precancerous categories. This approach underscores the potential of targeted
feature selection in enhancing the accuracy and efficacy of PDAC risk stratification models.

3. Application of AI/ML Models in the Monitoring of IPMNs

IPMNs and other cysts that grow abnormally on the pancreas can potentially become
malignant. It is estimated that 20 to 30% of IPMNs develop into PDAC [20]. As a result,
radiological imaging and biopsies are performed to monitor the progression of these
lesions [21]. The diagnosis and subsequent management of such neoplasms are guided
by the Fukuoka guidelines, which set forth specific criteria for identifying lesions that
necessitate intervention [45]. For the lesions that meet these criteria, the recommended
standard of care is adapted to prevent the potential transition to PDAC, which may involve
surgical resection, such as a Whipple’s procedure or total/distal pancreatectomy [45].

Identifying high-grade dysplasia or invasive carcinoma in IPMNs poses significant
challenges owing to the detection accuracy of conventional methods such as EUS and cyst
fluid analysis [46]. Given that most IPMNs are benign or exhibit low-grade dysplasia,
thereby negating the need for surgical resection, CV models present a more efficient diag-
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nostic alternative to traditional approaches that rely on confocal microscopy. A summary
of recent AI studies focused on differentiating between high- and low-grade IPMNs and
relevant details about models, datasets, and evaluation metrics is presented in Table 3.

Table 3. Various AI/ML models proposed for PDAC cysts/lesion monitoring.

Category Ref Dataset AI/ML Model Metrics

Monitoring
cysts and
lesions

[46] EUS Confocal
Microscopy

Mask-R-CNN+
VGGNet Acc = 0.74

[45] CT Scans LeNet Acc = 0.89

[47]
Clinical +
Pathological
Features

SVM Acc = 0.77

Recently, Jiang et al. proposed a dual CNN model to increase the accuracy of the
PDAC diagnosis process [46]. The first CNN (Convolutional Neural Network), a VGGNet,
processes video data for risk stratification. The second CNN, a Mask R-CNN, identifies
papillary structures from video frames and extracts critical radiomic features, such as
epithelial thickness. These features are particularly effective in distinguishing between
invasive and non-invasive IPMNs. The first model achieved an accuracy of 85.7%, and the
second model reached an accuracy of 82.9%, both surpassing the performance of the
current standards of care in utilizing confocal microscopy data for diagnosis, which stand
at 74.3% and 68.6% for risk stratification and papillary structure segmentation, respectively.
To further enhance diagnostic precision, the authors proposed a multimodal model that
integrates various data types, including clinical features, cyst morphological characteristics,
cyst fluid analysis, and biopsy data from confocal endomicroscopy.

To address the challenge of unnecessary surgeries for low-grade IPMNs, Watson et al.
used CNNs to evaluate resected pancreatic cystic neoplasms. Using axial CT scans of
the neoplasms, the authors trained a LeNet model comprising three convolutional layers,
a flattening layer, and two fully connected layers to predict the grade of cystic lesions [45].
The authors aimed to mitigate the limitations and inconsistencies associated with the
Fukuoka guidelines, which sometimes lead to unnecessary resections of benign lesions or
missed opportunities for resecting advanced-grade IPMNs. The study underscored the
problematic nature of relying solely on the Fukuoka guidelines, noting that nearly 20%
of benign lesions undergo unnecessary resection. Given the necessity of a biopsy for a
definitive diagnosis, many patients undergo needless procedures. Watson et al.’s model
demonstrated remarkable efficacy, accurately determining the grade of cystic lesions in
eight out of nine cases within the testing dataset, resulting in an accuracy rate of 89%. This
significantly outperformed the Fukuoka guidelines, which correctly classified only six out
of nine lesions. The authors highlight the model’s potential to prevent unnecessary surgical
procedures and identify advanced-grade neoplasm, offering a more reliable and efficient
diagnostic tool than the existing guidelines.

A high morbidity rate is associated with IPMN surgeries, approximately 40%, which
necessitates the need to correctly identify cysts that do not require surgical resection, many
of which are low-grade dysplasia [47]. Recently, Hernandez-Barco et al. trained a Support
Vector Machine (SVM) to predict the grade of dysplasia in IPMNs. They integrated clinical
data, such as jaundice, pancreatitis, diabetes, and abdominal pain, with pathological
features derived from resected IPMNs, including the presence of nodules, septations,
and pancreatic duct dilation. The study included data from 575 patients, with a 4:1 ratio
for the training and testing datasets. The model demonstrated an accuracy of 77.4% for
distinguishing between low- and high-grade IPMNs.

4. Application of AI/ML Models in PDAC Detection and Diagnosis

Detection and diagnosis both refer to discovering the presence of cancer. Detection
refers to distinguishing healthy individuals from those with cancer, primarily through
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imaging modalities such as CT or EUS [32]. Diagnosis, on the other hand, involves the
specific identification of PDAC as opposed to other types of pancreatic lesions, typically
verified through histopathological examination. The imaging techniques can contribute to
this process as well [32]. CT scans, with an average sensitivity of approximately 86%, are
widely used for detecting PDAC, where the cancer usually appears hypodense. Despite
Contrast-Enhanced CT (CECT) being the most common detection method, other techniques
such as MRI, Magnetic Resonance Cholangiopancreatography (MRCP), and EUS are also
employed [15,46].

Despite being a time-consuming and labor-intensive process, the evaluation of Whole
Slide Images (WSIs) by pathologists is currently the gold standard for diagnosing PDAC [48].
This process is further compounded by the limited accuracy of CT imaging in detecting
PDAC before the onset of metastases, which is estimated to be around 50% [43]. The dif-
ficulty in detecting PDAC at this early stage is partly due to the significant microscopic
variations in textural and morphological changes within the pancreas. AI models and ML
algorithms have the potential to identify subtle changes that are not easily detected through
traditional imaging methods, thereby enhancing a physician’s ability to detect PDAC at
earlier stages [31]. Integrating AI into the diagnostic workflow offers an opportunity to
reduce the time needed for data processing and decision-making. This will streamline
the process of identifying PDAC and facilitate earlier intervention, potentially improving
patient outcomes [49].

A summary of a set of recent AI studies focused on the detection and diagnosis of
PDAC, along with details about the models, datasets, and evaluation metrics, is presented
in Table 4.

Table 4. Various AI/ML models proposed for PDAC detection/diagnosis.

Category Ref Dataset AI/ML Model Metrics

Detection

[50] CT SVM Acc = 0.922
[51] CEUS ResNet-50 AUC = 0.953
[52] CT CNNs AUC = 0.986
[53] CT 3D TransUNet Sens = 0.91
[54] EUS EfficientNetV2-L Sens = 0.96
[55] CECT 3D U-Net Sens = 0.99
[56] CT ResNet9 AUC = 0.95

Diagnosis

[57] CECT SVM Acc = 0.86
[58] CT VGG16-XGBoost Acc = 0.97
[59] CECT LASSO Regression AUC = 0.75
[60] CT CNNs Acc = 0.867
[61] H&E Slides Bayesian DenseNet-201 Acc = 0.856

Abbreviations used: CECT—Contrast-Enhanced Computed Tomography, SVM—Support Vector Machine,
LASSO—Least Absolute Shrinkage and Selection Operation, H&E—Hematoxylin and Eosin, CEUS—Contrast-
Enhanced Ultrasound, EUS—Endoscopic Ultrasound.

4.1. PDAC Detection

In a recent study, Mukherjee et al. used radiomics features to detect PDAC at the pre-
diagnostic stage, approximately 3–36 months before the confirmed clinical diagnosis [50].
The study extracted a total of 88 radiomics features and used four different ML classification
models: K-Nearest Neighbor (KNN), SVM, Random Forest (RF), and Extreme Gradient
Boosting (XGBoost) [50]. The authors trained the models using 292 CT scans, of which
110 cases were pre-diagnostic and 182 were control. There were 128 CT scans in the test
dataset, with 45 pre-diagnostic and 83 control cases. The SVM model showed the best
prediction accuracy (92.2%), as compared to the other models and the human experts (R4
and R5 radiologists) [50]. The study highlighted the importance of radiomics features for
early PDAC detection, even before a pancreatic mass is developed.
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Tong et al. developed an end-to-end Deep Learning Radiomics (DLR) model for
diagnosing PDAC and Chronic Pancreatitis (CP) using Contrast-Enhanced Ultrasound
(CEUS) images [51]. The DLR model used multiple CNNs, ResNet-50 [62], Inception-v3 [63],
VGG-16 [64], and DenseNet-121 [65], to extract rich features for image classification. A total
of 558 patients with pancreatic lesions participated in the study, of which 351 patients were
split into the training cohort, 109 patients into the internal validation cohort, and 98 into
two external validation cohorts (cohort 1 and cohort 2). Detailed clinicopathological data
of each patient was collected from three hospitals in China. The DLR model achieved an
AUC of 0.978, 0.967, and 0.953 in the three validation cohorts. ResNet-50 emerged as the
dominant backbone model amongst all those tested. The study indicates that their DLR
model can effectively support radiologists in diagnosing PDAC and CP from CEUS [51].

Cao et al. introduced a novel architecture called Pancreatic Cancer Detection with
Artificial Intelligence (PANDA) tailored explicitly for identifying and characterizing pan-
creatic lesions through analysis of non-contrast CT images [52]. Non-contrast CT scans of
3208 patients from a single center were used for training, while a dataset of 6239 patients
from 10 distinct medical facilities was used for validation. PANDA achieved an AUC
of 0.986 to 0.996 for lesion detection on the validation dataset [52]. The study’s findings
suggest a promising potential for PANDA to serve as an effective PDAC detection tool,
particularly within high-risk populations, given its reduced radiation exposure compared
to CECT scans.

Recently, Chen et al. developed 3D TransUNet for image segmentation, leveraging
nnU-Net architecture and Transformer-based encoder-decoder blocks [66]. The authors
collected 2930 CT scans from a high-volume US hospital to make a large-scale pancreatic
mass dataset with PDAC, Cyst, and normal pancreas labels. Of the 2930 CT scans, 1523 were
identified as PDAC. The decoder-only variant of the TransUNet framework achieved a DSC
of 0.626 on PDAC cases, with 89.94% sensitivity and 97.33% specificity. The encoder-only
variant achieved 91.71% sensitivity on the PDAC dataset [66].

Kuwahara et al. used a CNN, EfficientNetV2-L, to distinguish between several types
of pancreatic masses [54]. The authors extracted lesion images from still frames of training
and validation cohorts derived from EUS videos. To address the issue of class imbal-
ance, they generated additional images using a deep convolutional generative adversarial
network (DCGAN) [67] specifically targeting the classes Autoimmune Pancreatitis (AIP),
Neuroendocrine Tumor (NET), and CP. The authors generated 22,000 training images from
933 patients. The sensitivity score was 0.94 (CI: 0.88–0.98) for the diagnosis of pancreatic
carcinomas, 0.96 (CI: 0.90–0.99) for PDAC, 1.00 (CI: 0.22–1.00) for acinar cell carcinoma
(ACC), 0.93 (CI: 0.66–1.00) for NET, 0.73 (CI: 0.39–0.94) for AIP [54].

Viviers et al. proposed a method based on the U-Net architecture to segment the
pancreatic tumors [55]. The authors collected CECT images from 97 control and 99 PDAC
cases. The model utilizes external secondary features like the pancreatic duct, common bile
duct, and the pancreas map, with the CT scan to aid detection. The authors reported a sen-
sitivity of 99% on the test medical decathlon dataset, along with a DSC of 0.31 ± 0.05% [54].
The model exploits external secondary features to improve its PDAC detection performance
compared to vanilla nnU-Net (sensitivity score of 92 ± 2%).

Tayebi et al. proved that differential privacy (DP) [68] training of diagnostic deep
learning models is possible with excellent diagnostic accuracy, with the task of classifying
the presence of PDAC [56]. In this study, 1625 3D abdominal CT images were manually
labeled by experienced radiologists, and out of 1625, 867 cases were PDAC. ResNet9
architecture was used for the DP training, observing an average AUC score of 95.58% [56].
The authors have addressed the issues indicated by prior studies on using DP, causing
adverse effects on model performance [69]. In this study, the calculation of privacy-fairness
trade-offs, measured as Pearson’s for the PDAC dataset and on the UKA-CXR dataset
(N = 193,311), vindicated the usefulness of DP in detection.
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4.2. PDAC Diagnosis

Qiu et al. developed SVM models for CT-based texture analysis to perform tumor
grading [57]. The authors acquired CECT images from 56 patients with PDAC. For clas-
sification purposes, differentiated/grade I and moderately differentiated/grade II cases
were grouped and labeled as low-grade PDAC, and poorly differentiated/grade III cases
were labeled as high-grade PDAC. The authors developed four models: all texture features,
histogram features, run-length features, and co-occurrence features. With the all texture
features model, the SVM accurately predicted low-grade/high-grade PDAC with 95%
specificity, 86% accuracy, and 78% sensitivity [57].

Bakasa et al. proposed a hybrid model to extract features from CT images and classify
PDAC [58]. The method automates the diagnosis and classification phases of PDAC with
the same accuracy as that of an expert. After feature extraction using a CNN, classification
was performed using SVMs, RFs (Random Forest), and XGBoost [70]. XGboost demon-
strated superior performance over RFs and SVMs [58]. The analysis of different feature
extractors, including Light Gradient Boosting Machine (LGBM), VGG16, and Inception-V3,
revealed that the combination of VGG16 with XGBoost yielded 97% accuracy in classifying
PDAC stages [58]. The findings of this study offer advantages in diagnosing PDAC from
CT scans of the pancreas, classifying them based on the TNM staging system into five
distinct labels corresponding to tumor size and metastasis status, denoted as T0, T1, T2, T3,
and T4.

Cen et al. used pre-operative clinical-radiomics nomograms to differentiate between
high-grade and low-grade PDAC (i.e., predict the histological grade) and predict overall
survival (OS) [59]. Radiomics features were extracted from 284 CECT scans, with 200 for
training and 84 for testing. An external cohort of 42 patients was used to validate the
model. The model produced an AUC of 0.75 (95% CI: 0.64, 0.85) in the test cohort and 0.76
(95% CI: 0.60, 0.91) in the validation cohort [59].

Si et al. introduced a fully end-to-end deep-learning (FEE-DL) model for diagnosing
pancreatic tumors from abdominal CT scans [60]. The model undergoes four steps: image
screening, pancreas location, pancreas segmentation, and tumor diagnosis. The authors
used a CNN, ResNet34, for PDAC classification and U-Net32 for segmentation. The model
was trained on 143,945 CECT images from 319 patients and tested on 107,036 independent
CT images from 347 patients. FEE-DL achieved an AUC of 0.871 and an F1 score of 88.5%
on the test set. Furthermore, the model achieved 100% accuracy in identifying IPMNs and
87.6% accuracy in identifying PDAC independently [60]. The model’s average inference
time per patient was 18.6 s, significantly lower than that of human experts, which takes an
average of eight minutes per patient.

Ghoshal et al. proposed a Bayesian CNN for automated pancreatic cancer grading and
uncertainty estimation using histopathology images, including May–Grunwald–Giemsa
stain (MGG) and H&E stained images [61]. The authors curated a PDAC grading dataset
comprising 138 high-resolution tissue samples stained with MGG and H&E and annotated
with Normal, Grade-I, Grade-II, and Grade-III categories [71]. The dataset was divided into
training, validation, and test sets in a ratio of 60% to 20% to 20%, respectively. According to
the results, Bayesian DenseNet-201 model-based inference surpassed the detection accuracy
of the ResNet-152V2 and VGG-19 model on their sample dataset, achieving 85.60% accuracy
on PDAC grading [61]. ResNet-152V2 and VGG-19, on the other hand, achieved 83.60%
and 76.52% accuracy. After obtaining predictions for all test images and sorting them by
their associated predictive uncertainty, this study showed that the estimated uncertainty in
model prediction strongly correlated with the classification accuracy. Thus, the estimated
uncertainty was well-calibrated and could be used to avoid misdiagnosing uncertain cases
and noisy datasets.
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5. Application of AI/ML Models in PDAC Treatment Outcome Prediction and
Patient Stratification

Patient survival rates for PDAC are highest when the tumor is resectable following
neoadjuvant therapy [72]. However, most cases are often unresectable or have major
vascular involvement and metastasis. Despite this challenge, the prediction of treatment
outcomes for resectable pancreatic cancer cases is extremely important, as unnecessary
surgery can often be more damaging than beneficial [73]. Similarly, resectable PDAC cases
are heterogeneous, necessitating individual treatment plans [72,74]. Many studies have
attempted to predict treatment outcomes or the risk for such cases using ML models [32].
A summary of recent studies and details of ML models, datasets, and evaluation metrics is
presented in Table 5.

Table 5. Various AI/ML models proposed for PDAC treatment outcome prediction and personalized
treatment stratification.

Category Ref Dataset Model Metrics

Patient
Treatment
Stratification

[75] MRI CNN AUC = 0.85

[76] CT CNN Acc = 0.87

Treatment
Outcome
Prediction

[76] CT CNN Acc = 0.87
[77] CT CNN AUC = 0.785
[78] RNA-seq VAE/XGBoost AUC = 0.74
[79] IHC XGBoost Sens = 0.92
[73] H&E Hover-Net Hazard Ratio = 2.94

Abbreviations used: IHC—Immunohistochemistry, CNN—Convolutional Neural Network.

5.1. Patient Stratification for P-Net and PDAC Treatment Regimens

The complexity and heterogeneity of PDAC require a holistic picture of the patient’s
imaging, clinical, and histopathological characteristics to determine a treatment plan prop-
erly [32,80]. There is a shortage of studies considering AI applications predicting treatment
outcomes for better patient stratification in PDAC, but relevant studies exist for P-net,
or pancreatic neuroendocrine tumors. The rationale, methodology, and promising results
show that these studies provide a way for ML models to be used on PDAC data to better
aid patient stratification.

An example of such a study considers post-treatment complications using pre-treatment
images in the prediction of pancreatic neuroendocrine tumor (P-Net) grade [81]. P-Net and
PDAC grading can greatly influence a patient’s treatment plan [81]. Gao et al. trained a
CNN using pre-operative MRI scans and synthetic data generated using generative adver-
sarial networks (GANs) to predict P-Net grade [81]. The study showed that augmenting the
validation dataset with synthetic data has promising applications, resulting in an accuracy
of 85.13% in grading rare P-Net tumors. In low-incidence tumors, such as PDAC and
P-net, the challenges of small sample size can be addressed with AI models like GANs and
diffusion models [81,82].

The pre-treatment image data can also be used for metastasis prediction. Metastasis
occurs when the tumor is spread to other organs, and is an extremely important factor in
treatment planning [83]. Klimov et al. used a dual CNN model to extend the P-Net grade
classification task to risk prediction of metastasis. First, a CNN (GoogLeNet Inception V1)
was trained to discriminate cancerous regions from other pancreatic tissue using manually
annotated histopathology images. The model showed a discrimination accuracy of greater
than 0.95%. The aggregated soft-max probability scores from the discrimination CNN were
combined with additional variables (e.g., metastatic status) to calculate a metastatic score
with the help of a second CNN. The second CNN (GoogLeNet Inception V1) produced an
F-1 score of 0.82 in a 5-fold cross-validation test performed with 104 WSIs from metastatic
patients. The model identified 13 high-risk patients, validating the model’s capability in



Cancers 2024, 16, 2240 12 of 23

stratifying patients for correct treatment plans. Although this study used histopathological
examination on P-net tumors, it highlights the capability of annotated pre-operative WSIs
to calculate metastatic risk for better patient treatment stratification in PDAC.

5.2. PDAC Treatment Outcome Prediction

For resectable PDAC tumors, the post-surgical complications pose an important chal-
lenge [76]. One such post-operative complication, Post-Operative Pancreatic Fistula (POPF),
is a major cause of pancreatic-related morbidity due to a leakage of pancreatic fluid [30].
Since POPF can be imaged via CT scan within 4 weeks of surgical resection, using AI paired
with the CT scanned images can help detect its presence prior to treatment [76]. Mu et al.
used 513 pre-operative CT scans (with a 70-30 training-testing split) to train a CNN model
that predicted the average probability of POPF using a gradient-weighted class activation
map [76]. The model produced an AUC of 0.89 on the test dataset. The localization maps
and several other clinical factors were used for downstream analyses, including multi-
variate linear regression to divide patients into risk groups. The model performed better
than the fistula risk score (FRS), the current standard predictor for POPF. FRS uses four
parameters (soft glandular texture, small-sized main pancreatic duct, undue intraoperative
blood loss, and high-risk pathology) to assign the patients a score ranging from 0 to 10 [76].
An accurate prediction of high-risk individuals that may develop POPF can be used to
optimize the treatment, i.e., surgical resection may be too risky.

The standard of care for resectable and non-resectable PDAC cases is chemother-
apy [72]. Resectable tumors can have chemotherapy administered through adjuvant or
neoadjuvant means [22]. The evaluation of chemotherapeutic response is based on tumor
regression grades, where grades 0 to 2 reveal a pathological response to the therapy [77].
The prediction of such grades allows physicians to determine whether it is worth adminis-
tering chemotherapy [77]. Similarly, neoadjuvant therapy is effective in increasing overall
survival, but it is still important to predict the effect of the therapy [77]. Using 776 axial
images from pre-operative CT scans and CA-19-9 biomarker levels, Watson et al. predicted
neoadjuvant therapy response using a five-layer CNN and LeNet model [77]. The hybrid
model had an AUC of 0.785, thus highlighting the strong capability of combining mul-
timodal data to predict neoadjuvant treatment response to chemotherapy regimens [77].
Since the models use pre-operative CT scans, physicians may use such prediction to guide
treatment decisions [77].

Standard chemotherapy regimens for PDAC often come with differences in drug
efficacy, side effects, and long-term survival for a particular patient [22]. Therefore, it is often
important for physicians to tailor a chemotherapy regimen with the best survival outcomes
and the least adverse effects. The chemotherapeutic response can be predictive with
significant power using ML, specifically gradient-boosted trees [84]. Wei et al. extracted
transcriptomic features from PDAC patients (along with colon, breast, sarcoma, and bladder
cancer totaling 2606 tumors) through autoencoders and used these features as input to a
gradient-boosted decision tree to predict the response to chemotherapy [78,84]. The authors
reported an AUC of 0.74 for the 5-fold cross-validation [78,84]. Similarly, Kaissis et al. used
a gradient-boosted tree to distinguish between two genomic subtypes of PDAC, KRT81
positive or negative, and measured each type’s relationship to different chemotherapy
regimens [79]. A gradient-boosted tree was trained to predict the overall survival for
patients surgically resected, who presented KRT81 positive or negative and received a
particular chemotherapy regimen. With a sensitivity of 0.92, the study found that KRT81-
positive subtypes were better suited for gemcitabine therapy than Folfirinox [79].

The administration of chemotherapy regimens in PDAC patients results in major his-
tological changes [73]. Given these changes, the identification of post-treatment histological
data can reveal biomarkers that, when retrospectively analyzed, can help tailor more precise
treatment regimens, avoid unwanted surgery, and be used for early detection of the disease.
Additionally, the biomarkers derived from post-treatment histological data can be used to
predict disease-specific overall survival. Nimgoankar et al. explored this relationship by
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using cellular segmentation through the Hover-Net model to extract histology signature
profiles of cells following adjuvant gemcitabine treatment in 47 PDAC patients. Extracted
features from histopathological data were then used to create a single histological signature
that was statistically analyzed to show significance in disease-specific survival metrics.
The results showed a hazard ratio of 2.94, indicating that the histological signature was
strongly associated with disease-specific survival. By deriving such biomarkers, Nim-
goankar et al. show that the histological signatures can be used for survival prediction and
help physicians decide whether a patient is suitable for neoadjuvant gemcitabine therapy.

6. Application of AI/ML Models in Patient Surveillance of Post-Treatment
Complications from PDAC Treatment

The strategies developed for detecting and diagnosing PDAC can be used to moni-
tor post-treatment effects in patients who have received surgical resection of tumors [32].
This allows for identifying micro-metastases or deep lymph node involvement [32]. Sim-
ilarly, unresectable cases, which comprise the vast majority of PDAC patients, undergo
chemotherapy and are examined using CT scans to derive morphological features for
further assessment. Physicians routinely use these data to evaluate the treatment quanti-
tatively. In treatment where tumors are resected, histopathological quantification is used
to derive tumor regression grade (TRG), a measure of the amount of residual cancer fol-
lowing tumor destruction. In treatments without resecting tumors, morphological tumor
features are used to calculate a quantitative chemotherapeutic performance metric known
as response evaluation criteria in solid tumors (RECIST). However, both post-treatment
evaluation metrics suffer from limitations stemming from tumor heterogeneity and lack of
standardization. Modern AI and ML models may address these limitations by using the
radiological and histopathological imaging data gathered through monitoring treatment
outcomes. Integrating this data with finely tuned models allows the generation of more
precise, personalized, and standardized post-treatment metrics. This section presents re-
cent studies and details of ML models, datasets, and evaluation metrics, which are also
summarised in Table 6.

Table 6. Various AI/ML models proposed for PDAC post-treatment surveillance.

Category Ref Dataset AI/ML Model Metrics

Post-Treatment
Surveillance

[85] Light Microscopy
Images

U-Net F-1 = 0.80

[86] H&E Slides DenseNet161 F-1 > 0.86
[87] H&E Hover-Net C-Index = 0.69

C-index—concordance index.

Examining the size and shape of remaining metastases is a crucial aspect of post-
treatment evaluation of resectable tumors [85]. Pan et al. proposed to automate this
examination process using an ML model that quantifies spatial features of metastases
in mice after receiving therapeutic monoclonal antibody (for carbonic anhydrase XII)
treatment for pancreatic, breast, and lung cancer. Amplified 3-D full-body fluorescence
light microscopy was performed to collect 3D image data from the antibody-treated mice.
The data was fed into a 3-D U-Net model to output a 2-D map of every pixel’s probability
of being metastatic. With an F-1 score of 80%, the model accounted for 29% increased
detection of micro-metastases compared to a physician’s manual identification. The authors
state that, through this model, the detection of micro-metastases can reveal which regions
are targeted by the clonal antibody therapy. Similarly, detecting micro-metastases across
the entire body provides the data required to elucidate why certain regions are eliminated
by antibody therapy, and others are not.

Post-treatment surveillance data in resected pancreatic lesions can guide personalized
treatment of PDAC patients with early-stage disease [32]. Typically, chemotherapy regi-
mens are administered through adjuvant or neoadjuvant means based on the physician’s
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decision, and the combination of resection plus chemotherapy yields promising results [22].
Of these chemotherapy regimens, mFOLFIRINOX is considered the state-of-the-art, show-
ing the best overall survival outcomes, but gemcitabine and gemcitabine plus capecitabine
are also commonly used [87]. However, it is seen that different chemotherapy regimens
affect the morphological nuclear characteristics of the resected tumors in neoadjuvant
therapy differently. Krishna et al. explored this relationship by calculating the correlation
between morphological nuclear biomarkers of a resected PDAC tumor and the therapy that
it received [87]. To derive morphological nuclear tumor features, the authors developed
a segmentation model on 139 histopathology slides of resected pancreatic tumors receiv-
ing gemcitabine or FOLFIRINOX. Although the exact architecture of the model was not
specified, the segmentation model extracted nuclear features of the histopathology slides
and correlated them against disease-specific survival. The concordance index (C-index)
was measured for correlations between each nuclear morphological feature against disease-
specific survival, where the tumor was treated with either gemcitabine or FOLFIRINOX
treatment [87]. The promising results showed that elliptical features in the nuclei geometry
had a strong correlation with gemcitabine treatment. No statistical correlation linked 5-FU
patients’ geometric nuclei features to disease-specific survival, indicating the model was
more appropriate for gemcitabine-treated patients.

The evaluation of the effectiveness of neoadjuvant chemotherapy for treating PDAC
tumors can also be performed through the tumor response scoring system (TRS), a measure
of residual tumor burden [86]. Following surgical resection, histopathology examination
of the remaining pancreas can be performed [86]. These slides are examined and scored
based on TRS but often lack standardization [86]. Janssen et al. propose a standardized
approach using ML models to segment such histopathological images [86]. By using
segmentation masks over the tumor, epithelium, and normal ducts for labels, several U-Net
models were trained, tested, and validated [86]. The authors used 50 images for model
training, 5 for validation, and 9 for testing. Through testing via U-Net with several different
types of encoders (DenseNet161, DenseNet201, EfficientNet, ResNet152) on the same
histopathological data, results showed that DenseNet161 had the highest performance,
showing an F-1 score of approximately 86% [86]. The superior performance of DenseNet161
allows for the possibility of automatic segmentation of the pancreatic ducts along with
the residual tumor in heterogeneous cases of PDAC [86]. Through the segmentation of
important pancreatic components, this data can be used as a standardized approach that
replaces TRS and inter-observer variability is effectively eliminated. Moreover, Jannsen et al.
explain that the segmentation predictions can identify key biomarkers related to a variety
of clinical outcomes [86].

7. Discussion
7.1. Challenges and Opportunities

The studies reviewed in this article offer an optimistic perspective on the applications
of AI across the entire spectrum of PDAC, from initial screening and detection to treatment
and surveillance. Please refer to Figures 1 and 2 for a graphical representation of some of
the key ways in which AI has impacted PDAC care. Figure 1 provides a high-level overview
of the different areas of impact of AI in PDAC, whereas Figure 2 shows the AI applications
that intersect different aspects of patient care for PDAC. This section identifies the principal
limitations of current AI models and the obstacles to their clinical implementation.

Diagnosing PDAC typically requires an analysis of histopathology slides, various
forms of radiological imaging such as EUS, CT, or MRI, along with molecular testing, rou-
tine laboratory work, and other relevant clinical information [15,30]. The diversity of data
types and their sources, the specific data processing techniques required for each modality,
and the subjective interpretation of these data by different medical specialists all contribute
to the challenge of creating a universally applicable AI framework for autonomous PDAC
diagnosis. Researchers often concentrate on isolated sub-problems, gathering and anno-
tating data to develop ML models tailored to these specific issues. Yet, this approach
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might not align with the clinical reality, where data collection and analysis are iterative
(e.g., additional lab tests, imaging, or biopsies may be required), and decision-making often
involves several rounds of consultation among specialists. There is a clear need for the
development of human-centric, multimodal, hierarchical AI systems capable of processing
various data types, requesting additional information when necessary, and incorporating
the insights of human experts into the final diagnosis.

We have presented various use cases where CV and NLP techniques enhance early
detection, screening, diagnosis, and treatment planning for PDAC. However, a significant
obstacle in developing highly accurate models is the necessity for a large and diverse
dataset. Currently, gathering a sufficiently large and varied dataset for PDAC images is
deemed unfeasible for the general population. The rare occurrence of PDAC, combined
with the challenges in predicting the malignant potential of pancreatic cysts, results in the
infrequent imaging of precancerous lesions, complicating the task of risk prediction [13,31].
Moreover, the low incidence of PDAC, alongside its high metastatic rates, presents a
persistent issue of class imbalance, posing difficulties for machine learning models in
screening, diagnosis, treatment, and surveillance efforts [30]. To overcome these challenges,
collaborative efforts are needed to develop centralized, anonymized PDAC imaging and
clinical databases, facilitating the creation of more diverse and extensive datasets that can
enhance AI model training and validation.

Figure 1. A high-level overview of different areas of impact of AI in PDAC is presented. Each area
of impact is reflected in the studies presented in Sections 2–6.

The inherent heterogeneity of PDAC tumors, manifesting in their varied shapes, sizes,
locations, and especially their progression rates, significantly complicates the development
of accurate AI models. This diversity necessitates that AI solutions not only recognize
but also accurately classify the multitude of PDAC subtypes along with their distinct mor-
phological features and growth trajectories. For AI models to be clinically actionable and
relevant across different healthcare settings, they must be trained on data that reflect this
broad spectrum of PDAC characteristics. Such comprehensive training enables the models
to develop a generalized understanding of the disease, ensuring their applicability and
utility in diverse clinical environments [13,32]. To address this challenge, it is imperative
to adopt a multifaceted approach involving the aggregation of large, diverse datasets
and interdisciplinary collaboration among oncologists, pathologists, and AI researchers
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to enrich AI training environments with a wide array of PDAC presentations. Federated
learning techniques can be used to train AI models without sharing the data [88].

Figure 2. AI applications that intersect different aspects of patient care for PDAC. Identification of
personalized treatment plans intersects Sections 5 and 6. Identification of subtle textural and mor-
phological changes not clearly visible in imaging intersects Sections 2–5. Avoidance of unnecessary
surgery intersects Sections 2, 3, and 6. Understanding of biological mechanisms behind therapy
effectiveness and identification of biomarkers intersect Sections 2–6.

Current research on predicting treatment outcomes for PDAC often centers on the
efficacy of adjuvant or neoadjuvant therapies in cases where the tumor is resectable, despite
the fact that the vast majority of PDAC cases are unresectable at diagnosis [30,72]. There
is a pressing need for studies to focus on treatment alternatives specifically designed for
unresectable PDAC cases. Such research should aim to identify effective therapeutic options
and establish critical time points at which a particular chemotherapy regimen may cease to
benefit the patient, thus optimizing patient care and resource allocation [32].

Interpretability presents a persistent challenge in applying AI to cancer diagnostics and
treatment, as the complex features and representations derived from AI models, like those
from multiple convolutional layers, are often not intuitively understandable to humans. These
complex model components are crucial for the ML model’s semantic understanding and ability
to make highly accurate predictions. Yet, clinicians, who often seek to understand the causal
relationships and underlying biological mechanisms of disease progression, find the abstract
weights, features, and embedding methods used in AI models to be opaque and not directly
correlated with the known biological aspects of a disease [30,32]. This gap underscores the
need to bridge AI model outputs with clinically relevant insights, enhancing the models’
utility in practical healthcare settings.

7.2. Future of PDAC Research: Pancreatic Cyst Monitoring

AI applications have the potential to significantly enhance the current PDAC care
standards, with the most critical area being the early detection of PDAC through the moni-
toring of suspicious cysts and lesions. The urgency for early detection stems from several
compelling observations. Firstly, an estimated 55% of PDAC cases have already metasta-
sized by the time of diagnosis, often making it too late to tailor a personalized treatment
plan [2]. Once metastasis occurs, the option for surgical resection becomes impractical,
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which severely impacts survival rates. Secondly, research indicates that precursor lesions
are a common occurrence with age, as they are present in over 75% of older adults [13].
Given the potential for these lesions to turn malignant, there’s a pronounced need for early
detection efforts to be expanded globally [13].

Enhanced screening efforts to monitor early/cancerous pancreatic lesions may not
only facilitate the identification of more patients with malignancies but also generate a
larger and more diverse dataset for AI models to utilize. The classification of pancreatic
cysts and lesions by AI has already demonstrated high accuracy and clinical relevance
in diagnosis and detection, suggesting the potential of AI models to effectively track the
progression of IPMNs from pre-diagnostic images [61,71]. Adopting AI can address the
inconsistencies and manual labor intensiveness inherent in the Fukuoka guidelines and
pathology, enhancing the standardization of diagnostic criteria. This improvement in early-
stage pancreatic cancer detection is expected to increase resection rates, improve survival
outcomes, and provide an enriched dataset for AI models dedicated to PDAC diagnosis,
treatment, and post-treatment monitoring.

7.3. Future of PDAC Research: Incorporation with Molecular Data

Despite progress in PDAC classification by AI, challenges persist in diagnoses, stratifi-
cation, and treatment due to factors such as lack of distinctive clinical symptoms or specific
molecular markers, and high tumor heterogeneity. As discussed in this review, AI enhances
and highlights the need for further improvement in early-stage detection and various levels
of cancer development. Given these challenges, the integration of imaging with molecular
data emerges as one of the next steps to enrich datasets, analyses, and improve survival
outcomes. To date, such studies are challenging and rather rare, highlighting the limitations
of select data sets to extract PDAC molecular signatures or with most focusing on multiple
cancer types [89,90].

Within molecular modalities, approaches combining various molecular data types,
such as DNA, RNA, or protein-related data, are common. These data types often in-
clude transcriptomics, proteomics, metabolomics, or epigenetic modifications like DNA
methylation. While most ’biomarker-detecting’ models have addressed one data type,
more multi-omics analyses are emerging [84]. For instance, Osipov et al. proposed the
Molecular Twin AI platform using clinical and multi-omics data to predict PDAC patients’
outcomes [34]. Another example by Sinkala et al. involves subtyping pancreatic cancer
cell lines using multiple biomarkers, including mutation, methylation, protein expression,
and miRNA, leading to the identification of two clinically distinct subtypes [91]. Epige-
netic signatures, particularly DNA methylation, were significantly different between these
subtypes, highlighting the importance of studying genetic material beyond DNA sequence.

Additionally, the understudied epigenetic modifications, including histone modifica-
tions, were highlighted as potential biomarkers for PDAC by Elrakaybi et al. [92]. However,
investigations of biomarkers and treatments focusing on epigenetic modifications still
require integration with clinical data to identify patients who will benefit from a given
treatment. The utilization of epigenetics also holds promise in PDAC diagnostics and treat-
ment response, especially when combined with high-resolution imaging data, as epigenetic
marks often disrupt DNA organization in the nucleus. As proposed by Bahado-Singh et al.,
circulating cell-free DNA can be a minimally invasive source of biomarkers for PDAC
detection by utilizing epigenetic data, such as DNA methylation [93].

Furthermore, additional approaches beyond traditional biomarker definitions, such
as the microbiome, are gaining attention. For example, Li et al. proposed the ML
Random Forest model differentiated metastatic vs. non-metastatic PDAC among pa-
tient samples, with microbial markers showing significant differences compared to other
molecular analyses [94].

Beyond biomarker discovery, the applications of ML/AI in PDAC extend to early
detection and treatment optimization. Predictive ability of molecular profiles on response
to gemcitabine was evaluated with multiple ML algorithms by Ogunleye et al. [95]. How-
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ever, challenges with data quality and availability persist. While most reports up to date
use statistical methods and platforms, the AI applications to predictive PDAC precursor
evaluation in pancreatic cysts and tumors are emerging [96–99]. Cross-disciplinary collab-
orations can advance data sharing and model interpretability, making continued studies
on complete multi-omics data integration and incorporation with imaging data essential
focuses of current research in PDAC.

8. Conclusions

In recent years, AI has emerged as a pivotal tool in enhancing the screening, detection,
diagnosis, treatment, and surveillance of PDAC. AI can potentially reduce the workload
of physicians, transform cancer detection methodologies, and increase prognostic accu-
racy. Despite these advancements, the field still requires extensive validation through
prospective multicenter studies and larger PDAC datasets. Current research on AI-assisted
histopathologic diagnosis of PDAC is sparse, and the variability in histopathology staining
and imaging techniques presents substantial hurdles in developing universally applicable
models. Nonetheless, this review article offers an extensive overview of AI’s role in ele-
vating the standard of care for PDAC, covering aspects from screening to post-treatment
monitoring. With the increasing availability of diverse data, including clinical notes, biomet-
rics, imaging, and histopathology slides, there is a significant opportunity for researchers to
develop more precise and broadly applicable AI models. These efforts aim to enhance the
quality of life for PDAC patients, offering hope in the fight against this formidable disease.
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