Skip to main content
. 2024 Jun 17;16(12):2240. doi: 10.3390/cancers16122240

Table 4.

Various AI/ML models proposed for PDAC detection/diagnosis.

Category Ref Dataset AI/ML Model Metrics
Detection [50] CT SVM Acc = 0.922
[51] CEUS ResNet-50 AUC = 0.953
[52] CT CNNs AUC = 0.986
[53] CT 3D TransUNet Sens = 0.91
[54] EUS EfficientNetV2-L Sens = 0.96
[55] CECT 3D U-Net Sens = 0.99
[56] CT ResNet9 AUC = 0.95
Diagnosis [57] CECT SVM Acc = 0.86
[58] CT VGG16-XGBoost Acc = 0.97
[59] CECT LASSO Regression AUC = 0.75
[60] CT CNNs Acc = 0.867
[61] H&E Slides Bayesian DenseNet-201 Acc = 0.856

Abbreviations used: CECT—Contrast-Enhanced Computed Tomography, SVM—Support Vector Machine, LASSO—Least Absolute Shrinkage and Selection Operation, H&E—Hematoxylin and Eosin, CEUS—Contrast-Enhanced Ultrasound, EUS—Endoscopic Ultrasound.