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The endocannabinoid system (ECS) is a widely recognized lipid messenger system
involved in many aspects of our health and diseases. The system consists of cannabinoid
receptors, their endogenous ligands, and the enzymes that mediate the synthesis and
metabolic processes of the ligand, endocannabinoid. Research progress was reviewed
recently in (i) the pharmacology of ECS, (ii) the roles of ECS in development and synaptic
function, (iii) cannabinoid signaling in pathological conditions, and (iv) cell-type specific
and localization-dependent operation of cannabinoid receptors [1,2]. Of particular interest
may be the conceptual framework where biomedical consequences influenced by ECS
are not necessarily monotheistic; instead, there exists cellular, molecular, and functional
specificity, heterogeneity, and diversity in (endo)cannabinoid action.

This Special Issue discusses the multiplexity of the endocannabinoid signaling mech-
anism and function and how data are visualized for presentation. It is suggested that
data mining strategies and atlas-based data profiling often help identify the involvement
of critical molecules throughout our lives [3,4]. For example, methodological orientation
provided typical standards for non-parametric dimensionality reduction, data visualization,
and cluster analysis that ranged from traditional Principal Component Analysis (PCA)
to the currently popular Uniform Manifold Approximation and Projection (UMAP) [5–7].
Although some researchers may feel these approaches are still young and relatively under-
explored in endocannabinoid research, fruitful applications have emerged in investigating
ligands, receptors, and related enzymes.

The first example concerns the role of ECS in the transition of retinal Müller glia (MG)
into proliferating progenitor-like cells in health and diseases [8,9]. In this work, single-cell
RNA sequencing was used, and eCB-related gene expression was reported in the formation
of Müller glia-derived progenitor cells (MGPCs) after NMDA-induced damage. UMAP
analysis served as a tool for dimensionality reduction for a fuller understanding of the
contribution of the ECS and fatty acid signaling in the reactivity and dedifferentiation of
Müller glia, as well as the proliferation of microglia and MGPCs.

The second example is regarding the involvement of cannabinoid receptor type-1
(CB1R/Cnr1) and type-2 (CB2R/Cnr2) in nonalcoholic fatty liver disease (NAFLD) [10]
and melanoma [11]. Although the deletion of Cnr1 (CB1R KO mice) was hypothesized to
prevent the development of NAFLD, scRNA-seq and UMAP analysis did not support the
hypothesis and pointed out that Cnr1−/− mice failed to protect the liver from fibrosis.
In addition, UMAP analysis portrayed a positive correlation between the upregulation of
intra-tumoral CB2R gene expression and improved overall survival in melanoma.

Anandamide synthesis was found to be increased in the partial hepatectomy (PHX)
model [12]. Global Transcriptomic Analysis illuminated the upregulation of cell-cycle
proteins and their transcriptional regulator and provided molecular and genetic evidence
to show that the conjugation of arachidonic acid and ethanolamine by fattyacid amide
hydrolase was involved in the pathophysiology of PHX.
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Finally, it may be worth mentioning that, in pharmaceutical sciences, dimensionality
reduction and cluster analysis such as t-distributed stochastic neighbor embedding (t-SNE)
and UMAP have been frequently used on a large-scale sample of cannabis sativa chemo-
types for modeling cannabinoids [13]. Here, a dataset of 17,600 commercial cultivars was
screened for unknown gene regulation and pharmacokinetics of dozens of cannabinoids.
The concentration of tetrahydrocannabinol (THC) scattered against the concentration of
cannabidiol (CBD) was plotted to segregate high- and low-CBD and THC cultivars. These
approaches helped reveal complex interactions in cannabinoid biosynthesis and advanced
the phenotypical classification of cannabis cultivars.

In sum, we introduced examples of some methodological tools for data generation
and analysis. scRNA-seq provides a way of comprehensively defining gene expression
and identifying molecular trajectories by connecting the transcriptomes. However, the
reconstruction of molecular lineages from gene expression cascades to cell-type specific
markers and regulators is still a major challenge. We also introduced some of the techniques
in data science that reduce the dimensionality of raw data and visualize the outcome in
a pictorial format, i.e., t-SNE, UMAP, heatmap, dendrogram, and violin plots. They are
routinely applied in a broad range of fields, including life sciences, where increasing sizes
of datasets are handled. While these techniques have been used liberally in combination
with transcriptomics and proteomics, less usage was seen in the detection of molecules
that cannot be labeled with antibodies and/or genetic manipulation. Further applica-
tions are encouraged with all-inclusive measurement technologies in cells and organisms
such as imaging mass spectrometry, as it can directly detect and visualize identified and
unidentified lipids and metabolites that often play key roles in the eCB system.

We hope you will find the collection of papers in this Special Issue interesting and
helpful for the advancement of single-cell and tissue-based investigations in the eCB system.
We also hope that this Special Issue helps you to expand the methodological choices for
mining, summarizing, and presenting new ideas and perspectives for future eCB research.
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