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Abstract: In the biomedical fields of bone regenerative therapy, the immobilization of proteins on the
bioceramic particles to maintain their highly ordered structures is significantly important. In this
review, we comprehensively discussed the importance of the specific surface layer, which can be called
“non-apatitic layer”, affecting the immobilization of proteins on particles such as hydroxyapatite
and amorphous silica. It was suggested that the water molecules and ions contained in the non-
apatitic layer can determine and control the protein immobilization states. In amorphous silica
particles, the direct interactions between proteins and silanol groups make it difficult to immobilize
the proteins and maintain their highly ordered structures. Thus, the importance of the formation
of a surface layer consisting of water molecules and ions (i.e., a non-apatitic layer) on the particle
surfaces for immobilizing proteins and maintaining their highly ordered structures was suggested
and described. In particular, chlorine-containing amorphous silica particles were also described,
which can effectively form the surface layer of protein immobilization carriers. The design of the
bio-interactive and bio-compatible surfaces for protein immobilization while maintaining the highly
ordered structures will improve cell adhesion and tissue formation, thereby contributing to the
construction of social infrastructures to support super-aged society.

Keywords: hydroxyapatite; Ca-deficient hydroxyapatite; carbonate-substituted hydroxyapatite;
amorphous silica particle; Cl-containing amorphous silica particle; non-apatitic layer; surface
modification; protein immobilization; highly ordered structure; biomineralization

1. Introduction

The population in the world is aging rapidly, and urgent action should be taken to
extend healthy life expectancy. In order to improve this situation, the development of
medical technology is necessary, especially drug delivery system (DDS), which has become
an efficient bone regenerative therapy technology. When bone growth factor protein drugs
are immobilized on DDS carriers, the collapse of the highly ordered protein structure often
occurs, resulting in the loss of drug function. To ameliorate the problem, it is important
to functionalize the carrier surfaces that could maintain the protein interaction structures.
Therefore, in the present review, the structures and characteristics of the representative
bioceramic particles such as hydroxyapatite (HA) and amorphous silica were summarized,
and the novel protein immobilization techniques on bioceramics such as hydroxyapatite
(HA) and amorphous silica hosts were highlighted and investigated by mimicking the steric
adsorption states of proteins in vivo. Furthermore, the research on surface functionalization
of bioceramic particles for protein immobilization was reviewed to construct the novel
research field of surface hydration layer formation and protein interaction states.

2. Protein Immobilization Phenomena on Biological Bone

The illustration of biological bone is shown in Figure 1. In introducing the bone
from the outside, the layers of the periosteum, cortical bone, trabecular bone, and bone
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marrow can be observed. The cortical bone is a thin bone layer called Haber’s lamina
that surrounds the channels of blood vessels (i.e., Haber’s canal) like the annual ring
structure [1]. Here, the Haber’s lamina is composed of the hybrid bioceramic system of HA
with organic/polymeric materials. In particular, collagen is artificially used as the backbone
structure and HA fills the structural spaces, and the interfacial collagen-HA binding is
effectively attributed to the non-collagen protein medication [2].
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The highly ordered structures of proteins are closely related to their functions, and
the non-collagen proteins maintain their highly ordered structures and effectively bind
with HA, enabling them to perform bone formation and functions. It is known that non-
collagen proteins involved in binding to collagen are osteocalcin and osteonectin [2]. The
functional molecular part of the non-collagen proteins would be γ-carboxyglutamic acid
(Gla) residues with two carboxylate ions, which interact electrostatically with the calcium
ions of HA in biological bone mineralization. As a specific behavior, old biological bone is
exposed to the acidic environment of osteoclasts, resulting in its dissolution into calcium
and phosphate ions. Subsequently, osteoblasts release non-collagen proteins and then
precipitate HA on their carboxylate ions as the nucleation sites, indicating the inorganic–
organic binding interfaces in vivo. However, there have been few studies that mimic the
mechanism of biological bone mineralization, which is important for novel research on
the surface modification of bioceramics and the formation of their interactive interfaces
with proteins.

3. Bioceramic Particles and Surface Function
3.1. Hydroxyapatite Particles
3.1.1. Features

HA, which has higher biocompatibility, is one of the bioceramics and the main com-
ponent of biological bone. For the crystalline structure (Figure 2), HA is hexagonal,
the space group is classified into P63/m, and the lattice constants are a = 0.94 nm and
c = 0.68 nm. The ten Ca ions in HA can be divided into two different locations: four Ca
ions are Ca(I) (columnar Ca) and are arranged in a single column along the c-axis, while
the other Ca ions are Ca(II) (axis Ca) and form the equilateral triangles around the c-axis at
the four corners of the HA unit cell, which are rotated by 60◦ and stacked along the c-axis
direction. The hydroxyl groups are stacked and arranged along the c-axis direction in the
region surrounded by Ca(II), and these Ca(I) and Ca(II) are surrounded by oxygen atom of
PO4

3− [4]. The a-plane (m-plane) is positively charged with many Ca2+ ions, whereas the
c-plane with many PO4

3− ions is negatively charged. Moreover, the hydrophilic OH and
PO4

3− in the HA structure form hydrogen bonds with the functional groups of proteins,
making it easy to immobilize proteins. Furthermore, HA also has higher ion exchange
ability. For example, various elemental ions are substituted and introduced into HA in the
biological hard tissues, depending on their concentrations and species, thereby causing
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changes in the crystal lattice, bone metabolism, and bone formation in vivo. The cationic
substitutions with Ca2+ and the anionic substitutions with PO4

3− and OH− of different
elemental ions will affect the lattice constant, crystallinity, surface charge, and morphology
of HA. Na+ and K+ are abundant in vivo and also exist in the biological bones, whereas the
substitution elements change the lattice parameters of HA due to factors such as the loss
of OH− and Ca2+ and the increase in ionic diameters. For example, it has been reported
that Na+ and CO3

2− (type B) substitutions decrease the a-axis and increase the c-axis, Cl−

substitution increases the a-axis and decreases the c-axis, and K+ substitution decreases the
a- and c-axes [5].
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HA has been applied to biomedical devices such as artificial bones and implants and
to the chromatographic stationary phase due to its high protein adsorption ability [6,7].
Currently, research is being conducted using HA as a drug delivery carrier due to its
biocompatibility and protein adsorption ability [8,9]. HA exists in vivo as the Ca-deficient
hydroxyapatite (CDHA) and carbonate-containing hydroxyapatite (CHA) structures [10],
which can be artificially synthesized and controlled for biomimicry, and interest in the
crystalline phases is growing.

3.1.2. Ca-Deficient Hydroxyapatite

CDHA is a type of apatite, and its chemical formula is shown below.

Ca10−x(HPO4)x(PO4)6−x(OH)2−x

The Ca/P molar ratio of CDHA is 1.33–1.67, making it more bioabsorbable than the case
in the stoichiometric (Ca/P molar ratio of 1.67) HA, which is more similar to the apatite in
biological bone. The formation of CDHA is largely related to the dissociation state of the
phosphate ions [11,12]. Specifically, it has been reported that HA is formed under a higher
proportion of PO4

3− in solution, whereas CDHA is formed under a higher proportion of
HPO4

2− in solution [13]. With increasing pH during the synthesis, phosphate ions dissociate
in the form of H3PO4→H2PO4

−→HPO4
2−→PO4

3−, indicating that HA and CDHA are
formed under the higher (pH > 10) and lower (pH 6–8) pH conditions, respectively. The
crystal structure of CDHA is shown in Figure 3. The comparison between Figures 2 and 3
indicates that the crystal structure of CDHA is almost identical to that of HA [14]. Specifically,
the Ca(I) sites of HA become the vacancies, and part of the PO4

3− becomes HPO4
2−, so

the crystal structure remains almost unchanged compared to the case in HA. It has been
reported that the phase transitions occur to form β-phase tricalcium phosphate (β-TCP) at
650–750 ◦C and to form α-TCP at 1180 ◦C [15,16]. Moreover, CDHA can also be synthesized
by the hydrolysis of α-TCP. These characteristics have significantly promoted the research
of CDHA particulation, which is applied to the DDS nanocarriers [17,18]. These reports are
related to the CDHA/organic interface hybrid design, suggesting that organic molecules
are immobilized on the CDHA surface.
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3.1.3. Carbonate-Substituted Hydroxyapatite

CHA represents all HA structures containing carbonate ions. In this case, the carbon-
ate ions are present through adsorption on the HA surfaces and substitution within the
crystal structure. CHA has been known to exhibit higher solubility than HA at lower pH
(pH < 7) and has been applied to bone replacement materials [19]. CHA is stable at higher
pH (pH > 10). Thus, there are various carbonate ion contents, with biological bone contain-
ing approximately 2.3–8 wt% of carbonate ions, and many studies have been conducted in
this concentration range [20,21]. The apatite with the carbonate ions substituted within the
crystal structures is called carbonate apatite. The carbonate apatite is classified into three
types: HA with the carbonate ions substituted with the OH site, as shown in Figure 4, is
called type A CHA, and its chemical formula is expressed as follows.

Ca10(PO4)6(OH)2−2x(CO3)x
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Type A CHA can be synthesized by heating HA at around 1000 ◦C in a carbon dioxide
atmosphere and does not precipitate in most lower-temperature synthesis in the wet
process [22]. With increasing CO3

2− content, an increase in the a-axis and a decrease in
the c-axis of the lattice constants have been observed. When the substitution of CO3

2−

reaches the maximum content of 4.4 wt%, the a-axis increases by 0.0025 nm for every 1 wt%
increase [23].

The apatite with carbonate ions substituted at the PO4
3− site is called type B CHA,

and its chemical formula is expressed as follows.

Ca10−x/2(PO4)6−x(CO3)x(OH)2

Type B CHA can be synthesized by wet process at lower temperatures (≈body tem-
perature at around 40 ◦C) [24], with the loss of Ca2+ and OH− through the substitution
of CO3

2− for the charge compensation, and CO3
2− is eventually replaced by HPO4

2−.
For each 1 wt% substitution of CO3

2−, the a-axis decreases by 0.00006 nm and the c-axis
increases in length, and it has been reported that the substitution amount of CO3

2− can
be as high as 22.2 wt% [25]. The substitutions at both sites are called type AB CHA [26].
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CHA and CDHA particles have been investigated as nanocarriers for DDS based on the
CHA/organic interface design [27,28].

3.2. Amorphous Silica Particles
3.2.1. Features

Silica is the generic term for silicon dioxide, in which oxygen and silicon are abun-
dant elements on the earth [29]. Especially, silica particles exist in various forms as crys-
talline [30] and amorphous states [31]. In particular, amorphous silica particles are usually
converted into the high-purity quartz glass, sol, gel and fumed silica, and then have a wide
range of applications such as semiconductor encapsulation fillers, liquid crystal display
materials [32–36], reinforcing fillers for elastomers and polymers, and key materials in
the biomedical field [37,38]. The representative production methods include the melting
method [39], the sol-gel method [40] as the liquid-phase method, and the Vapor-Phase-
Axial-Deposition (VAD) method as the gas-phase method [41] (Figure 5).
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(a) fusion, (b) sol-gel, and (c) vapor-axial-phase-deposition methods, respectively. Adapted with
permission from Ref. [42]. Copyright 2024 American Chemical Society.

In the melting method to obtain the amorphous silica particles, quartz powder
as the starting material is filled in carbon cases and melted using electricity or flames
(Figure 5a) [43]. In the electric melting, the particles are melted by electric resistance heating
using carbon electrodes [44]. In flame melting, the particles are obtained by melting with
an oxygen-hydrogen flame. The sol-gel method is the direct synthesis of the particles
using solutions of inorganic and organic metal salts as the starting materials through
hydrolysis and condensation polymerization reactions [45,46]. The reactions proceed to
form the sol, which then undergoes further reactions to form the gel. The gel is dried at
40–120 ◦C, then heated and sintered at 900–1200 ◦C to produce amorphous silica particles
(Figure 5b) [47]. The VAD method uses silicon tetrachloride (SiCl4) as the starting material
and supplies oxygen-hydrogen gas from the burner to obtain the porous matrix, on which
the amorphous silica particles formed in the flame are deposited (Figure 5c) [48,49]. Since
the process is carried out through a porous matrix, the quality of the synthesized particles
can be controlled depending on the sintering process and the presence or absence of the
matrix modification process. For example, it is possible to obtain the halogen-containing
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particles by adding halogen elements to the sintering atmosphere [50,51]. Moreover, the
porous matrix is sintered in the atmosphere with a lower moisture content, resulting in the
synthesis of particles with lower concentrations of silanol groups and impurities. Thus, the
structure and surface properties of the particles depend on the synthetic method, and the
selection is important for the applications.

Structure and Surfaces

The silica network of the amorphous silica particles consists of the structures in which
the SiO4 tetrahedral units are irregularly connected to each other through the O atom [52–55].
There are two main functional groups of the siloxane bond (≡Si–O–Si≡) and the silanol
group (≡Si–OH) (Figure 6) [56–58].

Biomimetics 2024, 9, x FOR PEER REVIEW 6 of 21 
 

 

solutions of inorganic and organic metal salts as the starting materials through hydrolysis 
and condensation polymerization reactions [45,46]. The reactions proceed to form the sol, 
which then undergoes further reactions to form the gel. The gel is dried at 40–120 °C, then 
heated and sintered at 900–1200 °C to produce amorphous silica particles (Figure 5b) [47]. 
The VAD method uses silicon tetrachloride (SiCl4) as the starting material and supplies 
oxygen-hydrogen gas from the burner to obtain the porous matrix, on which the amor-
phous silica particles formed in the flame are deposited (Figure 5c) [48,49]. Since the pro-
cess is carried out through a porous matrix, the quality of the synthesized particles can be 
controlled depending on the sintering process and the presence or absence of the matrix 
modification process. For example, it is possible to obtain the halogen-containing particles 
by adding halogen elements to the sintering atmosphere [50,51]. Moreover, the porous 
matrix is sintered in the atmosphere with a lower moisture content, resulting in the syn-
thesis of particles with lower concentrations of silanol groups and impurities. Thus, the 
structure and surface properties of the particles depend on the synthetic method, and the 
selection is important for the applications. 

Structure and Surfaces 
The silica network of the amorphous silica particles consists of the structures in which 

the SiO4 tetrahedral units are irregularly connected to each other through the O atom [52–
55]. There are two main functional groups of the siloxane bond (≡Si–O–Si≡) and the silanol 
group (≡Si–OH) (Figure 6) [56–58]. 

 
Figure 6. Illustration of the formation mechanism and the surface structure of the amorphous silica 
particles. 

Siloxane bonds are present from the interior to the top of the particles and are the 
main chains of the network. Their bond angle range is 120–180° [59–61], which allows for 
a variety of ring structures, including three-, four-, six-, and eight-membered rings [62–
65]. Depending on the bond angles and bond distortions, there are stable or unstable ring 
structures. Particularly, the planar three-membered ring structure is unstable and is easily 
hydrolyzed by water molecules [66]. 

Silanol groups are generally numerous on the amorphous silica particles and can be 
classified as single, geminal, and triple types when the number of OH groups attached to 
the Si atom is one, two, or three, respectively [67–69]. There are also vicinal silanol groups, 
which are present with two or more silanol groups in close contact to form hydrogen 
bonds with each other [70]. Particularly, the presence of silanol groups is an important 
parameter that determines the physicochemical properties of the particles (e.g., the mo-
lecular adsorption sites). Silanol groups interact with polar molecules such as water 
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Siloxane bonds are present from the interior to the top of the particles and are the
main chains of the network. Their bond angle range is 120–180◦ [59–61], which allows for a
variety of ring structures, including three-, four-, six-, and eight-membered rings [62–65].
Depending on the bond angles and bond distortions, there are stable or unstable ring
structures. Particularly, the planar three-membered ring structure is unstable and is easily
hydrolyzed by water molecules [66].

Silanol groups are generally numerous on the amorphous silica particles and can be
classified as single, geminal, and triple types when the number of OH groups attached to
the Si atom is one, two, or three, respectively [67–69]. There are also vicinal silanol groups,
which are present with two or more silanol groups in close contact to form hydrogen bonds
with each other [70]. Particularly, the presence of silanol groups is an important parameter
that determines the physicochemical properties of the particles (e.g., the molecular adsorp-
tion sites). Silanol groups interact with polar molecules such as water molecules, which
form hydrogen bonds with silanol groups and with other molecules that exhibit hydro-
gen bond-forming ability [71–74]. The pH environment causes the different dissociation
behaviors of the protons from the silanol groups on the particles, resulting in the changes
in surface charge [75,76]. The isoelectric point of amorphous silica particles is around pH
2.0, and in biological fluids at pH 7.4, they have dispersibility due to their electrostatic
repulsion of negative charges around −50 mV [77,78]. The higher surface reactivity of
silanol groups is an important parameter for applications in biomedical fields [79–83].
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3.2.2. Biofunctionalization

The surface functions of amorphous silica particles as bioceramics are given in this
section. First, bioglasses (e.g., Na2O-CaO-SiO2-P2O5) containing amorphous silica particles
(<50 mol%) have been known to show osteoconductive properties [84–87]. In the biological
fluid, Na+, Ca2+, and phosphate ions are first eluted from the bioglass. Subsequently, the
amorphous silica particles on the bioglass form a gel layer, which is the starting point
for the adsorption of Ca2+ ions. As a result, HA is efficiently precipitated and adhered to
biological bone, which has been used as the bone replacement material. Then, amorphous
silica particles could induce the production of nutrients for all organs in vivo and have
been developed for use in supplemental food products [88–91]. For example, they promote
collagen production in vivo and improve the bonding between collagen and elastin in
skin and bone [92–94]. Amorphous silica particles have attracted attention as cosmetic
ingredients because of their activation of fibroblast functions. For the applications, the
protein adsorption form in vivo on surface functions such as silanol groups of amorphous
silica particles should be important for the biofunctions in biomedical fields. However,
the immobilization states of amorphous silica particles have not yet been clarified. If the
immobilization states can be clarified, a wide range of biological and medical applications
can be achieved.

3.2.3. Application for Antibody Protein Immobilization

With the biomedical applications of amorphous silica particles, the antibody test kits
and the carriers for the immobilization in immunochromatography can be proposed [95,96].
In the applications, the immobilization of antibody proteins on the particles should be
considered to improve their functions. Immunoglobulins are known as antibody proteins
with immune functions (Figure 7a) [97,98]. The antibody proteins consist of two heavy
chains (H chain: 50–77 kDa) and two light chains (L chain: 25 kDa), which are connected
to each other by disulfide bonds and form the Y-shape [99–101]. They recognize and
specifically bind to antigen (i.e., antigen–antibody reactions) [102–104]. The V-shaped part
of the Y-shaped arm is termed as Fab (Fragment antigen binding) domain, and the body
part is known as the Fc (Fragment crystallizable) domain [100]. Immunity is acquired when
phagocytes recognize the antibodies that have interacted with antigens through binding
of the Fc region to phagocyte receptors, resulting in the production of large amounts of
antibody proteins in biological fluids [105–107]. The variable site of the antibody that
recognizes the antigen has been called the antigenic determinant (epitope) and consists of
several amino acids [108,109]. The most numerous antibody protein in human blood and
biological fluids is immunoglobulin G (IgG), which accounts for about 80% of the total and
is approximately [110] 14.5 nm × 8.5 nm × 4.0 nm in size [111]. Immunoassays using these
antibody proteins are used for antibody testing [112,113]. Immunochromatography and
ELISA are the two main types of immunoassays [114–116]. Immunoassays are characterized
by the immobilization of antibody proteins on particulate substrates. If the antibody
proteins are denatured due to immobilization, it becomes difficult to form binding between
the antibody protein and the target antigen, thus adversely affecting the sensitivity of
the test (Figure 7b) [117,118]. The orientation of IgG at immobilization is important for
immunoassay efficiency. Specifically, it has been reported that by coating glass with n-
butyl methacrylate, the adsorbed orientation was controlled by the temperature [119].
Furthermore, in the case of bioceramics, the zirconia particles modified with phosphate
groups enable the selective adsorption of amino groups from the Fab and Fc regions via
electrostatic interactions, suggesting astate where only one Fab region is exposed on the
surface [120]. Accordingly, the controlled orientation of the IgG on the amorphous silica
particles will be the future challenge. In recent years, the use of amorphous silica particles
as immobilization carriers for antibody proteins has been investigated. In conventional
particles, the direct interactions with silanol groups on the particles are thought to result in
denaturation, leading to lower sensitivity of the immunoassays [121,122]. In fact, there have
been cases where IgG has been adsorbed on hydrophilic silica glass, and the subsequent
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immune response has been investigated. However, the immobilized IgG might have been
denatured, as the phagocytic response was completely inhibited [123]. In other words, the
challenge for applications such as antibody test kits is to immobilize antibody proteins
(IgG) sterically, with a focus on inhibiting direct interactions with the surface of amorphous
silica particles.
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4. The Surface Layer Formed on the Bioceramic Particles
4.1. Formation of the Surface Layer in Biological Fluids

When considering the immobilization states of antibody proteins on bioceramic parti-
cles (e.g., amorphous silica particles), the hydration layer formed at the interfaces between
the particles and proteins is very important [124,125]. The hydration layer is formed
by the adsorption of water molecules and ions on the bioceramics in biological fluids
(Figure 8). Various factors contribute to the formation of the hydration layer, which is medi-
ated between ions and bioceramic surfaces through electrostatic interactions and hydrogen
bonding. The hydration layer is composed of three types (i.e., non-freezing water, interme-
diate water, and free water) [126], which have been mainly investigated in the biopolymers,
and this theory has recently also been applied to the bioceramics. Non-freezing water and
intermediate water showed direct interactions with bioceramics, reducing the hydrogen
bonds between water molecules, resulting in enhanced and maintained dynamics of water
molecules with decreasing temperature. In free water, hydrogen bonds are formed between
water molecules below 0 ◦C, and the molecular motion stops and freezing occurs. The dif-
ferences are due to the strength of interactions acting on the bioceramic surfaces, resulting
in different kinetic properties, which can be evaluated by differential scanning calorimetry
(DSC) and 1H-NMR [127]. According to the DSC measurement, non-freezing water does
not freeze at −100 ◦C, and intermediate water has been reported to be cold recrystallized
at lower temperatures below 0 ◦C with increasing temperature [128]. Free water is the
water that melts from its frozen state at 0 ◦C and interacts weakly with bioceramic surfaces
and non-freezing water. The hydration layer shows the recombination behavior from
femtoseconds to picoseconds to form the amorphous structures in a very short time and
shows the randomness of the liquid on a longer time scale. Therefore, the relaxation times
(τc) of non-freezing water, intermediate water, and free water obtained by 1H-NMR are
10−8–10−6, 10−10–10−9, and 10−12–10−11 s, respectively. When stronger interactions with
the bioceramic surface are observed, the kinetics will be lowered [129]. According to the
FT-IR spectra, the absorption bands (vIR) of the stretching vibrations of hydroxyl groups
corresponding to non-freezing water, intermediate water, and free water are observed at
3600 cm−1, 3400 cm−1 and 3200 cm−1, respectively. The vIR has been evaluated by the
spectral deconvolution and separation techniques [129,130].
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4.2. Formation of the Surface Layer in Biological Fluids

After the hydration layer is formed on the bioceramics, the protein immobilization
layer is formed by recognizing the hydration layer states [132]. In order to consider the
protein immobilization states, it is necessary to consider the balance of the hydration layer
components composed of non-freezing, intermediate, and free waters (Figure 9). The
importance of the balance was supported by the fact that the denaturation of proteins
in vivo was observed on the biopolymer without intermediate water in the hydration layer.
The relationship between the adsorbed proteins and the hydration layers has recently been
applied to bioceramics. For example, our research group has reported that the fibrinogen
was sterically adsorbed on the elliptical HA nanocrystals due to the reduced proportion
of non-freezing water components [133]. When the silicate ion-containing HA (SiHA)
was immersed in biological fluid, the proportion of free water components effectively
increased due to the enhanced elution of carbonate ions from the surfaces [134]. Then, the
fibrillation of the adsorbed collagen on SiHA was inhibited due to the repulsion between
the intermediate waters, thus inducing the steric adsorption of collagen molecules on the
surfaces [135]. Therefore, the control of the proportion of hydration layer components
is important for the steric adsorption of proteins such as immunoglobulins. Therefore,
the sterility of protein immobilization is largely affected by the fraction of each hydration
layer component. Furthermore, the immobilization, which maintains the highly ordered
structure of the proteins, also affects subsequent cell adhesion. For example, cell adhesion
is promoted on the fibronectin adsorbed while maintaining its highly ordered structure on
the HA surfaces [136]. Also, the cell-adhesive proteins adsorbed on citric acid-modified HA
films, maintaining their higher-order structure, enhanced the growth of the osteoblasts [135].
Thus, the adsorbed state of proteins effectively determines the functions of adhered cells.
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4.3. Formation of the Non-Apatitic Layer and Protein Immobilization Ability

The non-apatitic layer has been investigated by FT-IR and NMR spectra, etc. In
the FT-IR spectra, the absorption band corresponding to the non-apatitic layer is usu-
ally observed at 680−480 cm−1, which has been assigned to phosphate ions (e.g., PO4

3−

and HPO4
2−) [137,138]. In terms of the coordination environment and interactions of

phosphate ions, 2D solid-state NMR has demonstrated that the HA nanocrystal sur-
faces were composed of a non-apatitic layer composed of amorphous calcium phosphate
(Figure 10) [139–141]. The exposed ions on the non-apatitic layer were strongly bound
with the O atoms of the H2O molecules, partially forming the lewis acidity, indicating the
highly reactive surfaces of the non-apatitic layer [142,143]. The ions on the non-apatitic
layer were stabilized by the hydration layer, effectively constructing the hydrogen bonding
network [143,144]. The non-apatitic layers are involved in the growth and ion exchange of
the inner HA nanocrystal core as well as the adsorption of organic ions [145]. For example,
the interfacial phenomena between non-apatitic layers and biological fluids are induced
in vivo, resulting in the calcification of teeth and bones [146–150]. It is thought that the
interfacial phenomena are effectively caused by the ions contained in the non-apatitic layer
(i.e., the state of the hydration layer), leading to the protein adsorption states. The ions
contained in the non-apatitic layer are important in this sequence of interfacial mechanisms.
The silicate and carbonate ions contained in the non-apatitic layer cause the structural de-
fects in the HA nanocrystals, thereby increasing the solubility of the ions in vivo [151–153].
The increased solubility of the ions expands the hydrogen bonding network and changes
the proportion of the hydration layer component, thus controlling the adsorption states
of the protein. Moreover, it has been reported that the presence of ions in the non-apatitic
layer on HA nanocrystals facilitates the elution of carbonate ions from the non-apatitic
layer, increasing the proportion of free water components in the hydration layer [133].
Therefore, ions in the non-apatitic layer are thought to alter the hydration layer state and
affect the protein immobilization state.
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The immobilization of proteins on HA nanocrystals is affected by the interactions
between the ions in the non-apatitic layer and the functional groups of the proteins. For
example, it has been reported that the immobilization of pepsin on the spherical HA
nanocrystals modified with cetylpyridinium chloride caused the denaturation due to the
Cl− ion diffusion into pepsin [154]. Thus, the ions in the non-apatitic layer can affect the
protein immobilization states. Therefore, the non-apatitic layer is thought to be involved
in the steric properties of organic molecules and proteins adsorbed on HA nanocrystals,
and the protein immobilization states affect the biological functions. For example, the ionic
species on the surfaces of HA nanocrystals can control the orientation (i.e., steric state) of
adsorption and immobilization of anionic porphyrins [155]. It has also been reported that
the adsorbed state of human serum albumin (HSA) on HA nanocrystals with carbonate
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ions in the non-apatitic layer has a lower proportion of the random coils in the protein
secondary structures as compared to the case in HSA in the native state [156]. Furthermore,
the steric immobilization of bone morphogenetic protein (BMP-2) and antibody proteins
involved in the immunization has also been reported on pure HA nanocrystals [157,158].

As described above, the non-apatitic layer on the HA nanocrystal core surface can
sterically immobilize nucleic acids and proteins, which can be applied to the surface
modification of protein chromatography columns [159,160]. Therefore, water molecules
and ions in the non-apatitic layer would induce the steric immobilization states, although
further detailed investigation is needed.

4.4. Amorphous Silica Particles for the New Layer Formation

As mentioned above, the formation of a surface layer consisting of water molecules
and ions similar to the non-apatitic layer leads to the steric immobilization of proteins.
Among the ions contained in the non-apatitic layer, phosphate, Na+, and Cl− ions play
important roles in biological reactions. Phosphate ions are the main component of the
HA nanocrystal, and it is believed that the adsorption states of ions on HA during the
nucleation stage are important [5]. Na+ ions in the non-apatitic layer provide excellent
osteoconductivity to activate osteoblast growth [161]. In fact, there have been reports on
the alkaline treatment of the titania surfaces to improve their reactivity with simulated
body fluid (SBF). Surface treatment with 10 mM NaOH resulted in the formation of a
sodium titanate layer on the surface. The Na+ ion contained in this layer caused the
exchange with H3O+ ions in SBF, and the interfaces might be involved in inducing the steric
immobilization of proteins [162–165]. Cl− ions are also contained in the non-apatitic layer,
showing excellent osteoconductivity [166]. The inclusion of various ions will improve the
reactivity of amorphous silica particles, promote the adsorption of water molecules and
ions in biological fluids, and facilitate the steric immobilization of proteins.

In order to form a surface layer composed of water molecules and ions similar to the
non-apatitic layer, surface reactivity can be effectively improved by including chlorine in
amorphous silica particles. The inclusion of chlorine into silica glass decreases the total
amount of silanol groups, subsequently reducing transmission losses and improving the
refractive index in the near-infrared light region (λ > 1064 nm) [167]. In the VAD method,
chlorine can be contained in amorphous silica particles. In particular, the porous matrix is
heat-treated in a mixed atmosphere of chlorine compound vapors with inert gases such
as H2, Ne, and N2 to resultantly achieve inclusion [168]. Here, the two main types of
chlorine compound vapors are silicon tetrachloride and chlorine gases. The concentration
of chlorine content in silicon tetrachloride gas is higher than that in chlorine gas. In the case
of silicon tetrachloride gas, the inclusion concentration of chlorine in the base material can
be proportional to 1/4 of the added silicon tetrachloride concentration. It has been reported
that the reaction proceeds according to the following chemical equilibrium (Equation (1)).

SiCl4 + 3SiO2 ⇆ 4SiO1.5Cl (1)

where SiO2 indicates the porous matrix. Furthermore, when chlorine is contained in amor-
phous silica particles, the chemical formula is SiO1.5Cl [169]. When chlorine gas is used, the
inclusion concentration of chlorine in amorphous silica particles is low. Considering this
and (Equation (2)), the reaction between the porous matrix and chlorine is required to use
silicon tetrachloride. Therefore, the introduction of chlorine components into amorphous
silica particles with the chlorine gas are the following two-step reactions.

2Cl2 + SiO2 ⇆ SiCl4 + O2
SiCl4 + 3SiO2 ⇆ 4SiO1.5Cl

(2)

Here, when chlorine gas is used, the presence of oxygen in the heat treatment makes
it difficult to generate silicon tetrachloride according to chemical equilibrium. Thus, it is
necessary to reduce the oxygen concentration in the reaction furnace.
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Chlorine has been reported to be contained in amorphous silica particles in various
forms, as shown in Figure 11. Among them, the ≡Si–Cl bond (Figure 11a) is considered to
be the most common structure [170]. Here, the ≡Si–Cl bond has been reported to form the
weak hydrogen bond, which was observed in the FT-IR spectra at 2810 cm−1 [171,172].
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The molecular Cl2 in the interstitial lattice (Figure 11b) [173], the complexes consisting
of the four ≡Si–Cl bonds known as the defect centers (Figure 11c) [174], the atomic Cl in
the interstitial lattice (Figure 11d) [174], and the SiCl2 bond defects formed by the bonding
to the two-coordinated silicon atoms (Figure 11e) [175] have been reported. Particularly,
the ≡Si–Cl bonds on the surfaces can enhance the adsorption of water molecules and ions
in biological fluids. Specifically, the ≡Si–Cl bonds are highly electronegative and can form
weak hydrogen bonds. Then, the adsorption of Na+ and phosphate ions from biological
fluids is thought to enhance the formation of the surface layer (Figure 12) [171,172]. As a
result, the adsorption of water molecules and ions would be enhanced as compared to the
case in conventional amorphous silica particles, leading to the formation of a surface layer
similar to the non-apatitic layer and a steric immobilization state of proteins. In fact, the
surface layer composed of water molecules and ions formed on the chlorine-containing
silica particles in our group, leading to an increase in the amount of immobilized protein.
Additionally, the protein was successfully immobilized while preserving its highly ordered
structure [42].
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5. Conclusions

In this review article, the research on the surface design of bioceramic particles is
described and highlighted. The studies on the relationship between the surface properties
of bioceramic particles and the protein immobilization states were deepened. We hope that
the surfaces of bioceramic particles can effectively act on proteins and cells, which can be
applied to DDS and achieve the phenomenon of ultra-early tissue regeneration. Further-
more, this technology can also be applied to the surface design of bioceramics for bone
regenerative therapy. Particularly, osteoblasts recognize and adhere to the pre-immobilized
cell-adhesive proteins in maintaining their highly ordered structures, indicating the impor-
tance of the studies on the interfacial properties between the bioceramic particle surfaces
and proteins. In the future, research on surface design with positive effects on biological
tissues is expected to contribute to the construction of social infrastructure that promotes
health and vitality.
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