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Simple Summary: Metastatic pheochromocytomas and paragangliomas (PPGLs) are rare endocrine
malignancies with limited effective treatment options. The association between the tumor microenvi-
ronment with somatostatin receptor 2 (SSTR2) and hypoxia-induced factor-2α (HIF-2α) in PPGLs,
critical for optimizing combination therapeutic strategies with immunotherapy, remains largely
unexplored. We found associations between tumor-associated macrophages and SSTR2A expression,
and between PD-L1 and HIF-2α expression. Our data suggests the potential of combination therapy
with immunotherapy and peptide receptor radionuclide therapy or HIF-2α inhibitors as a treatment
option in selected PPGL populations.

Abstract: Metastatic pheochromocytomas and paragangliomas (PPGLs) are rare endocrine malignan-
cies with limited effective treatment options. The association between the tumor microenvironment
(TME) with somatostatin receptor 2 (SSTR2) and hypoxia-induced factor-2α (HIF-2α) in PPGLs,
critical for optimizing combination therapeutic strategies with immunotherapy, remains largely
unexplored. To evaluate the association of SSTR2 and HIF-2α immunoreactivity with the TME
in patients with PPGLs, we analyzed the expression of SSTR2A, HIF-2α, and TME components,
including tumor-infiltrating lymphocytes (CD4 and CD8), tumor-associated macrophages (CD68 and
CD163), and PD-L1, using immunohistochemistry in patients with PPGLs. The primary outcome was
to determine the association of the immune profiles with SSTR2A and HIF-2α expression. Among
45 patients with PPGLs, SSTR2A and HIF2α were positively expressed in 21 (46.7%) and 14 (31.1%)
patients, respectively. The median PD-L1 immunohistochemical score (IHS) was 2.0 (interquartile
range: 0–30.0). Positive correlations were observed between CD4, CD8, CD68, and CD163 levels. A
negative correlation was found between the CD163/CD68 ratio (an indicator of M2 polarization)
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and SSTR2A expression (r = −0.385, p = 0.006). HIF-2α expression showed a positive correlation
with PD-L1 IHS (r = 0.348, p = 0.013). The co-expression of PD-L1 (HIS > 10) and HIF-2α was found
in seven patients (15.6%). No associations were observed between SDHB staining results and the
CD163/CD68 ratio, PD-L1, or SSTR2A expression. Our data suggest the potential of combination
therapy with immunotherapy and peptide receptor radionuclide therapy or HIF-2α inhibitors as a
treatment option in selected PPGL populations.

Keywords: pheochromocytoma; paraganglioma; immunotherapy; somatostatin receptor; tumor
microenvironment; HIF2α

1. Introduction

Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors
with up to 20% of cases being metastatic (mPPGLs) [1]. Most current treatments for mPPGLs
have limited efficacy, or they become resistant over time, emphasizing the critical need to
develop new therapies [2]. Immunotherapy, a breakthrough in oncology, has been shown
to be effective in some cases of mPPGLs; however, the response rate remains limited [3].
Therefore, one strategy to improve immunotherapy is combining drugs with different
action mechanisms and target resistance [4,5].

The analysis of the tumor microenvironment (TME), like programmed death ligand
1 (PD-L1) and tumor-associated macrophages (TAMs), offers insights into resistance to
immunotherapy [6]. Macrophages are highly plastic and heterogeneous, polarizing in
response to cytokine interactions [7]. While proinflammatory M1 macrophages play a role
in anti-tumor activities, anti-inflammatory M2 macrophages promote tumor progression
and immune evasion, reducing sensitivity to immunotherapy [8–10]. The prevalence of
M2-polarized TAMs in mPPGLs [11–13] underscores the potential of targeting M2 polariza-
tion in macrophage-specific therapies, which involve repolarizing M2 macrophages to M1
or depleting them [14]. Immunohistochemistry (IHC) evaluation of the CD163/CD68 ratio
allows the assessment of M2 polarization as an effective and cost-efficient method.

Radiation and radionuclide therapy have emerged as promising strategies to enhance
immune checkpoint inhibitor (ICI) efficacy by modulating the TME. These alterations
encompass changes in the expression of cell-surface antigens [15] and impact macrophage
polarization [16]. Some PPGLs have exhibited the abscopal effect of external radiation,
as initially reported by our institute [17], suggesting that radiotherapy could activate an
anti-tumor immune response [18]. The potential of combining ICIs with peptide receptor
radionuclide therapy (PRRT) targeting somatostatin receptor 2 (SSTR2) has been demon-
strated in basic research in animal models of gastrointestinal neuroendocrine neoplasms
(GEP-NENs) [4] and clinical cases of Merkel cell carcinoma and pituitary carcinoma [19,20].
As SSTR2 is relatively highly expressed in PPGLs [21–23], PRRT is currently being eval-
uated in clinical trials [2]. However, to our knowledge, the interaction between SSTR2
and the PPGLs tumor microenvironment for potential combined ICIs and PRRT therapy
remains largely unexplored. Our study aims to fill this gap, suggesting new directions for
therapeutic research in PPGLs.

Hypoxia-related pathways also promote immune tolerance in the immune cell com-
ponents [24]. HIF-2α expression in renal cell carcinoma (RCC) correlates with increased
PD-L1 expression in tumors, indirectly suppressing T-cell function [25]; hence, HIF-2α
inhibitors are being investigated in combination with ICIs in RCC [26]. The stabilization of
HIF-2α in PPGLs is gaining attention as a promising therapeutic target [27]. Clinical trials
of Belzutifan (MK-6482), a selective HIF-2α inhibitor approved for von Hippel–Lindau
(VHL) disease-associated tumors (RCC, pancreatic neuroendocrine tumor (NET), and cen-
tral nervous system hemangioblastoma) [28], have expanded to PPGLs (NCT04924075).
Although some PPGLs have pathogenic mutations in genes associated with hypoxia signal-
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ing, there are limited reports on the association between the immune cell components and
HIF expression [29–31].

As the development of combined immunotherapies progresses in mPPGLs, the het-
erogeneity of the TME necessitates the assessment of the immune profiles of each tu-
mor [11,13,32]. Therefore, our study aimed to investigate the immunoreactivity and inter-
play of SSTR2, HIF-2α, and TME in PPGLs.

2. Material and Methods
2.1. Patients and Samples

We analyzed 45 patients diagnosed with PPGLs and preserved FFPE (formalin-fixed,
paraffin-embedded) tissue blocks at the National Center for Global Health and Medicine or
the National Cancer Center Hospital in Japan. Inclusion criteria were diagnosis between
1988 and 2020, and a pathological diagnosis of PPGL. Exclusion criteria included the
absence of a PPGL diagnosis, lack of preserved FFPE specimens, or refusal of consent. The
clinicopathological and gene mutation data for each patient were gathered from medical
records. Among six patients who underwent genetic testing, three had known germline
mutations of PPGL susceptibility genes (1 SDHB, 1 SDHD, 1 VHL). The remaining patients
had not undergone genetic testing at the time of data collection; therefore, no genetic data
are available for their tumors. Metastatic events were defined as distant metastases in non-
chromaffin tissues. The tumor samples consisted of 43 primary tumors and 10 metastases.
In cases with available paired primary-metastasis samples, only one tumor per patient
was used for analysis (primary tumor for baseline and predictive analysis, metastases for
correlation analysis with other biomarkers).

The study protocol conformed to the ethical guidelines of the 1975 Declaration of
Helsinki and was approved by the Institutional Review Board of the National Center for
Global Health and Medicine, Tokyo, Japan (approval number: NCGM-S-004328-00). Due to
the retrospective, non-interventional nature of the study, an opt-out model was employed
for patient consent.

2.2. IHC and Its Evaluation

Hematoxylin and eosin slides were reviewed to identify pathological features. The
slides were obtained by cutting the archived FFPE tissue blocks into serial 5-µm sec-
tions. Antibodies targeting SSTR2A (AB_2737601, Abcam, Cambridge, UK, 1:2000), SDHB
(AB_301432, Abcam, Cambridge, UK, 1:1000), HIF-2α (AB_10002593, Novus Biologicals,
Centennial, CO, USA, 1:100) were used for immunostaining. To evaluate immune cell
components, antibodies targeting tumor-infiltrating lymphocytes (CD4 [AB_876941, Leica,
Wetzlar, Germany, 1:50] and CD8 [AB_10555292, Leica, Wetzlar, Germany, 1:50]), tumor-
associated macrophages (CD68 [AB_2074844, Dako, Glostrup, Denmark, 1:500] and CD163
[AB_2756375, Leica, Wetzlar, Germany, 1:200]), PD-L1 (AB_2833074, Dako, Glostrup, Den-
mark, Ready for use), and Ki-67 (AB_2631211, Dako, Glostrup, Denmark, 1:100) were used.
The specific protocols for each marker are detailed in Table S1 Supplementary Materials.

The immunoreactivity of SSTR2A was evaluated based on Volante scores [21,33], con-
sidering the subcellular localization and extent of the staining in four levels: 0 (no staining),
1 (pure cytoplasmic immunoreactivity, either focal or diffuse), 2 (membranous reactiv-
ity in less than 50% of tumor cells, irrespective of the presence of cytoplasmic staining),
3 (circumferential membranous reactivity in more than 50% of tumor cells, irrespective
of the presence of cytoplasmic staining). HIF-2α was evaluated in four levels of staining:
0 (no staining), 1 (weak), 2 (medium), and 3 (strong) [34], each for the tumor cell nuclear
(HIF-2αNUC) and cytoplasm (HIF-2αCYT) based on previous reports in PPGLs [31,35]. For
statistical analysis, SSTR2A and HIF-2α scores of 0 and 1 were considered negative, while
scores of 2 and 3 were considered positive. Positive SDHB staining was determined by
granular solid staining in the cytoplasm, while negative staining was indicated by the
absence of such staining despite positive staining in internal control sustentacular cells. A
distinct subgroup was identified for tumors displaying a cytoplasmic blush without clear
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granularity, categorized as a weak-diffuse pattern [36]. Based on the genetic finding of suc-
cinate dehydrogenase gene mutations in two of the three cases with weak-diffuse patterns
(one case untested), these populations were included in the negative SDHB staining group
for statistical purposes. The Ki-67 labeling index (Ki-67 LI) was evaluated after identifying
the hot spot of the whole tumor. PD-L1 expression was assessed by the semi-quantitative
immunohistochemical score (IHS). Positive PD-L1 results were defined by positive tumor
cell membrane or cytoplasm staining. The integrating staining intensity was graded on a
scale from 0 to 3: 0 (no staining), 1 (weak), 2 (medium), and 3 (strong). The proportion of
positive tumor cells was evaluated, scoring from 0% to 100%. The final IHS was calculated
by multiplying the staining intensity and the proportion of positive tumor cells, yielding a
range from 0 to 300. An IHS of 10 or more was classified as positive [37]. CD68 and CD163
were used as markers for total infiltrating macrophages and M2-polarized macrophages,
respectively [38]. The CD163/CD68 ratio was calculated to assess M2-polarization. Nuclear
immunoreactivity of CD4, CD8, CD68, and CD163 was assessed by the proportion of
positive cells in the tumor parenchyma (38). We used normal adrenal medullary tissue
obtained from non-PPGL cases as controls in the pathological assessments. The evaluation
was performed by two pathologists blinded to the clinical data.

2.3. Statistical Analysis

The Kruskal–Wallis, chi-square, and Mann–Whitney U tests, where appropriate, were
used to compare clinicopathological parameters between the groups. Spearman’s rank test
was performed for correlation analysis. Disease progression was defined as an increase of
more than 20% in the size of the primary or metastatic lesions or the appearance of new
tumors [39]. Time to progression (TTP) was measured from confirmed PPGL diagnosis
to first disease progression. Metastasis-free survival (MFS) was defined as the duration
between the surgery date and the detection of metastasis. The Kaplan–Meier method
was used to calculate the median TTP and MFS. A p-value of less than 0.05 was consid-
ered statistically significant. Statistical analyses were performed using GraphPad Prism
version 9.5 (GraphPad Software Inc., San Diego, CA, USA) and EZR version 1.67 (Saitama
Medical Center, Jichi Medical University, Saitama, Japan) [40], which is a graphical user
interface for R (version 4.2, The R Foundation for Statistical Computing, Vienna, Austria).

3. Results
3.1. Patient Characteristics

The clinicopathologic features of the patient cohort are shown in Table 1. The median
age at diagnosis was 46 years (range: 17–80 years). Of the 45 patients, 28 were female
(62.2%). The primary tumor was located in the adrenal gland in 18 cases and in the
extra-adrenal gland in 27 cases. The median follow-up duration was 50 months (range:
2–407 months). Among the 18 patients with mPPGLs, 10 had distant metastases at the time
of primary tumor diagnosis, and eight developed systemic recurrence during follow-up.
Factors associated with metastatic behavior included younger age, extra-adrenal primary
tumor location, negative 123I-MIBG uptake, negative SDHB staining, high Ki-67 LI (≥3%),
and larger tumor size (≥50 mm) (p < 0.05). All patients did not undergo embolization prior
to surgery or biopsy.

Table 1. Patient Characteristics.

Metastatic PPGL Non-Metastatic PPGL p
(n = 18) (n = 27)

Age at Initial Diagnosis
(median, range) 39 (18–65) 58 (17–80) 0.01

Sex
Female 10 18 0.537
Male 8 9
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Table 1. Cont.

Metastatic PPGL Non-Metastatic PPGL p
(n = 18) (n = 27)

Primary Tumor Location
Adrenal 3 15 0.012

Extra-adrenal 15 12
Abdominal 10 10

Head and neck 2 0
Bladder 3 2

Functional Status
Adrenergic 1 12 0.012

Noradrenergic 8 4
Silent or Dopaminergic 7 9

Not available 2 2
Diabetes Mellitus 7 5 0.175
Hypertension 10 15 1
Ki-67 LI

≥3% 14 9 0.006
<3% 4 18

Tumor Size
≥50 mm 14 13 0.065
<50 mm 4 14

123I-MIBG Uptake
Positive 9 24 0.007

Negative 6 1
Not available 3 2

SDHB Staining
Positive 6 26 <0.001

Negative 12 1
Abbreviations: PPGL, pheochromocytoma and paraganglioma; Ki-67 LI, Ki-67 labeling index; MIBG, Metaiodoben-
zylguanidine; SDHB, succinate dehydrogenase subunit B.

3.2. SSTR2A and HIF-2α Expression with Clinicopathological Profile

SSTR2A and HIF-2α expressions were evaluated in 50 tumor samples from 45 patients
(Figure 1 and Figure S1). The positive expression of SSTR2A (SSTR2A+) was observed in
21 patients (46.7%). Among five patients who underwent 111In-Pentetreotide scintigraphy, two
with uptake were in the SSTR2A+ group, and three without uptake were in the SSTR2A− group.
SSTR2A positivity was associated with younger ages, metastatic tumors (12/21 [57.1%] vs.
6/24 [25.0%]), and higher Ki-67 LI (Table 2), while the length of the TTP was not significantly
different based on SSTR2A status. No correlation was observed between SSTR2A positivity
and SDHB staining results. The positive staining of HIF-2α was exclusively localized in the
nucleus and cytoplasm (Table S2), and 14 patients (31.1%) were HIF-2αNUC positive. Metastatic
tumors, high Ki-67 LI, negative 123I-MIBG uptake, and negative SDHB staining were associated
with HIF-2αNUC-positivity (p < 0.05). All primary tumors located in the adrenal gland tested
negative for HIF-2αNUC. In the analyses for the 27 patients with primary extra-adrenal tumors,
high Ki-67 LI and negative SDHB staining were associated with HIF-2αNUC-positivity, whereas
metastatic behavior and 123I-MIBG uptake were not. In the five patients with available pairs
of primary and metastatic sites, the positivity of SSTR2A and HIF2αNUC were all consistent
between primary and metastatic tumor samples. The results of the comparative analysis of
SSTR2A and HIF-2α expression across four groups are detailed in Table S3. The group with both
negative SSTR2A and HIF-2αNUC expression showed fewer examples of metastatic behavior,
lower Ki-67 LI, predominantly positive MIBG uptake, and mostly positive SDHB staining
compared to the other groups.



Cancers 2024, 16, 2191 6 of 13

Cancers 2024, 16, x FOR PEER REVIEW  6  of  13 
 

 

were associated with HIF-2αNUC-positivity, whereas metastatic behavior and 123I-MIBG 

uptake were not. In the five patients with available pairs of primary and metastatic sites, 

the positivity of SSTR2A and HIF2αNUC were all consistent between primary and meta-

static tumor samples. The results of the comparative analysis of SSTR2A and HIF-2α ex-

pression  across  four  groups  are  detailed  in  Table  S3.  The  group with  both  negative 

SSTR2A and HIF-2αNUC expression showed fewer examples of metastatic behavior, lower 

Ki-67 LI, predominantly positive MIBG uptake, and mostly positive SDHB staining com-

pared to the other groups. 

 

Figure 1. Representative immunohistochemistry staining images of SSTR2A and HIF-2α in PPGLs 

(Magnification: ×400). The immunoreactivity of SSTR2A was evaluated based on Volante scores. For 

statistical analysis, SSTR2A scores of 0 and 1 were considered negative, while 2 and 3 were consid-

ered positive. HIF-2α was evaluated for both the tumor cell nucleus and cytoplasm. Abbreviations: 

SSTR2A, somatostatin receptor 2A; HIF, hypoxia-induced factor. 

Table 2. Characteristics of SSTR2A and HIF-2α expression in PPGLs. 

 

SSTR2A 

p 

HIF-2αNUC 

p Positive  Negative  Positive  Negative 

(n = 21)  (n = 24)  (n = 14)  (n = 31) 

Age at Initial Diagnosis   

(median, range) 
40 (17–70)  59 (18–80)  0.005  41 (17–70)  50 (18–80)  0.333 

Sex             

Female  15  13  0.356  7  21  0.326 

Male  6  11    7  10   

Primary Tumor Location             

Adrenal  7  11  0.599  0  18  <0.001 

Extra-adrenal  14  13    14  13   

Abdominal  10  10    11  9   

Head and neck  2  0    1  1   

Bladder  2  3    2  3   

Tumor Site             

Adrenal  7  10  0.704  0  17  0.001 

Abdominal  10  9    10  9   

Figure 1. Representative immunohistochemistry staining images of SSTR2A and HIF-2α in PPGLs
(Magnification: ×400). The immunoreactivity of SSTR2A was evaluated based on Volante scores. For
statistical analysis, SSTR2A scores of 0 and 1 were considered negative, while 2 and 3 were considered
positive. HIF-2α was evaluated for both the tumor cell nucleus and cytoplasm. Abbreviations:
SSTR2A, somatostatin receptor 2A; HIF, hypoxia-induced factor.

Table 2. Characteristics of SSTR2A and HIF-2α expression in PPGLs.

SSTR2A
p

HIF-2αNUC

pPositive Negative Positive Negative
(n = 21) (n = 24) (n = 14) (n = 31)

Age at Initial Diagnosis
(median, range) 40 (17–70) 59 (18–80) 0.005 41 (17–70) 50 (18–80) 0.333

Sex
Female 15 13 0.356 7 21 0.326
Male 6 11 7 10

Primary Tumor Location
Adrenal 7 11 0.599 0 18 <0.001

Extra-adrenal 14 13 14 13
Abdominal 10 10 11 9

Head and neck 2 0 1 1
Bladder 2 3 2 3

Tumor Site
Adrenal 7 10 0.704 0 17 0.001

Abdominal 10 9 10 9
Liver 0 1 1 0

Head and neck 2 1 1 2
Bladder 2 3 2 3
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Table 2. Cont.

SSTR2A
p

HIF-2αNUC

pPositive Negative Positive Negative
(n = 21) (n = 24) (n = 14) (n = 31)

Functional Status
Adrenergic 6 7 0.743 1 12 0.060

Noradrenergic 7 5 3 9
Silent or Dopaminergic 7 9 8 8

Not available 1 3 2 2
Metastatic PPGL

Yes 12 6 0.037 9 9 0.047
No 9 18 5 22

Ki-67 LI
≥3% 15 8 0.017 13 10 <0.001
<3% 6 16 1 21

GAPP Score
≥7 7 5 0.274 5 7 0.658
3–7 13 14 7 20
<3 1 5 2 4

123I-MIBG Uptake
Positive 14 19 0.226 7 26 0.003

Negative 5 2 6 1
Not available 2 3 1 4

SDHB Staining
Positive 12 20 0.098 4 28 <0.001

Negative 9 4 10 3

Abbreviations: SSTR2A, somatostatin receptor 2A; HIF, hypoxia-induced factor; NUC, nuclear; PPGL, pheochro-
mocytoma and paraganglioma; Ki-67 LI, Ki-67 labeling index; MIBG, Metaiodobenzylguanidine; SDHB, succinate
dehydrogenase subunit B; GAPP, Grading of Adrenal Pheochromocytoma and Paraganglioma.

3.3. TME with SSTR2A and HIF-2α Expression

The median levels (interquartile range) of PD-L1, CD4, CD8, CD68, and CD163 were
2.0 (0–30.0), 0.6 (0.1–1.2), 1.2 (0.8–2.1), 9.8 (5.2–12.8), and 8.8 (6.2–14.4), respectively. Rep-
resentative IHC images are shown in Figure S2. PD-L1 positivity (IHS > 10) was noted in
17 tumors (37.8%). The median CD163/CD68 ratio was 1.03 (range: 0.65–3.18), used as a cut-
off value to classify patients into high and low groups. There was no significant association
between PD-L1 positivity, high CD163/CD68 ratio, and clinicopathological characteris-
tics, including age, sex, primary tumor location, metastatic behavior, and SDHB staining
(Table S4). Positive correlations were noted among CD4, CD8, CD68, and CD163 levels
(Figure 2A). There was a negative correlation between CD163/CD68 ratio and SSTR2A
expression (r = −0.385, p = 0.006), with a stronger correlation in metastatic cases (r = −0.535,
p = 0.009) (Figures 2 and 3A). No correlation was found between SSTR2A expression and
other immune cell components.

In light of the negative correlation observed between SSTR2A and the CD163/CD68
ratio, our analysis assessed the TTP and MFS across the four groups based on these
parameters (Figure 3B and Figure S3, Table S5). Although no significant differences were
observed overall, all 11 patients in the low CD163/CD68 ratio and SSTR2A− group showed
no progression or detection of metastasis.

HIF-2αNUC expression was positively correlated with PD-L1 IHS (r = 0.348, p = 0.013),
particularly in metastatic cases (r = 0.441, p = 0.035) (Figure 2A,B). The co-expression of
PD-L1 (IHS > 10) and HIF-2αNUC was observed in 15.6% (7/45) of the entire cohort and
25.9% (7/27) of patients with primary extra-adrenal tumors. Among those with positive
PD-L1 expression, 41.1% (7/17) also showed positive HIF-2αNUC expression.
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4. Discussion

In this study, we found a negative correlation between M2 macrophage polarization
(indicated by the CD163/CD68 ratio) and SSTR2A expression in PPGLs, especially in
metastatic cases. Additionally, we noted that high PD-L1 expression was linked with
increased HIF-2αNUC expression. Hence, our data indicates the potential for combination
immunotherapy strategies.

We found an inverse relationship between M2 macrophage polarization and SSTR2
expression in PPGLs. This research represents an initial understanding of the relationship
between SSTR2 expression and immune cell infiltration in PPGLs. Our findings suggest
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a foundation upon which further studies might build to explore innovative treatments.
Considering the tendency of M2-polarized tumors to exhibit resistance to immunotherapy,
alongside the effectiveness of PRRT in tumors with high SSTR2 expression, our findings
indicate that a large group of patients could be potential candidates for combined therapy
of PRRT with ICIs, including pembrolizumab, nivolumab, and ipilimumab, similar to other
NETs currently under study [4,19,20]. Given the overexpression of SSTR2 in B cells, PRRT
causes a temporary selective reduction in B cells without significantly affecting T cells,
which is unlikely to hinder the effectiveness of ICIs [41]. Temozolomide, sunitinib, and
PARP inhibitors, which are therapeutic or candidate drugs for PPGLs, have been reported
to upregulate SSTR in other cancer types [42]. In addition, some reports showed that
SSTR is also present in macrophages; furthermore, the somatostatin analog could alter
macrophage functions [43,44]. Based on our results, future research should focus on how
changes in macrophage polarity and other TME components occur in PPGLs treated with
therapies that upregulate SSTR2A or radionuclide therapy. Notably, not all patients in the
group with low CD163/CD68 ratios and negative SSTR2A showed disease progression.
Although a multivariate analysis was not feasible due to the limited sample size, these
markers could be worth exploring as a potential prognostic factor in future analysis.

We observed that high PD-L1 expression was associated with high HIF-2αNUC expres-
sion in PPGLs. Hypoxia-related pathways, which enhance PD-L1 expression in cancer cells,
contribute to immune tolerance in the TME [24,45]. Previous studies on the relationship
between PD-L1 and HIF-α expression in PPGLs were insufficient as only HIF-1α was
assessed [29], not distinguishing between nuclear and cytoplasmic HIF-2α staining [30]
or only in head and neck paragangliomas with prior embolization [31]. Although further
research, particularly transcriptome analysis, is necessary to validate the IHC findings of
HIF-2α, the elevated levels of both PD-L1 and HIF-2α observed in our diverse cohorts
indicate a potential approach for combination therapy using HIF-2α inhibitors and ICIs.

Approximately 30–35% of PPGLs have germline mutations [46], with SDHB muta-
tion being common and associated with metastasis [47,48]. Immunostaining for lack of
SDHB expression is a clinically accessible and cost-effective method for identifying patients
likely to carry SDHx mutations [49,50]. Our study did not show an association between
SDHB staining results and M2 macrophage polarization or SSTR2A expression. Previ-
ous studies have reported the association of M2 polarization with SDHB mutation [3,4];
however, other studies have shown the opposite association with the kinase signaling
subtype [11], highlighting the contradictory nature of the current literature. Studies on
the expression of SSTR2A and the results of SDHB staining have been mixed, with some
showing high SSTR2A expression in cases of negative SDHB staining [22], while others
report low SSTR2A expression [51]; recent research indicates no association between SDHB
staining and SSTR2A expression [21]. Our data also show no correlation, suggesting that
further investigations, such as immunohistochemistry, functional imaging, and genetic
testing, are needed to clarify their relationship [52,53].

This study had some limitations. First, our study evaluated a limited number of tumor
samples, a challenge often faced in studying rare diseases. This limitation may restrict the
extrapolation of our findings to the broader PPGL population, necessitating that our results
be viewed as hypothesis-generating rather than conclusive. The limited observation period
also restricted our ability to assess long-term overall survival. Future studies with larger
cohorts and extended follow-up periods are necessary to validate these findings. However,
given the scarce data in this field, sharing our results could still aid ongoing research
efforts for therapeutic developments. Second, genetic testing is not widely performed in
Japan due to its high cost and lack of insurance coverage. This study could not analyze
FFPE specimens due to the difficulty of maintaining the condition of old FFPE specimens
for genetic analysis. Consequently, the number of patients who had undergone germline
genetic testing was limited. Finally, the specificity of CD163 in evaluating M2 macrophages
remains a challenge, necessitating cautious interpretation of its expression. Since many
markers could evaluate M2 macrophages, CD163 cannot cover all M2 macrophage subtypes.



Cancers 2024, 16, 2191 10 of 13

To further improve specificity and enhance our findings’ reliability, we plan to incorporate
additional markers such as CD206 and CD204 and utilize multiplex immunofluorescence
methods in future studies.

5. Conclusions

In conclusion, we found a negative association between M2 macrophage polarization
and SSTR2A expression in PPGLs. We also observed a relationship between high PD-
L1 expression and increased HIF-2αNUC expression. Our data indicate the potential of
using a combination of immunotherapy with PRRT or HIF-2α inhibitors as a therapeutic
avenue in selected PPGL populations; however, due to the small sample size and limited
genetic background data, these results should be considered hypothesis-generating. Future
large-scale studies where all patients undergo germline testing are required to validate our
findings further.
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