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Abstract: One of the biggest problems in the treatment of idiopathic Parkinson’s disease is the lack of
new drugs that slow its progression. L-Dopa remains the star drug in the treatment of this disease,
although it induces severe side effects. The failure of clinical studies with new drugs depends on the
use of preclinical models based on neurotoxins that do not represent what happens in the disease
since they induce rapid and expansive neurodegeneration. We have recently proposed a single-
neuron degeneration model for idiopathic Parkinson’s disease that requires years to accumulate
enough lost neurons for the onset of motor symptoms. This single-neuron degeneration model
is based on the excessive formation of aminochrome during neuromelanin synthesis that surpass
the neuroprotective action of the enzymes DT-diaphorase and glutathione transferase M2-2, which
prevent the neurotoxic effects of aminochrome. Although the neurotoxic effects of aminochrome
do not have an expansive effect, a stereotaxic injection of this endogenous neurotoxin cannot be
used to generate a preclinical model in an animal. Therefore, the aim of this review is to evaluate
the strategies for pharmacologically increasing the expression of DT diaphorase and GSTM2-2 and
molecules that induce the expression of vesicular monoamine transporter 2, such as pramipexole.

Keywords: dopamine; VMAT2; neuromelanin; neurodegeneration; neuroprotection; Parkinson’s
disease; pramipexole; nicotine; KEAP1/NRF2

1. Parkinson’s Disease

Parkinson’s disease is a neurodegenerative disease that affects the control of the motor
system. Although intensive research has been carried out for decades to decipher the molec-
ular mechanism that triggers this disease, it is still not clear what triggers the degeneration
of the neuromelanin-containing dopaminergic neurons of the nigrostriatal system.

The discovery in 1960 that low dopamine levels in Parkinson’s disease are a product of
the loss of dopaminergic neurons that contain neuromelanin has been one of the most im-
portant discoveries in understanding the molecular mechanisms of this disease. However,
although several mechanisms related to the neurodegeneration of the nigrostriatal system
have been identified, such as mitochondrial dysfunction, oxidative stress, dysfunction
of both proteasomal and lysosomal protein degradation systems, endoplasmic reticulum
stress, neuroinflammation, and the formation of neurotoxic oligomers of alpha-synuclein,
it is not yet known what triggers these mechanisms [1–7].

A great advance in the research into molecular mechanisms has been the discovery
of several mutations associated with familial Parkinson’s disease, since it has made it
possible to reveal certain proteins that play a role in the development of Parkinson’s
disease symptoms. The first of these proteins was a mutation in the alpha-synuclein gene
that induces the formation of neurotoxic oligomers. Other mutations in genes that are
involved in mitochondrial dysfunction include parkin, PTEN-induced putative kinase 1,
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and Protein/nucleic acid deglycase 1 [8]. Mutations in the leucine-rich repeat kinase 2 gene
that would be involved in the control of membrane trafficking and lysosomal function
have been reported [9]. Mutations in the ubiquitin carboxy-terminal hydrolase-L1, ATPase
Cation Transporting 13A2, and other genes have also been reported to be associated with
familial Parkinson’s disease [10]. The discovery of these genes associated with familial
Parkinson’s disease has been a great contribution to molecular studies of the disease. The
mutation of alpha-synuclein that induces its aggregation into neurotoxic oligomers resulting
in lysosomal, mitochondrial, and endosomal dysfunction has had an enormous impact
on basic research. The discovery of the ability of alpha-synuclein aggregates to spread
between the gut, brainstem, and higher brain regions has allowed some researchers to
suggest the stage hypothesis of Parkinson’s disease [11]. However, it must be remembered
that familial Parkinson’s disease only represents 5–10% of the cases of this disease and it
is a mistake to think that preclinical models with mutations of these genes will represent
what happens in patients with idiopathic Parkinson’s disease. However, several preclinical
models have been developed with animals that express mutations of some genes associated
with familial Parkinson’s disease [12–14]. Overexpression of the human alpha-synuclein
gene in rats induces an alteration in the gut microbiota [15].

There are many researchers who consider that environmental exposure plays an
important role in the degenerative process of the nigrostriatal system that induces the loss
of neuromelanin-containing dopaminergic neurons. Others think that exposure to heavy
metals, solvents, pesticides, and environmental toxins could be partly responsible for the
rapid growth in Parkinson’s disease [16]. A study on the possible role of exposure to local
traffic-related air pollution in central California, USA, which included 761 patients with
Parkinson’s disease and 910 healthy controls, concluded that exposure to local traffic-related
air pollution is associated with an increased risks of developing Parkinson’s disease [17].
Exposure of workers in manganese mines was reported more than 60 years ago. Exposure
to manganese is not only limited to manganese mines but also to workers who work
in welding where they are exposed to the fumes that develop during this activity [18].
However, in subjects with Parkinsonism induced by metals such as manganese, copper, or
pesticides such as paraquat, atypical Parkinsonism with early onset is induced in young
workers [19,20]. This group of people exposed to pollutants who develop Parkinsonism
cannot be included in the group of idiopathic Parkinson’s disease patients and constitute a
special group that constitute approximately 20% of the total Parkinsonian individuals.

The possibility that environmental factors may play a role in triggering the mechanisms
involved in the degenerative process and loss of neuromelanin-containing dopaminergic
neurons of the nigrostriatal system in idiopathic Parkinson’s disease is questionable. The
best evidence that exogenous factors or neurotoxins do not play a role in idiopathic Parkin-
son’s disease is from drug addicts exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP). Subjects who consumed drugs contaminated with MPTP developed severe Parkin-
sonism in just three days [21] which contrasts with the extremely slow generative and
propagation process of idiopathic Parkinson’s disease, which takes many years.

The existence of premotor symptoms has been reported as olfactory dysfunctions,
depression, insomnia, anxiety, rapid eye movement sleep behavior, constipation, and
cognitive decline [22]. It has been proposed that Lewy bodies and Lewy neurites with alpha-
synuclein immunoreactive deposits expand from regions such as the anterior olfactory
nucleus to other regions, until they affect the substantia nigra where motor symptoms
are generated [23]. However, this hypothesis of stages of the disease that progress from
region to region of the brain of the patient with Parkinson’s disease is controversial since it
would be valid for patients with an early onset of the disease but not for patients with a
late onset such as the idiopathic form of the disease [24]. Although there may be premotor
symptoms, they ultimately all come together in the loss of dopaminergic neurons that
contain neuromelanin.

The extremely rapid effect of MPTP-Induced Parkinsonism in individuals exposed to
this drug suggests that the neurotoxin that triggers neurodegeneration of the nigrostriatal
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system in idiopathic Parkinson’s disease cannot be of exogenous origin since it will have a
massive, expansive, and rapid neurodegeneration [21].

Exposure to manganese, copper, and 3,4-methylenedioxymethamphetamine also leads
to the development of early-onset Parkinsonism [20,25,26]. On the contrary, to trigger
an extremely slow degenerative process that takes years, such as in idiopathic Parkinson
disease, the neurotoxin that triggers this neurodegeneration is presumably of endogenous
origin and does not have an expansive character. This endogenous neurotoxin is probably
formed inside the dopaminergic neurons that contain neuromelanin. Possible neurotoxins
generated within dopaminergic neurons are neurotoxic oligomers of alpha-synuclein,
3,4-dihydroxyphenylacetaldehyde (DOPAL) and aminochrome that are formed during
neuromelanin synthesis.

Alpha-synuclein is normally found in its monomeric state but under certain circum-
stances it can be aggregated to fibrils that accumulate in Lewy bodies and Lewy neurites,
which are not exclusive to the nigrostriatal system, but this aggregation occurs in other
brain regions that are expanding from region to region [27,28]. Alpha-synuclein has the
ability to spread from neuron to neuron through its secretion and subsequent uptake of
the receiving neuron [29,30]. Seed spread of alpha-synuclein fibrils has been observed in
different brain regions and serum of patients [31–33]. The internalization of alpha-synuclein
released is an endosome-lysosome mechanism [34]. A stage of different levels of devel-
opment of Parkinson’s disease based on the spread of Lewy bodies has been proposed.
This disease stage helps explain the appearance of premotor symptoms [23]. However,
the role of alpha-synuclein aggregation to fibrils and its formation of deposits in Lewis
bodies that spread across brain regions has been questioned. It has been suggested that
the Braak stages are not valid for patients with late onset such as patients with idiopathic
Parkinson’s disease, but are valid for patients with early onset of the disease and those
with long-lasting motor symptoms [24].

Another argument against the role of Lewy bodies in Parkinson’s disease pathology is
the absence of Lewy bodies in patients with familial Parkinson’s disease associated with
mutations in the Parkin and leucine-rich repeat kinase 2 genes [35–38]. Lewy bodies loaded
with alpha-synuclein are observed in postmortem tissues from patients with Parkinson’s
disease, which correspond to tissues that have survived the degenerative process for years.
If alpha-synuclein deposits in Lewy bodies were neurotoxic, they could not be observed in
postmortem tissue from patients with Parkinson’s disease [39]. Another point against the
neurotoxic role of Lewy bodies loaded with alpha-synuclein deposits is the propagative
nature of these Lewy bodies. The spread of alpha-synuclein fibrils deposited in Lewy bodies
through exosomes [40] occurs intracellularly to neighboring neurons and subsequently to
other regions. This propagative mode of alpha-synuclein fibril transfer to other neurons
should imply a rapid progression of the neurodegenerative process and disease progression
because the propagation of these fibrils does not involve a single fibril but a large number.
In addition, it has been proposed that the accumulation of alpha-synuclein fibrils in Lewy
bodies could actually be a neuroprotective mechanism [41].

Monomeric alpha-synuclein is also aggregated to oligomers that are considered the
species responsible for the neurotoxic action of this protein [42,43]. Alpha-synuclein
oligomers induce synaptic impairment, endoplasmic reticulum stress, mitochondrial dys-
function, loss of regulation of proteostasis, neuroinflammation, cell apoptosis, lysosomal
dysfunction, oxidative stress, and autophagy impairment [27,44–48]. However, the propaga-
tive nature of alpha-synuclein [49] will imply rapid neurodegeneration of the nigrostriatal
system when neurotoxic oligomers are formed, which is the opposite of what occurs in
the disease. Mutations in the alpha-synuclein gene induce the formation of neurotoxic
alpha-synuclein oligomers in familial Parkinson’s disease that are transmitted to neigh-
boring neurons through exosomes [49–52]. Alpha-synuclein alone does not aggregate
into neurotoxic oligomers and the question is what induces the aggregation of alpha-
synuclein to neurotoxic oligomers in neuromelanin-containing dopaminergic neurons in
the nigrostriatal system in idiopathic Parkinson’s disease. In in vitro experiments the for-
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mation of oligomers was reported in the presence of iron, copper, manganese, DOPAL,
or rotenone [53–57]. However, the massive degeneration that these metals can generate
that induces early-onset Parkinsonism in young workers [20,58] does not coincide with the
extremely slow degenerative process that occurs in idiopathic Parkinson’s disease, which
takes years. An experiment in mice revealed an increase in alpha-synuclein oligomers
and neurodegeneration by increasing dopamine and alpha-synuclein levels [59]. Alpha-
synuclein aggregates were observed during dopamine oxidation catalyzed by aminochrome
and 5,6-indolequinone [60,61]. Aminochrome forms neurotoxic oligomers in cell culture
when the enzyme DT-diaphorase is silenced with siRNA [62].

Aminochrome is an endogenous neurotoxin that is an intermediate formed in the
synthesis of neuromelanin inside of the neurons lost in Parkinson’s disease. Neuromelanin
is synthesized from the oxidation of the catechol dopamine group to three ortho-quinones
(dopamine --> dopamine ortho-quinone --> aminochrome --> 5,6-indolequinone --> neu-
romelanin) [63,64]. These ortho-quinones are potentially neurotoxic but aminochrome
is the most stable and neurotoxic [65,66]. Aminochrome induces oxidative stress, mito-
chondrial dysfunction, formation of neurotoxic alpha-synuclein oligomers, dysfunction of
both lysosomal and proteasomal protein degradation systems, neuroinflammation, and
endoplasmic reticulum stress [67–72].

Another neurotoxin that can be formed in dopaminergic neurons is DOPAL, which
is the product of the oxidative deamination of dopamine catalyzed by monoamine oxi-
dase [73]. DOPAL is converted to 3,4-dihydroxyphenylacetic acid catalyzed by the enzyme
aldehyde dehydrogenase-1. DOPAL can form adducts with alpha-synuclein, generating
the formation of oligomers and their accumulation that induce neurodegeneration [55].
The addition of DOPAL and A53T alpha-synuclein to glial cells demonstrated that glia
cells can take up DOPAL and increase alpha-synuclein oligomerization intracellularly [74].
DOPAL-induced alpha-synuclein oligomerization increases in the presence of divalent
metals such as Cu2+, Fe2+, and Mn2+ [75]. A study with astrocytes showed that DOPAL
induces apoptosis and oxidative and nitrative stress, and lowers mitochondrial function.
An experiment performed with postmortem tissue from patients with Parkinson’s dis-
ease revealed a low expression of the enzyme aldehyde dehydrogenase-1 [76]. A low
expression of this enzyme would imply an accumulation of DOPAL that can be oxidized to
ortho-quinones and have neurotoxic effects [73,76,77]. However, this low expression was
observed in postmortem tissue from patients with late-onset Parkinson’s disease who sur-
vived the neurodegenerative process, which raises questions as to its role as an endogenous
neurotoxin that triggers the neurodegenerative process.

The aim of this review is to propose a different point of view on how to approach the
search for new drugs to halt or reduce the progression of idiopathic Parkinson’s disease,
based on a new concept to interpret the degenerative process of neuromelanin-containing
dopaminergic neurons as a single-neuron degeneration model [78] (Table 1).

Table 1. Summary.

• Despite great advances in relating mechanisms related to the degenerative process in
Parkinson’s disease, it is not known what triggers all of these mechanisms.

• The discovery of genes associated with familial Parkinson’s disease has been a great
contribution to basic research, but familial Parkinson’s disease represents only 5–10% of all
Parkinson’s patients.

• Many researchers believe that environmental factors play a relevant role in Parkinson’s
disease. However, environmental factors such as manganese, copper, and paraquat induce
Parkinsonism in young subjects. MPTP induces severe Parkinsonism after just three days
of exposure.
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Table 1. Cont.

• Premotor symptoms have been associated with deposits of alpha-synuclein in Lewy bodies
that expand from one region to another region of the brain, which have served as the basis
for proposing different stages of the disease. However, it has been observed that the Braak
stages are not valid for patients with late onset such as patients with idiopathic
Parkinson’s disease.

• It has been proposed that alpha-synuclein oligomers play a fundamental role in the loss of
neuromelanin-containing dopaminergic neurons. However, the expansive nature of
alpha-synuclein is the opposite of the extremely slow progression of the disease.

• Aminochrome is an endogenous neurotoxin that induces all the mechanisms related to the
neurodegenerative process of Parkinson’s disease.

2. Dopamine Metabolism

Dopamine is synthesized in the cytosol of dopaminergic neurons from the amino
acid L-tyrosine that is converted into L-3,4-dihydroxyphenylalanine (L-Dopa) in a reaction
catalyzed by the enzyme tyrosine hydroxylase where a hydroxyl group is introduced
into position 3 of tyrosine forming a catechol structure [79]. L-Dopa is subsequently
decarboxylated forming dopamine in a reaction catalyzed by the enzyme aromatic L-
amino acid decarboxylase [80]. The objective of dopamine synthesis is its accumulation in
monoaminergic neurotransmission vesicles through vesicular monoamine transporter-2
(VMAT2), which catalyzes its uptake from the cytosol into the interior of these vesicles [81].

Free dopamine in the cytosol can be degraded through its oxidative deamination
catalyzed by the enzyme monoamine oxidase. Alternatively, free dopamine in the cytosol
can be oxidized to neuromelanin. The catechol group of dopamine is oxidized to form
three ortho-quinones sequentially, namely dopamine ortho-quinone, aminochrome, and
5,6-indolequinone, which finally polymerize to form neuromelanin [65,79].

The synthesis of neuromelanin is a normal and harmless pathway since, in healthy
older adults, the neuromelanin-containing dopaminergic neurons are intact at the time of
death [82]. However, in older adults with Parkinson’s disease, the majority of neuromelanin-
containing dopaminergic neurons have been lost [83,84]. The reason that neuromelanin-
containing dopaminergic neurons are lost in the substantia nigra of patients with Parkin-
son’s disease depends on the neurotoxic action of transient ortho-quinones that are formed
during neuromelanin synthesis. Aminochrome is the most stable and neurotoxic tran-
sient ortho-quinone since: (i) it can be reduced with one electron by flavoenzymes that
transfer an electron to a leukoaminochrome o-semiquinone radical, which is extremely
reactive with oxygen [85]. Autoxidation of the leukoaminochrome o-semiquinone radical
generates redox cycling between aminochrome and leukoaminochrome o-semiquinone
that reduces dioxygen to superoxide. This redox cycling implies that the dioxygen that
is needed to complete the mitochondrial electron transfer that is ultimately required for
oxidative phosphorylation of ADP to ATP is depleted. Additionally, this redox cycling
also depletes NADH which is used in the mitochondrial electron transport chain. Finally,
this redox cycling generates oxidative stress and ATP depletion that is required, among
other things, for the neurotransmission of dopamine from monoaminergic vesicles; and
(ii) aminochrome is also capable of forming adducts with proteins such as alpha-synuclein,
actin, α and β-tubulin, mitochondrial complex 1, ATP13A, and other proteins [62,86,87].
The neurotoxic effects of aminochrome induce oxidative stress, neuroinflammation, for-
mation of neurotoxic alpha-synuclein oligomers, mitochondrial dysfunction, endoplasmic
reticulum stress, and dysfunction of both lysosomal and proteasomal protein degradation
systems [67–72].
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Aminochrome is a transient metabolite that in in vitro experiments monitored with
NMR has been determined to be stable 40 min before beginning its conversion to 5,6-
indolequinone, which polymerizes to neuromelanin [66]. However, in the cytosol of a
neuron that is full of proteins, enzymes, lipids, and other biomolecules, the stability of
aminochrome is much lower since it is either reduced by flavoenzymes or forms adducts
with proteins, which prevents this endogenous neurotoxin from having an expansion that
affects neighboring neurons. This implies that the neurotoxic effects of aminochrome only
affect a single neuron. This single-neuron degeneration model could explain why the loss
of neuromelanin-containing dopaminergic neurons in a patient with idiopathic Parkinson’s
disease is extremely slow, taking years before the onset of motor symptoms and also later
during the progression of the disease [78] (Table 2).

Table 2. Summary.

• Dopamine accumulates in monoaminergic vesicles where it is completely stable due to a
slightly low pH that prevents its autoxidation.

• Free dopamine in the cytosol can be oxidized to form neuromelanin through the formation
of ortho-quinones such as aminochrome that are potentially neurotoxic.

• Aminochrome is a transient metabolite that is formed during neuromelanin synthesis and
does not induce a propagative neurotoxic effect towards neighboring neu-rons.

3. Neuroprotection against Aminochrome Neurotoxicity

The question is how neuromelanin synthesis can be a normal and harmless process if it
requires the formation of the endogenous neurotoxin aminochrome. This can be explained
by the existence of the enzyme DT-diaphorase that reduces two-electron aminochrome to
leukoaminochrome, preventing the reduction of one-electron aminochrome to a
leukoaminochrome o-semiquinone radical catalyzed by flavoenzymes that reduce one-
electron quinones [88,89]. DT-diaphorase prevents the aminochrome-induced death of
dopaminergic neurons, mitochondrial dysfunction, oxidative stress, lysosomal dysfunc-
tion, disruption of cytoskeletal architecture, dysfunction of protein degradation of the
proteasomal system, and autophagy [65,68,90].

In 1997 we began a scientific collaboration with Professor Bengt Mannervik to study
the ability of glutathione transferases to conjugate aminochrome. Interestingly, human
glutathione transferase M2-2 was the most active isoenzyme within these isoenzymes and
its conjugate 4-S-glutathionyl-5,6-dihydroxyindoline is resistant to biological oxidative
agents such as dioxygen, superoxide, and hydrogen peroxide [91]. Glutathione transferase
M2-2 conjugates not only aminochrome but also its precursor dopamine ortho-quinone to
5-glutathioneyldopamine, which is degraded to 5-cysteinyldopamine [92]. Interestingly,
5-cysteinyldopamine has been detected in neuromelanin and human cerebrospinal fluid,
suggesting that it is a final reaction in which a stable product is produced that is elimi-
nated from neuromelanin-containing dopaminergic neurons into the cerebrospinal fluid
and accumulated in neuromelanin [93,94]. Glutathione transferase M2-2 is not expressed
in neuromelanin-containing dopaminergic neurons where the aminochrome triggers the
degeneration of these neurons. Astrocytes can take up dopamine released during neu-
rotransmission. Dopamine within astrocytes can be oxidized to aminochrome, where
glutathione transferase M2-2 can conjugate both aminochrome and its precursor dopamine
ortho-quinone. However, it has been reported that astrocytes secrete exosomes loaded
with glutathione transferase M2-2 that penetrate dopaminergic neurons, discharging this
enzyme into their cytosol to increase the protection of these neurons against the neurotoxic
effects of aminochrome [90,95–97] (Table 3).
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Table 3. Summary.

• Neuromelanin synthesis can be a normal and harmless process that requires the formation
of the endogenous neurotoxin aminochrome due to the existence of DT-diaphorase and
glutathione transferase M2-2 prevent the neuro-toxic effects of aminochrome.

• Astrocytes secrete glutathione transferase M2-2 through exosomes that penetrate dopaminer-
gic neurons, releasing this enzyme inside the cytosol of these neurons.

4. Prevention of Dopamine Oxidation-Dependent Neurotoxicity

One of the fundamental events in the progression of idiopathic Parkinson’s disease
is the appearance of motor symptoms when 60% of neuromelanin-containing dopamin-
ergic neurons are lost [98]. However, it has been proposed that the onset of the disease
is observed when 50–60% of the dopaminergic terminals of the striatum have been lost,
which would correspond to a 30% loss of dopaminergic neurons of the substantia nigra [99].
The speed of the degenerative process of neuromelanin-containing dopaminergic neurons
in the nigrostriatal system is extremely slow and lasts for many years [78]. This suggests
that this degenerative process is not expansive in nature and that the neurotoxin that
triggers it seems to be of endogenous origin. Therefore, the prevention of dopamine oxi-
dation to aminochrome is a potential way to inhibit the loss of neuromelanin-containing
dopaminergic neurons in idiopathic Parkinson’s disease, if we consider that the oxida-
tion of dopamine to aminochrome plays an essential role in the degenerative process of
neuromelanin-containing dopaminergic neurons [100].

The oxidation of dopamine to neuromelanin depends on the existence of free dopamine
in the cytosol and the presence of metals or enzymes with peroxidase activity. One of
the possible sources of free dopamine is its synthesis from the amino acid L-tyrosine,
which requires the action of two enzymes (tyrosine hydrolase and aromatic enzyme L-
amino acid decarboxylase). Subsequently, vesicular monoamine transporter 2 (VMAT-2),
which is expressed in monoaminergic neurotransmission vesicles, transports the newly
synthesized dopamine into the vesicles. Inside the monoaminergic neurotransmission
vesicles, dopamine can accumulate in high concentrations without the risk of oxidation
since these vesicles have a slightly acidic pH inside [101]. These vesicles have an H+-ATPase
that pumps protons into these vesicles, generating a slightly acidic pH inside them [81].

Interestingly, the enzymes tyrosine hydrolase and aromatic enzyme L-amino acid
decarboxylase form a type of complex with VMAT-2 that prevents the existence of free
dopamine since the newly synthesized L-dopa is immediately converted into dopamine
that is transported to the monoaminergic vesicles of neurotransmission catalyzed by
VMAT-2 [102]. The other source of free dopamine in the cytosol of neuromelanin-containing
dopaminergic neurons is the reuptake of dopamine released during neurotransmission via
dopamine transporters. However, the dopamine transporter, VMAT-2 and synaptogyrin-
3 also form a type of complex that prevents the dopamine reuptake by the dopamine
transporter from being released directly into the cytosol [103]. Therefore VMAT-2 plays
a key role in preventing the oxidation of dopamine to neuromelanin in the cytosol of
dopaminergic neurons.

The level of VMAT-2 expression may play a fundamental role in preventing the
oxidation of dopamine to neuromelanin that generates three potentially neurotoxic ortho-
quinones. There is an inverse relationship between neuromelanin levels and VMAT-2
expression which is based on the fact that the major accumulation of neuromelanin occurs
in the substantia nigra, which has less VMAT-2 expression compared to the midbrain
dopaminergic neurons of VTA that have less neuromelanin formation despite producing
more dopamine and a higher expression of VMAT-2 [104,105]. The possibility that the
degeneration of axons [99] may depend on the oxidation of dopamine to aminochrome
due to the leak of dopamine from the monoaminergic vesicles located in the dopaminergic
terminals located in the striatum does not seem to be feasible because the presence of
neuromelanin has not been observed in the striatum (Table 4).
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Table 4. Summary.

• VMAT-2, which transports dopamine into monoaminergic vesicles, forms a kind of complex
with tyrosine hydroxylase and aromatic enzyme L-amino acid decarboxylase that prevents
the existence of free dopamine during dopamine synthesis.

• VMAT-2 forms a kind of complex with the dopamine transporter and syn-aptogyrin-3 that
prevent the existence of free dopamine in the cytosol during its reuptake after neurotransmission.

• There is an inverse relationship between neuromelanin levels and VMAT-2 ex-pression

5. Clinical Studies in Parkinson’s Disease

One of the biggest concerns in Parkinson’s disease research is the failure of all clinical
studies of drugs that aimed to modify the course of the disease (isradipine, coenzyme
Q10, TCH346, mitoquinone, nilotinib, zonisamide, deferiprone, prasinezumab, and cin-
panemab) or regenerate dopaminergic neurons (neurturin analogue of GDNF) [106]. All
these clinical studies were based on successful preclinical studies that used exogenous
neurotoxins such as MPTP or 6-hydroxydopamine, which induce a rapid, massive, and
propagative degenerative process [107]. Preclinical studies with coenzyme Q10 were suc-
cessful [108–110] but clinical studies did not show a benefit for patients with Parkinson’s
disease [111]. Mito-Q(10), a modified coenzyme Q10 analogue, showed a clear neuro-
protective effect in MPTP and a 6-hydroxydopamine preclinical model [112–114] but in
clinical studies they did not show neuroprotective effects in patients with Parkinson’s
disease [115]. Neuroprotective effects of urate were demonstrated in preclinical models
based on 6-hydroxydopamine [116–118]. However, a clinical study failed to show benefits
in patients with Parkinson’s disease [119]. One of the possible explanations for the failure
of these clinical studies is that the degenerative process of idiopathic Parkinson’s disease is
extremely slow. The evaluation of patients with MDS-UPDRS is unable to detect progress
as a result of the therapeutic action of the drugs used in these clinical studies because the
progress of the neurogenerative process is so slow. Recently, it has been published that the
number of dopaminergic neurons of the substantia nigra considering both hemispheres
varies between 800,000 and 1,000,000 dopaminergic neurons, which implies that when the
motor symptoms appear in the disease, only between 320,000 to 400,000 dopaminergic
neurons remain, after 60% of those neurons have disappeared [120]. As the degenerative
process of the nigrostriatal system in idiopathic Parkinson’s disease is extremely slow, it
is possible that the positive therapeutic effect observed in these preclinical studies with
exogenous neurotoxins is impossible to determine in clinical studies because the speed
of the degenerative process in the disease is extremely slow. Recently, the single-neuron
degeneration model has been proposed, where the degenerative process is induced by the
endogenous neurotoxin aminochrome that induces non-propagative neurodegeneration.
The loss of a single neuromelanin-containing dopaminergic neuron accumulates over years
until reaching a 60% loss when motor symptoms appear [78] (Table 5).

Table 5. Summary.

• There is a long list of failed clinical studies that have been based on preclinical models with
exogenous neurotoxins.

• A possible explanation for these failures is that preclinical models based on exogenous
neurotoxins do not represent what happens in the neurodegenerative process of the disease.

• The degenerative process of dopaminergic neurons that contain neuro-melanin is an ex-
tremely slow process that takes years where the therapeutic effects of drugs that have failed
in clinical studies were measured in very rapid and expansive preclinical models cannot
be observed.
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6. VMAT-2 as a Target to Develop New Drugs for Parkinson’s Disease

It is urgent to search for new therapeutic targets for Parkinson’s disease therapy, but
the choice of the preclinical model is key to success. Based on the extreme slowness of
the degenerative process and the progress of Parkinson’s disease, which takes years, we
consider that the search for new targets with therapeutic effects on the disease should be
based on a single-neuron degeneration model. The oxidation of dopamine to aminochrome
during the synthesis of neuromelanin plays an essential role in the degenerative process of
dopaminergic neurons containing neuromelanin in the nigrostriatal system. Therefore, the
prevention of the oxidation of dopamine to aminochrome may be the most neuroprotective
action to protect these neurons that are lost in Parkinson’s disease in the substantia nigra.

The role of VMAT-2 in preventing the oxidation of dopamine to neuromelanin has
been described for many years [104,105]. However, the inhibition of VMAT-2 expression
in the single-neuron degeneration model plays a key role since inhibiting the oxidation
of dopamine to aminochrome does not require the overexpression of the neuroprotective
enzymes DT-diaphorase and glutathione transferase M2-2 to prevent the neurotoxic effects
of aminochrome [90]. The essential role of VMAT2 in preventing neurodegeneration
of dopaminergic neurons containing neuromelanin-dependent dopamine oxidation has
been demonstrated with the use of viral-mediated small-hairpin RNA interference of
VMAT2. Loss of VMAT2 expression resulted in increased cytosolic dopamine concentration
and subsequent degeneration of the nigrostriatal dopaminergic system. The addition of
exogenous VMAT2 prevents the neurotoxic effects created by silencing the expression of
this transporter [121].

Pramipexole is a dopamine agonist used in the therapy of Parkinson’s disease, and
SPECT studies have demonstrated a neuroprotective effect in patients with Parkinson’s dis-
ease. Patients treated with the agonist ropinirole also showed a significant neuroprotective
effect on nigrostriatal neurons [122]. The neuroprotective effects of pramipexole in patients
with Parkinson’s disease are controversial since in a study with patients diagnosed within
two years from an age range of 30 to 79 years, no significant differences were observed
at 15 months [123]. However, this study included patients with early and late onset and
did not focus solely on patients with idiopathic Parkinson’s disease. In a study carried
out in the human neuroblastoma cell line SH-SY5Y, it has been shown that pramipexole
induces the expression of VMAT2 mRNA levels, which suggests the neuroprotective effect
observed in SPECT studies [124]. This suggests that the search for molecules that induce
the expression of VMAT2 may be a target for the search for new neuroprotective molecules
in the treatment of Parkinson’s disease that can change the course of the disease. The
increase in the expression of VMAT2 implies a risk of the existence of free dopamine in the
cytosol that can be oxidized to neuromelanin that requires the formation of aminochrome
that can potentially be neurotoxic decreases. (Figure 1, Table 6).

VMAT2 is in the membrane of monoaminergic vesicles and catalyzes the transport
of dopamine into the interior of monoaminergic vesicles where it is completely stable
thanks to a slightly acidic environment. VMAT2 plays an essential role in preventing the
existence of free dopamine in the cytosol and its oxidation to neuromelanin. Free dopamine
in the cytosol can exist thanks to the synthesis of dopamine from the amino acid tyrosine
and the reuptake of dopamine released during neurotransmission through the dopamine
transporter (DAT). However, during dopamine synthesis VMAT forms a kind of complex
with the enzymes tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase
(AADC) that prevents the existence of free dopamine in the cytosol. During the reuptake of
dopamine through DAT after neurotransmission VMAT2 also forms a kind of complex with
DAT and synaptogyrin-3 (Snp3) that prevents the existence of free dopamine in the cytosol.
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Figure 1. Increased expression of VMAT2 prevents the existence of free dopamine in the cytosol and
the synthesis of aminochrome during neuromelanin synthesis.

Table 6. Summary.

• The essential role of VMAT2 in preventing dopamine oxidation suggests that its overex-
pression may be a therapeutic target to develop new drugs that slow the progression of
the disease.

• Pramipexole is a dopamine agonist used in the therapy of Parkinson’s dis-ease and SPECT
studies have demonstrated a neuroprotective effect in patients with Parkin-son’s disease.

• Pramipexole induces the expression of VMAT2 mRNA levels

7. Kelch-like ECH-Associated Protein 1/Nuclear Factor E2-Related Factor 2
(KEAP1/NRF2) Activation as a Target to Develop New Drugs for Parkinson’s Disease

The expression of antioxidant enzymes such as superoxide dismutase, glutathione
peroxidase, glutathione transferase, catalase, heme oxygenase, and DT-diaphorase play an
important role in neutralizing the effects of oxidative stress. Activation of the KEAP1/NRF2
signaling pathway allows NRF2 to activate the expression of antioxidant enzyme genes
by binding to the antioxidant responsive element [125]. However, the activation of the
KEAP2/NRF2 pathway in cancer cells can help develop resistance to antineoplastic drugs
in which its mechanism of action is related to the generation of oxidative stress in cancer
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cells such as ovarian cancer or cervical and endometrial cancer [126,127]. In patients with
preeclampsia, the activation of the KEAP1/NRF2 pathway has a protective effect to help
neutralize oxidative stress and inflammation [128]. In other pathologies, the activation of
the KEAP1/NRF2 pathway can have a protective effect, such as in celiac disease [129], is-
chemia/reperfusion [130], traumatic lung injury [131], nephrolithiasis [132], cardiovascular
disease [133], and renal injury [134].

In the case of Parkinson’s disease, oxidative stress is one of the mechanisms involved in
the degenerative process of neuromelanin-containing dopaminergic neurons [78]. Further-
more, the KEAP1/NRF2 signaling pathway induces the enzymes DT-diaphorase and glu-
tathione transferase M2-2 [135–137], which prevent the neurotoxic effects of aminochrome
that is formed during the synthesis of neuromelanin [78].

In the single-neuron degeneration model, the endogenous neurotoxin aminochrome is
the molecule that triggers the degenerative process that leads to the loss of neuromelanin-
containing dopaminergic neurons in an individual neuron. However, aminochrome cannot
be used in a preclinical animal model because it is technically impossible to inject a single
neuron with aminochrome. An intracerebral injection will have a massive effect on all the
neurons as far as the aminochrome injection reaches. Therefore, it is technically impossible
to test new molecules for the treatment of Parkinson’s disease in a single-neuron degen-
eration model. For this reason, a new strategy and target for the treatment of idiopathic
Parkinson’s disease is to search for molecules that activate the KEAP1/NRF2 signaling
pathway that leads to the induction of increased expression of DT-diaphorase and glu-
tathione transferase M2-2 (Figure 2). Molecules such as nicotine that activate this pathway
and also inhibit the neurotoxic effects of aminochrome in cell cultures may be potential
new drugs for the treatment of idiopathic Parkinson’s disease [138,139] (Table 7).

Table 7. Summary.

• It has been proposed that the single-neuron degeneration model where the de-generative
process of idiopathic Parkinson’s disease affects a single neuron individually without expan-
sive effects, where the neurotoxin that triggers this degenerative process is generated within
these neurons. affected and does not have expansive effects.

• Aminochrome is a good candidate for this single-neuron degeneration model because (i) it
is formed within neuromelanin-containing dopaminergic neurons; (ii) it does not have
expansive effects towards neighboring neurons; (iii) induces mitochondrial dysfunction
and protein degradation systems, oxidative stress, formation of neurotoxic alpha-synuclein
oligomers, endoplasmic reticulum stress and neuroinflammation.

• Aminochrome cannot be used in a preclinical animal model because it is technically impos-
sible to inject a single neuron with aminochrome. An in-tracerebral injection will have a
massive effect on all the neurons as far as the aminochrome injection reaches.

• A new strategy to search for new drugs for the treatment of idiopathic Park-inson’s disease
is to search for molecules that activate KEAP1/NRF2 signal-ing pathway that leads to the
induction of increased expression of DT-diaphorase and glutathione transferase M2-2.
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Figure 2. Intracellular increased expression of DT-diaphorase and glutathione transferase M2-2
through activation of the KEAP1/NRF2 signaling pathway will prevent single-neuron degeneration
in idiopathic Parkinson’s disease.

8. Conclusions

The absence of drugs that can halt or significantly slow the progression of idiopathic
Parkinson’s disease requires the scientific community to explore new ideas such as the
single-neuron degeneration model. This model of single-neuron neurodegeneration is
based on the fact that the synthesis of neuromelanin can generate the endogenous neuro-
toxin aminochrome under certain circumstances. Neuromelanin synthesis is a normal and
harmless process since healthy elderly people have neuromelanin-containing dopamin-
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ergic neurons intact in the substantia nigra at the time of death. However, the excessive
production of aminochrome overcomes the neuroprotective capacity of the enzymes DT-
diaphorase and glutathione transferase M2-2 that finally generates aminochrome neuro-
toxicity. The chemical characteristics of aminochrome, such as short stability time in the
cytosol that depends on the presence of flavoenzymes that can reduce it or proteins with
which it forms adducts, prevent it from having an expansive character that affects neigh-
boring neurons [62,66,88,89]. This implies that aminochrome-induced neurotoxicity affects
individual dopaminergic neurons, explaining the extremely slow rate of the degenerative
process and progression of idiopathic Parkinson’s disease, which takes years.

If we agree that the oxidation of dopamine to aminochrome plays an essential role
in the loss of neuromelanin-containing dopaminergic neurons in idiopathic Parkinson’s
disease, we have to look for molecules that increase the expression of the enzymes DT-
diaphorase and glutathione transferase M2-2 that prevent the neurotoxic effects of
aminochrome, or molecules that inhibit the oxidation of dopamine to neuromelanin. The
targets that our research should aim at in the search for new drugs for the treatment of
idiopathic Parkinson’s disease include: (i) searching for molecules such as pramipexole
that increase the expression of the VMAT2 transporter that prevents the existence of free
dopamine that can oxidize the endogenous neurotoxin aminochrome during neuromelanin
synthesis. Neuromelanin synthesis is inversely proportional to the level of VMAT2 expres-
sion. A higher expression of VMAT2 results in lower neuromelanin synthesis [106,107];
and (ii) searching for molecules that activate the KEAP1/NRF2 pathway to induce the ex-
pression of the neuroprotective enzymes DT-diaphorase and glutathione transferase M2-2
that prevent the neurotoxic effects of aminochrome during the synthesis of neuromelanin
in dopaminergic neurons of the nigrostriatal system [78].
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