Table 4.
Category | Ref | Dataset | AI/ML Model | Metrics |
---|---|---|---|---|
Detection | [50] | CT | SVM | Acc = 0.922 |
[51] | CEUS | ResNet-50 | AUC = 0.953 | |
[52] | CT | CNNs | AUC = 0.986 | |
[53] | CT | 3D TransUNet | Sens = 0.91 | |
[54] | EUS | EfficientNetV2-L | Sens = 0.96 | |
[55] | CECT | 3D U-Net | Sens = 0.99 | |
[56] | CT | ResNet9 | AUC = 0.95 | |
Diagnosis | [57] | CECT | SVM | Acc = 0.86 |
[58] | CT | VGG16-XGBoost | Acc = 0.97 | |
[59] | CECT | LASSO Regression | AUC = 0.75 | |
[60] | CT | CNNs | Acc = 0.867 | |
[61] | H&E Slides | Bayesian DenseNet-201 | Acc = 0.856 |
Abbreviations used: CECT—Contrast-Enhanced Computed Tomography, SVM—Support Vector Machine, LASSO—Least Absolute Shrinkage and Selection Operation, H&E—Hematoxylin and Eosin, CEUS—Contrast-Enhanced Ultrasound, EUS—Endoscopic Ultrasound.