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Abstract: Background Recently, mesenchymal stromal cells (MSCs) have gained recognition for their
clinical utility in transplantation to induce tolerance and to improve/replace pharmacological im-
munosuppression. Cord blood (CB)-derived MSCs are particularly attractive for their immunological
naivety and peculiar anti-inflammatory and anti-apoptotic properties. Objectives: The objective
of this study was to obtain an inventory of CB MSCs able to support large-scale advanced ther-
apy medicinal product (ATMP)-based clinical trials. Study design: We isolated MSCs by plastic
adherence in a GMP-compliant culture system. We established a well-characterized master cell
bank and expanded a working cell bank to generate batches of finished MSC(CB) products certified
for clinical use. The MSC(CB) produced by our facility was used in approved clinical trials or for
therapeutic use, following single-patient authorization as an immune-suppressant agent. Results: We
show the feasibility of a well-defined MSC manufacturing process and describe the main indications
for which the MSCs were employed. We delve into a regulatory framework governing advanced
therapy medicinal products (ATMPs), emphasizing the need of stringent quality control and safety
assessments. From March 2012 to June 2023, 263 of our Good Manufacturing Practice (GMP)-certified
MSC(CB) preparations were administered as ATMPs in 40 subjects affected by Graft-vs.-Host Disease,
nephrotic syndrome, or bronco-pulmonary dysplasia of the newborn. There was no infusion-related
adverse event. No patient experienced any grade toxicity. Encouraging preliminary outcome results
were reported. Clinical response was registered in the majority of patients treated under therapeutic
use authorization. Conclusions: Our 10 years of experience with MSC(CB) described here provides
valuable insights into the use of this innovative cell product in immune-mediated diseases.

Keywords: umbilical cord blood; mesenchymal stromal cells; cell therapy; innovative therapies;
transplantation
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1. Introduction

Mesenchymal stromal cells (MSCs) are multipotent non-hematopoietic adult cells
that were initially discovered in the bone marrow (BM) [1] and since have been identi-
fied in adipose tissue [2], amniotic fluid [3], dental pulp [4], placenta [5], umbilical cord
blood (CB) [6], and Wharton’s jelly [7]. These MSCs sense and respond to signals from
inflamed and injured tissue by secreting extracellular vesicles that contain trophic and
immunomodulatory factors [8].

Cord blood is an ethically non-controversial and safe source of transplantable cells [9],
carries a low risk for transmission of viral infections, and is easier to collect than BM. CB
provides stem and progenitor cells to reconstitute the hematopoietic system, restore im-
munological functions, and induce or solicit tolerance in solid organ transplantation [10–12].
To date > 35,000 transplants have been performed, and > 800,000 CB units are available
worldwide for transplantation [13,14]. Since 2000, MSCs have been isolated from full-term
CB and found to meet all requirements for the MSC definition [6,15]; they have a typical
fibroblast-like morphology, plastic-adherence capability, clonogenic activity, morphological
heterogeneity, differentiation ability, and mesenchymal marker expression (CD105, CD73,
and CD90), and they do not express CD45, CD34, CD14, CD11b, CD79α, CD19, and HLA-
DR surface molecules. However, MSCs derived from perinatal and adult tissues do have
some differences in molecular profile, tri-differentiation potentials, proliferation/clonogenic
capacities, immunomodulatory functions, and hematopoietic support [16–19]. Heterogene-
ity can also arise from multiple cell-type populations within a single MSC source; CB may
give rise to both long-living (LL) and short-living (SL) MSC populations with marked dif-
ferences in lifespan, maximum population doublings, and telomere length at early passages
(P0-1), but not at late passages (P5) [20,21]. We previously identified MSC(CB) LL as the
best cell type for a GMP large-scale production of off-the-shelf advanced therapy medicinal
products (ATMPs). Here, we describe our Good Manufacturing Practice (GMP)-compliant
production process for MSC(CB) for clinical applications; we hope to generate interest in
the tremendous potential of this innovative therapeutic tool.

2. Materials and Methods
2.1. Tissue Procurement

CB was collected in a multiple system bag (Macopharma, Tourcoing, France) with
29 mL of citrate phosphate dextrose after written informed consent from the mother. All
procedures (including transportation) complied with international standards [22]. Donor
selection complied with national guidelines [23]. Eligible donors were negative for HBsAg,
anti-HCV, anti-HIV 1/2, TPHA/VDRL, HIV RNA, HCV RNA, and HBV DNA, as well as
any markers required by national rules for epidemic emergencies. The starting material
specifications for CB are listed in Supplementary Table S1. We used only CB units that were
ineligible for banking (volume < 60 mL or cell count < 1.5 × 109 total nucleated cells).

2.2. GMP Facility

In Italy, ATMP production sites must be authorized by the Italian Drug Agency
(AIFA) in accordance with GMP guidelines. Therefore, in 2007, the Cell Factory of the
Fondazione IRCSS Ca’ Granda Ospedale Maggiore Policlinico in Milan was set up and GMP-
certified by AIFA; the facility has maintained its authorization continuously (inspected
every 2–4 years). Production and quality-control areas are restricted-access and include
Class B-GMP laboratories with class-A biosafety cabinets and changing rooms with air-
purification protocols, attire, and accessories appropriate for clean rooms. Personnel are
granted access to production areas following training in materials and reagents preparation
and other appropriate standard operating procedures to minimize contamination [24].
Manufacturing was monitored continuously for non-viable particulates and for microbial
control of air, surfaces, and operators; out-of-specification and out-of-trend incidents were
investigated and corrected.
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2.3. MSC(CB) Manufacturing Process

Reagents for cell-based therapeutics must be GMP grade and comply with European
and national regulations; reagent quality directly impacts the quality, safety, and efficacy of
the medicinal product. Reagents for MSC manufacturing meet predefined standards and
undergo mandated certified analytical testing. The fetal bovine serum (FBS) chosen com-
plies with rules governing TSE transmission in bovine products and all relevant oversight
regarding reagents of animal origin in medicinal product manufacturing [25,26].

We established a clinical cell bank using modifications of the published pre-clinical pro-
tocol (Figure 1) [21]. Briefly, whole blood was centrifuged (800× g for 15 min), and the plasma
was discarded; mononuclear cells from the buffy coat were seeded at 50–100 × 103 cells/cm2

in vented cell culture flasks of alphaMEM complete medium (Macopharma) with 20%
qualified FBS (ThermoFisher, Waltham, MA, USA). Cultures were incubated in a humid-
ified atmosphere (37 ◦C, 5% CO2) for 10 d, with culture media changes every 48–72 h.
On day +10, cells were harvested by trypsinization (TrypLE Select, ThermoFisher) and
subcultured at 1000–4000 cells/cm2. Media was changed on days +13 and +20; adher-
ent cells were harvested and re-seeded (1000–4000 cells/cm2) on days +17 and +24, with
some harvested cells saved in a cryopreservation buffer of 80% normal saline (B. Braun,
Melsungen, Germany), 10% dimethyl sulfoxide (DMSO, CRYOSERV, Mylan Institutional,
Inc., Canonsburg, PA 15317, USA), and 10% human serum albumin (HSA, Kedrion, Lucca,
Italy). This sequence (seeding—medium change—trypsinization—cryopreservation) was
repeated through passage 4, thus providing cryopreserved samples for the master cell
bank (MCB) from passage 3 (P3), the working cell bank (WCB) from passage 4 (P4), and
final product manufacturing following passage of the WBC to passage 5 (P5). The fold
expansion (FE) was calculated at each passage (cells harvested/cells seeded), and the MSC
production yield was calculated as follows:

theoretical WCB = MCB total × P3 → P4 FE

final product yield = theoretical WCB × P4 → P5 FE

Mean FEs were calculated for P3–P4 (n = 5) and P4–P5 (n = 21), starting from three
different batches of CB starting material.

The final product was obtained by an additional 7–10 d of culture. The final product
was packaged in a bag (CryoMACS Freezing bag 50, Miltenyi Biotec B.V. & Co., Bergisch
Gladbach, Germany) in 20 mL of cryopreservation buffer and frozen at a controlled rate
(Nicool Plus, Air Liquide, 75 quai d’Orsay 75321, Paris cedex 07, France or Planer Cryo
560-16, Planer LTD., Sunbury-on-Thames, UK).

2.4. Quality Control Tests
2.4.1. Cell Count

Cell counts were performed by automated methods (ABX MICROS 60, Horiba ABX
for CBand Nucleocounter NC-100, Chemometec, Lillerød, Denmark, during the production
process) according to validated procedures [24]. Viable and non-viable cell counts were
determined by propidium iodide (PI, BD Biosciences, San Jose, CA, USA) staining on
appropriately diluted MSC samples (0.2–0.75 × 106 cells/mL).

2.4.2. Microbiological Contamination

Sterility testing was performed using a previously validated method [24] by direct
inoculation (European Pharmacopoeia, Eu. Ph. 2.6.27) and in both aerobic and anaerobic
BacT/ALERT iFN culture bottles and incubated in the BacT/ALERT system (bioMérieux,
Nürtingen, Germany). Finished product samples were also assayed for mycoplasma
by culture methods (Eu. Ph.2.6.7). Endotoxin testing was performed with the limulus
amebocyte lysate test (method D, gel clot, Ph. Eur. 2.6.14); the calculated limit for the
product resulted 4.39 endotoxin units (EU)/mL, but specifications were set and validated
at 0.25 EU/mL.
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quality controls.
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2.4.3. Phenotyping and Viability (Flow Cytometry)

The MSC(CB) phenotype was determined by multicolor flow cytometry (FACSCanto
II cytometer with Diva v.8.0, BD, Franklin Lakes, NJ 07417-1815, USA) following staining
for surface molecules CD45 (Allophycocyanin(APC)-Cyanine(Cy)7-conjugated antibody,
clone 2D1), CD73 (APC-conjugated antibody, clone AD2), CD90 (Phycoerythrin(PE)-Cy7-
conjugated antibody, clone 5E10), and CD105 (Peridinin–Chlorophyll Protein (PerCP)-
Cy5.5-conjugated antibody, clone 266) (antibodies from BD Biosciences, San Jose, CA,
USA), using certified and validated protocols; all antibodies were from BD Biosciences,
San Jose, CA, USA). The finished product was made by CD90- and CD105-positive and
CD45-negative MSC(CB). Contaminant cells were identified as CD45-positive. Cell viability
was assayed by flow cytometry of PI-stained white blood cells (0.5 × 106 cells), following
red blood cell lysis, or MSCs cells (0.1 × 106) following staining for CD45 and CD90.

2.4.4. Karyotyping

The genomic stability of MSC(CB) was monitored by our certified cytogenetics hospital-
based laboratory using Q-banded chromosome karyotype analysis. Briefly, 50,000 MSC(CB)s
were seeded in triplicate in Amnioflasks (EKAMF250, Euroclone spa, Pero, Italy) with either
cell culture media or AmnioMAX™-II Complete Medium (ThermoFisher) and incubated
for 48 h (humidified 37 ◦C, 5% CO2). At 30% confluence, colcemid was added (0.05 µg/mL),
and cultures were incubated for 3 h. Metaphase spreads were prepared on microscope
slides and treated with Quinacrine for Q-banding analysis, and chromosomal analysis
followed official recommendations [27]. At least 20 metaphases were analyzed by fluo-
rescence microscopy; digital images were captured by the Ikaros Karyotyping Platform
(MetaSystems s.r.l., Milano, Italy).

2.4.5. Adventitious Virus Analysis

Briefly, the cell pellet was resuspended in lysis buffer ATL (Qiagen, Hilden, Germany),
and DNA and RNA were extracted using an automatic extractor EZ1 (Qiagen). Validated
protocols were used to detect cytomegalovirus (CMV) and Epstein–Barr virus (EBV) by
quantitative real-time methods (CMV ELITe MGB® Kit, EBV ELITe MGB Kit; ELITechGroup,
Torino, Italy) [28]. A qualitative RT-PCR method (Seeplex RV15 OneStep ACE Detection,
Seegene, Seoul, Korea) was used to detect 15 respiratory viruses using a 7300 Real-Time
PCR System (Applied Biosystems, Norwalk, CA, USA).

2.4.6. HLA Typing

HLA-typing was performed using Sequence-Specific Oligonucleotide Probe Hybridiza-
tion Assays (EFI standards, current edition).

2.4.7. CFU-F

For CFU-F assays, 200 MSC(CB)s were seeded in a T25 flask and cultured for 12 ± 1 d
before staining with gentian violet, as previously described [21].

2.4.8. Fold Expansion

For FE calculations, 4000 MSC(CB)s/cm2 were cultured in a T75 flask for 7 d and
counted following trypsinization.

2.5. Additional Tests

We performed additional characterization of MSC(CB) regarding extracellular matrix
deposition, telomere length, and multi-lineage differentiation potential, with the aim to
identify batch-to-batch variability.

2.5.1. RNA Extraction and Real-Time qRT-PCR for Gene Expression

Total RNA was extracted from MSC(CB)s with the TRIzol reagent method (15596026;
ThermoFisher), and total RNA was checked by spectrophotometry (ND-1000, NanoDrop
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Technologies, Wilmington, DE, USA). For the qRT-PCR assay, cDNA was synthesized from
500 ng of total RNA with SuperScript IV VILO (11756500; ThermoFisher). The resulting
cDNA was diluted 1:10, and 1µL was used as a template for a PowerUp SYBR Green Master
Mix (A15780, ThermoFisher) reaction in a CFX96 thermal cycler (BioRad, Hercules, CA,
USA). Relative gene expression levels were determined with a previously optimized ∆Ct
method, using the geometric means of endogenous ACTB and GAPDH mRNA levels [29].
Primer sequences are available upon request.

2.5.2. DNA Extraction and Real-Time qPCR

For DNA extraction, cell pellets were lysed with 750 µL of room-temperature lysis
buffer (20 mM TRIS (pH 7.44), 10 mM EDTA, and 100 mM NaCl) containing 50 µL of
proteinase K (1 mg/mL) and 300 µL of 10% SDS. Samples were shaken overnight at 37 ◦C,
extracted with 1 mL phenol/chloroform/isoamyl alcohol, and centrifuged (9000 rpm,
5 min). The aqueous phase was collected, and extraction/centrifugation was repeated; the
washed aqueous phase was collected and combined with 0.1 volumes of 5 M NaCl and
1.5 mL of 100% EtOH and incubated at −80 ◦C for 30 min. Samples were then centrifuged
at 4 ◦C (12,000 rpm, 15 min), and the supernatants were discarded, after which 1 mL
of cold 70% EtOH was added to the pellet. Samples were vortexed and centrifuged at
4 ◦C (12,000 rpm, 5 min), after which the supernatants were discarded, and the pellets
were resuspended in 50 µL of nuclease-free H2O. DNA concentrations were checked by
spectrophotometry (Nanodrop, Nanodrop Technologies LLC, Wilmington, DE 19810, USA),
and 10 ng of DNA was used as the template for real-time qPCR assays with PowerUp SYBR
Green Master Mix in a CFX96 thermal cycler. Optimal amplification protocols for repeated
telomeric sequences and single-copy reference gene 36B4 were as described previously [21];
telomere lengths were estimated with the ∆Ct method, normalizing to the 36B4 signal.
Primer sequences are available upon request.

2.6. ATMP Stability in the Storage Conditions

Stored batches were randomly checked on a rolling basis, testing three different
certified batches every 2 years after stressing the storage conditions (“stress test”). The
“stress test” consisted of repeatedly removing and replacing (for 30 s) the product in the
nitrogen vapor three times within 3 min. Cells were then thawed in a water bath (37 ◦C) and
combined with a 5% volume of HSA before testing identity, viability, purity, sterility, CFU-F,
FE, and karyotype. Compliance criteria for stability were ≥90% CD90- and CD105-positive
cells, CD45-negative cells; ≤2% CD45-positive cells; ≥80% PI-negative cells; no microbial
growth; CFU-F ≥ 1; FE ≥ 2; and an absence of chromosomal abnormalities.

If at least two batches passed the test, the final product expiration date was fixed at
the maximum storage time. For failed stability tests, the expiration date was fixed based on
the most recent passed stability test.

2.7. ATMP Stability under Usage Conditions

Cryopreserved cell suspension was thawed in a water bath (37 ◦C, 8–10 min) or in a
dry-thawing device (Barkey Plasmatherm, Leopoldshöhe, Germany) and then resuspended
in a saline solution with 10% HSA and Anticoagulant Citrate Dextrose Solution, Solution
A (ACD-A, Terumo BCT, Tokyo, Japan). Cells were tested for identity, clonogenic, and
expansion ability after 30 min and for viability at 30, 120, and 270 min. The compliance
criteria were as before.

2.8. Clinical Use of MSC(CB)s

In Europe, MSCs are classified as ATMPs [30,31], and Italian ATMP production plants
must be authorized for medicinal product manufacturing by the national agency for
drugs and can be also certified for therapeutic applications under a “hospital exemp-
tion” (HE) [32]. Our manufacturing plant is certified for both therapeutic and experimental
applications after establishing ourselves within the regulatory framework for ATMP pro-
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duction. MSC(CB)s were used for the following purposes: (1) immunomodulation and
(2) tissue repair. The clinical indications were Graft-versus-Host Disease (GvHD) and
nephrotic syndrome (NS). One newborn affected by BPD was treated under HE and on
an almost compassionate basis; therefore, it has not been considered for the scope of the
present report. Patients with GvHD were treated under a “HE” application. For NS, we
provided MSC(CB)s to pediatric patients in the context of two different clinical protocols:
the first was a monocentric, prospective, open-label, single-arm phase I-II study in multi-
drug-resistant idiopathic nephrotic syndrome, performed between April 2015 and April
2019 (Acronym KID’s01, EudraCT number 2011-001387-21) [33]; the second, still ongoing,
is an open-label, single-arm, monocentric trial, with a rescue/second (adaptative) design
addressed to maintain remission after immunosuppressive therapy withdrawal in steroid-
dependent nephrotic syndrome (Acronym RACE, EudraCT number 2018-001162-42). To
assess the clinical safety, the number of infusion-related adverse events was evaluated.
Efficacy on GvHD was assessed as follows: complete remission (CR) was defined as the
complete resolution of acute GvHD manifestations in all organs; partial remission (PR)
as an improvement in GvHD stage in at least one of the involved sites without complete
resolution and without worsening in any other organs. Regarding the clinical use of
MSC(CB) in MDR-INS (KID’s 01 trial), the main efficacy outcomes was the response to
therapy at 12 months, classified as partial remission if the urinary protein/urinary crea-
tinine ratio (uPr/uCr) was between 0.2 and 2 mg/mg or complete remission if uPr/uCr
was <0.2 mg/mg. Patients were categorized as “responders” if they achieved a partial or
complete remission; otherwise, they were considered “non-responders”. The reduction of
ongoing immunosuppressive and antiproteinuric agents was a secondary efficacy endpoint.
In the second other trial in SDNS, the main objective was to evaluate whether CF-CB-MSC
therapy is able to prevent NS recurrence for at least 6 months after complete withdrawal of
immunosuppressive treatment in children with SDNS.

3. Results
3.1. Tissue Procurement

Three CB units were received from our bank and used for GMP-level MCB production;
the characteristics of these available batches are reported in Table 1. Interestingly, all CB
units contained <10% monocytes in the nucleated cell fraction; in addition, a previous
study found that their volume was <90 mL in two-thirds of cases [21].

Table 1. Cord blood unit: donation and donor characteristics. Low cellularity means cell count
<1.5 × 109 total nucleated cells. CS, caesarean section; ND, natural delivery.

Starting Material ID #1 #2 #3

Banking exclusion criteria Low cellularity Low volume Low volume

Volume (mL) 91.5 59.5 51.3

Total nucleated cells (×103/µL) 10.5 8.5 9.8

% Monocyte 4.3 6.2 6.3

Gestational age (weeks) 40 41 40

1st minute Apgar score 10/10 9/10 9/10

5th minute Apgar score 10/10 10/10 10/10

Type of delivery CS ND CS

Child gender M F F

Child weight at birth (kg) 3.40 2.96 3.28
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3.2. GMP Facility, MSC(CB) Manufacturing Process and Quality Controls

There were no deviations in the Heating–Ventilation–Air-Conditioning (HVAC) sys-
tem’s functioning and controls. Media fills were performed twice per year, as described
by [24], and they were always compliant.

Approved reagents are listed in Table 2. Regarding MSC manufacturing process, from
three CB donations, we obtained an MCB made of 1.29 × 108 MSCs. We observed a mean
of 5 FE in the P3-P4 expansion and 21 FE in the P4-P5 expansion, giving total WCB and
final product yields of 1.58 × 109 (±1.79 × 109) and 7.14 × 1010 (±8.37 × 1010), respectively
(see Figure 2). Thus, a WCB containing 4.74 × 109 MSC(CB) can be produced (with a mean
P3-P4 FE of 39.4), and the yield of final product obtained from three single CB donation
totals, 2.14 × 1011 MSCs, for clinical use. This yield makes it possible to treat large patient
cohorts of > 500 subjects (3–4 doses at 1.5–2 × 106 MSC/kg for an average 70 kg patient)
under the hospital-exemption procedure and also supports large phase I/II/III clinical
trials. All batches of final product tested negative for endotoxins, bacteria, mycoplasma,
and adventitious viruses and were characterized for GMP compliance prior to release (see
Table 3). Because the finished product is a cryopreserved cell suspension that requires
thawing, we assessed cell viability and phenotype 30 min after thawing.

Table 2. Cord blood-derived mesenchymal stromal cell manufacturing: selection and qualification of
the key reagents.

Product Supplier Reference Specification

Human albumin 200 g/L Kedrion, Lucca, Italy A.I.C. 022515163 Blood product for human use (any
Marketing Authorization Holder—MAH).

ACD-A Terumo BTC, Tokyo, Japan 40804 Class 2 medical device manufactured
according to Directive 93/42/EEC.

Citrate phosphate
dextrose CPD SALF SpA Bergamo, Italy A.I.C. 031328 Medicinal product for human use.

DMSO Cryoserv—Mylan Institutional
Canonsburg, PA, USA 67457-178-50 Manufactured according with GMP, sterile

and with endotoxin level < 0.5 EU/mL.

FBS Australian ThermoFisher Scientific Thermo
Fisher Waltham, MA, USA 10101-145

EDQM-certified of suitability gamma
irradiated sterile serum with an endotoxin

level < 0.5 EU/mL.

PBS MacoPharma, Tourcoing, France 0120020 Xeno-free solution tampon, sterile and
with endotoxin level < 0.5 IU/mL.

Physiological Solution
NaCl 0.9% Baxter, Milano, Italy A.I.C. 035715010 Medicinal product for human use e.v.

TrypLE Select Thermo Fisher Scientific Thermo
Fisher Waltham, MA, USA 12563-011

A sterile free of any animal origin element
trypsin with endotoxin level

< 1.0 EU/mL.

αMEM 675 mL MacoPharma, Tourcoing, France 0110020 A sterile xeno-free medium with
endotoxin level < 0.5 UI/mL.
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Table 3. Cord blood-derived mesenchymal stromal cell manufacturing: release tests and quality
controls performed on the finished product batches (N = 19). Numerical data are reported as mean
(±SD). PI, propidium iodide; SIGU, Società Italiana di Genetica Umana; n.d., not detected; EFI,
European Federation of Immunogenetics.

Test Name Method U.M. Result Specifications

R
el

ea
se

te
st

Purity
Flow cytometry
(Ph. Eu. 2.7.24)

CD45− CD90+
CD105+ cells (%) § 97.3 ± 2.7 ≥90

Contaminants CD45+ cells (%) § 0.6 ± 0.5 ≤2

Viability PI- cells (%) 92.7 ± 4.6 ≥80

Sterility Ph. Eu. 2.6.27 / Sterile Sterile

Bacterial endotoxin
testing Ph. Eu. 2.6.14 EU/mL 0.245 ± 0.0 <0.25

Mycoplasma Ph. Eu. 2.6.7 / No growth No growth

Karyotype Q-banding
(SIGU guidelines) / 46,XX/46,XY 46,XX/46,XY

A
dd

it
io

na
lt

es
t*

Extended
immunophenotype

Flow cytometry
(Ph. Eu. 2.7.24)

CD45− CD73+
CD105+ cells (%) 96.5 ± 4.0 none

CD45− CD73+
CD90+ cells (%) 95.8 ± 5.3 none

Viability (restricted) Flow cytometry
(Ph. Eu. 2.7.24)

CD45− CD90+ PI-
cells (%) 91.8 ± 5.2 none

Post-thawing
viability

Flow cytometry
(Ph. Eu. 2.7.24) PI- cells (%) ± ≥80

Adventitious viruses
PCR

(Ph. Eu. 2.6.21)

CMV-DNA n.d. n.d.

EBV-DNA n.d. n.d.

Respiratory viruses
RNA/DNA n.d. n.d.

HLA typing

Sequence-Specific
Oligonucleotide Probe
(SSOP) Hybridization
Assays (EFI standards,

current edition)

HLA-A-B-DR donor
Correspondence

to the donor
HLA

Correspondence
to the donor

HLA

* This term identifies tests that are performed not to release the product but for statistical or research purposes.
§ % of viable cells.

3.3. Additional Tests

Three MSC(CB) batches were characterized in triplicate. We found no significant batch-
to-batch variability regarding gene expression of integrin monomers (with the exception
of ITGA8, Figure 3A), telomere stability and erosion (Figure 3B), or transcription levels of
proteins relevant to differentiation toward adipocytes (i.e., PPARG and ADIPSIN), osteoge-
nesis (i.e., RUNX2 and ALPL), and chondrogenesis (i.e., SOX5 and ACAN) (Figure 3C). The
expression of ACAN did vary between batches, and given its structural role in the cartilage
extracellular matrix, its expression could influence chondrocyte differentiation. Two genes
coding for inflammatory cytokines (IL6 and IL8) were significantly more expressed in one
MSC batch (Figure 3D).
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Figure 3. For information only characterization of cord blood-derived mesenchymal stromal cells.
(A) Histograms show gene expression of integrins normalized to CBMSC A; data are presented as
mean ± standard deviation (SD) (n = 3). Statistical analysis was by two-way ANOVA followed
by Tukey’s multiple comparisons post-hoc test; * p < 0.05 vs. CBMSC A. (B) Histograms show
telomere length normalized to CBMSC A; data are presented as mean ± SD (n = 3). Statistical analysis
was by non-parametric Kruskal-Wallis test followed by Dunn’s multiple comparisons post-hoc test.
(C) Histograms show transcript levels of differentiation-associated genes normalized to CBMSC A;
data are presented as mean ± SD (n = 3). Statistical analysis was by two-way ANOVA followed
by Tukey’s multiple comparisons post-hoc test; * p <0.05 vs. CBMSC A, ˆ p < 0.05 vs. CBMSC
B. (D) Histograms show gene expression of secreted proteins normalized to CBMSC A; data are
presented as mean ± SD (n = 3). Statistical analysis was by two-way ANOVA followed by Tukey’s
multiple comparisons post-hoc test; * p < 0.05 vs. CBMSC A, ˆ p < 0.05 vs. CBMSC B. Abbreviation
list: CBMSC, cord blood mesenchymal stromal cells; SD, standard abbreviation.

3.4. Stability

Final product stability was characterized for 27 samples (11 batches) for cryopreservation
durations of 3–76 months and found to be suitable regarding identity (96.8 ± 3.2%), purity
(99.4 ± 0.6%), and viability (84.3 ± 10.6%). All thawed products were sterile with normal
karyotypes and expanded in culture (FE 8.0 ± 4.8, n = 27) to produce the expected CFU-F
(17.9 ± 17.4, n = 26). Only 1 of the 12 batches stored for > 60 months passed quality control
measures; therefore, the expiration of MSC final products is fixed at 56 months of storage.

Our stability study of cell viability after thawing (Supplementary Table S2) revealed
that the percentage of PI-negative cells remained stable for 30 min after thawing and then
declined below 80%; during this time, cells also maintained their identity and prolifera-
tion potential.
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3.5. Clinical Use

From March 2012 to June 2023, 263 of our GMP-certified MSC(CB) preparations were
administered as ATMPs in 40 subjects (18 female) affected by GvHD (n = 8), nephrotic
syndrome (NS, n = 31), or bronco-pulmonary dysplasia of the newborn (n = 1) in approved
clinical trials (n = 31) or for therapeutic use following single-patient authorization (n = 12;
eight with GvHD, three with NS, and one with BPD). One subject with NS was also
treated after being treated in the KID’s01 study, on a “single-use approval”, for disease
recurrence. Most pediatric patients (age < 18 years) were affected by NS (78.5%), while
most adults (eight of nine) were affected by GvHD. Cells were administered through
intravenous injection via the peripheral or central vein; in only one case of BPD was
endo-tracheal administration used. Each patient received the prescribed dose divided
into 3–12 preparations (median 6) over 2–4 administrations (median 3), and each infusion
contained 19–142 × 106 MSCs (median 70 × 106). The most used schedule was based on
three doses at a 1–2-week interval, while a discretionary fourth dose was given if required
by the experimental protocol as a consolidation dose (n = 7) or as a rescue therapy (N = 1).
Details of patient demographics and experiments are shown in Table 4. No infusion-related
adverse events have been reported in any of the treated patients [33].

Table 4. Demographic data of the subjects treated with cord blood-derived mesenchymal stromal cells
(N = 40). The parameters marked with * are reported as median (range). GvHD, Graft-versus-Host
Disease; NS, nephrotic syndrome; BPD, bronchopulmonary dysplasia.

Demographics

Female gender (N; %) 18; 42.8

Age (years) * 12 (0.5–60)

Subjects < 18 years of age (N; %) 33; 78.5

Weight (kg) * 42 (2.7–83.6)

Subjects ≥ 18 years of age * 57.1 (41.2–80)

Subjects < 18 years of age * 34.7 (2.7–83.6)

Disease (n of total subject; n of subjects > 18 years of age)

GvHD 8; 8

NS 33; 1

BPD 1; 0

Treatment

Cell dose (×106)/KG * 1.6 (1–10)

Cell dose (×106)/kg in subjects ≥ 18 years of age * 1.7 (1.4–3)

Intravenous administration (n) 41

Subjects who received 3 administrations (n; %) 30; 71.4

Interval between treatments (days) * 8 (3–42)

For GvHD, the results are reported in Table 5. Data are available until 18 months
from MSC(CB) infusion. A CR was registered in two out of the eight treated patients
(one affected by NHL and the other one by MM, both with gut involvement). One of
the two patients with CR (patient #7 in Table 5) died after 3.5 months due to thrombotic
thrombocytopenic purpura. Two patients did not respond: one of them (patient #5 in
Table 5) showed graft failure and leukemia relapse; the disease was poorly controlled with
standard chemotherapy, and he died 10 months after MSC infusion. The two patients with
overlap GvHD showed both a PR with stable clinical conditions at the last follow-up visit.
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Table 5. Characteristics and clinical outcome of patients affected by Graft-versus-Host Disease
(GvHD). AML, acute myeloid leukemia; ATG, anti-thymocyte globulin; CyA, cyclosporine A; CR,
complete remission; D, deceased; ECP, extracorporeal photopheresis; MM, multiple myeloma; MMF,
mycophenolate mofetil; NHL, non-Hodgkin lymphoma; OS, overlap syndrome; PR, partial remission;
NR, no response.

Patient
No. Age Diagnosis

GVHD
Grading,

Type (and
Site)

Treatment
before MSC(CB)

Infusion

Infusions
(No.)

Response
(Site of

Response)

Treatment after
MSC(CB)
Infusion

State at
18-Month
Follow-Up

1 52 NHL
Grade IV
aGvHD

(gut)

Steroid + MMF +
ECP 2 CR ECP suspension;

steroid reduction
Cutaneous

cGVHD

2 49 NHL
Grade IV
aGvHD

(skin; gut)

Steroid + MMF +
ECP 3

PR
(limited to

gut)

MMF
reduction OS

3 22 MDS
Grade IV
aGvHD

(skin; gut)
Steroid 4

PR
(limited to

skin)
none D (1)

4 51 AML OS CyA + steroid
+ ECP 3

PR
(limited to

skin)

CyA + steroid +
ECP D (3.5)

5 20 AML IV
(gut)

Steroid;
Rituximab;

Etanercept; ATG
2 NR None D (10)

6 22 MDS IV
(skin; gut) Steroid 3 NR None D (1)

7 50 MM IV
(gut)

Steroid + MMF +
ECP 3 CR

ECP suspension;
steroid and MMF

reduction
D (3.5)

8 59 AML OS CyA + steroid
+ ECP 3

PR
(limited to

skin)

CyA + steroid
+ECP OS

In the case of deceased patients, the duration of survival after mesenchymal stromal cell infusion is expressed in
months (in brackets).

4. Discussion

Many unmet clinical needs have the potential to be addressed because of recent
discoveries and advances in stem cell regenerative potential, gene-editing tools, and clinical
transplantation methods [34–36]. In addition to other actors, multilineage stem/stromal
cells may play a critical role [37], and their potential as immunomodulatory and anti-
apoptotic agents has inspired clinical researchers to innovate. In our experience, MSC(CB)
has proven to be safe and to exert beneficial effects on patients affected by GvHD, the
majority of which reached complete or partial remission. Indeed, interesting information
came up from the KID’s01 study, in which a subgroup of pediatric patients with MDR-INS
resistant to a median of three previous lines of therapy with a lower baseline uPr/uCr
achieved partial or complete remission. These encouraging results prompted us to go
further with a phase II study (the RACE trial) in which the immunosuppressive effect
of MSC(CB) has been tested in steroid-dependent patients, with the aim to free them
from heavy pharmacologic treatment. Notably, none of the patients of the KID’s 01 study
showed the development of donor-specific HLA antibodies (DSAs). This was essentially
in contrast with previously reported studies with (BM) and (AT)MSC. The lack of DSA
after (CB)MSC might be correlated to their immunological naivety but deserves additional
investigation supported by a larger patient cohort. On the other side, also the occurrence of
autoimmunity never occurred in our experience with the patients treated with (CB)MSC,
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thus confirming their immunological safety. The main candidate indication of MSC(CB)
may be therefore as an immunosuppressant agent both in refractory severe immune-
mediated and in steroid-dependent diseases [38]. These clinical findings have, as biological
counterparts, the peculiar trophic, anti-inflammatory, and anti-apoptotic properties of
MSC(CB), as we and others previously documented at the RNA, protein, and functional
levels. In particular, the differentiation-associated genes (see Figure 3, panel C) have
been already validated as molecular counterparts of the in vitro differentiation capacity of
(CB)MSC in our previous works [16,21,39]. Nevertheless, it is still not clear which are the
mechanisms of action underlying these effects. In particular, MSCs are not detectable a few
hours after systemic administration, and they are trapped in the lungs, where they release
anti-inflammatory proteins [40]. Specifically, following the contact with recipient cytotoxic
T-lymphocytes, MSCs trigger apoptosis in vivo and are phagocyted by monocytes [41]. It
has already been proved in murine GvHD animal models that MSC phagocytosis increases
IDO expression [42] with beneficial consequences on immunomodulation. Based on this
putative mechanism of action and starting from these precious clinical results, larger clinical
trials on a well-defined patient population will give more precise insights into the clinical
appropriateness of this promising ATMP. Despite the very encouraging clinical results that
we reported, the potential of MSC(CB) has not yet been fully exploited, and few similar
manufacturing experiences are part of the clinical arena. In addition to other factors that
occurred at the beginning of our work (e.g., regulatory agency and clinicians’ unfamiliarity
with these new drugs), technical aspects also hampered the wider use of MSC(CB). Indeed,
the large-scale manufacturing of CB-derived ATMPs is extremely challenging because of the
large volumes of certified high-quality starting materials required for high-yield medicinal
products [21,43]. Here, we designed an MSC(CB) manufacturing process that maximizes
expansion potential with a cell-banking approach that has several advantages: (1) each
production lot derives from a well-characterized common starting source; (2) an MCB/WCB
system allows for storage of intermediate products that can be expanded without requiring
new starting material collection and isolation, thus reducing space and cost requirements;
and (3) WCB expansions can be scheduled based on the balance of supply and clinical
demand. Though CB banking for hematopoietic cell transplantation is well established,
we found no comparable reports on CB banking for MSCs and few on MSCs derived
from umbilical cord tissue (another neonatal source of MSCs) [44–47] that may serve as a
best comparator with our experience. In this regard, Oliver-Vila and colleagues designed
an MSC manufacturing process starting from relatively few samples (e.g., two umbilical
cords), as we did, and established an MCB/WCB system with a production yield similar
to ours [44]. This group used a different methodology and still observed an excellent
senescence profile for their neonatal-derived MSCs, though they did not report on clinical
applications and administration schedules for the final product. We always strive to find
and exploit the therapeutic potential of CB while considering the most updated scientific
and technical information. Cord blood provides the youngest cells that can be collected
non-invasively and remain viable in storage for several decades [48,49]. A young MSC
source is critical for regenerative medicine because increased age is associated with an
organism-wide increase in the expression of secreted senescence factors that impair tissue
function [50,51]. Although cells from older patients can be reprogrammed, the process is not
efficient and generates cells with genomic damage. Therefore, younger tissues are ideal for
obtaining iPSCs, extracellular vesicles, mitochondria, and MSCs, mitigating the risks of age-
related cellular changes [52,53]. All starting materials for GMP cell banking must be stable
and expandable, and CB-derived MSCs meet these requirements. The isolation of MSC
precursors from CB does not require extensive manipulation, while protocols for isolation
from umbilical cord tissue require pre-isolation treatments and/or cryopreservation that
may affect the final expansion results [45]. Also, the choice to use FBS instead of animal-free
alternatives has been proven to be successful due to its consistency, regulatory acceptance,
reliability, cost-effectiveness, and strong track record in clinical trials [54]. In summary,
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with a well-defined manufacturing process, we were able to generate sufficient inventory
for the treatment of large cohorts of patients [55–59].

Beyond stringent quality-control testing, we also investigated the specific properties of
each MSC(CB) batch. We found that MSC(CB) integrin expression is critical for MSC homing
and survival signaling and may provide a cell-type-specific profile [60,61]. In particular,
ITGA8 is involved in mesenchymal–epithelial cell connection and extracellular matrix
deposition [62], and it may influence the wound-healing potential of MSCs. We also found
batch variability in the expression of IL6 and IL8 that may be relevant to acute and chronic
inflammation, which may modulate tissue-remodeling processes such as angiogenesis [55].
These wound-healing and anti-inflammatory properties are typical of MSCs from neonatal
sources and distinguish them from adult tissue-derived MSCs [56]. Though MSC(CB)
batches were largely similar, detailed knowledge of molecular differences may be useful in
achieving the desired therapeutic effect in a clinical setting. Our studies of the functional
heterogeneity of MSC(CB) confirm the findings of others studying neonatal-derived MSCs
and support their use in personalized medicine [57,58].

5. Conclusions

We conclude that an accurate approach to GMP process development, an extensive
characterization of the final product, and a precise definition of the clinical study design are
critical factors for success in ATMP pharmaceutical development and therapeutic applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells13121066/s1, Table S1: Cord blood unit: starting material
specifications. CB: Cord Blood; CPD: Citrate-phosphate-dextrose; TE: Tissue Establishment; SM:
Starting Material.; Table S2: Cord blood-derived mesenchymal stromal cells: stability in the usage
conditions. Time 0 indicates pre-thawing samples.
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Abbreviations

ACD-A Anticoagulant Citrate Dextrose Solution, Solution A
AIFA Agenzia Italiana del Farmaco—Italian Drug Agency
ATMP Advanced Therapy Medicinal Product
BM bone marrow
CB cord blood
CMV cytomegalovirus
DMSO dimethyl sulfoxide
EBV Epstein–Barr virus
EU endotoxin units
FBS fetal bovine serum
FE fold expansion
GMP Good Manufacturing Practice
HAS human serum albumin
LL long-living
MCB master cell bank
MSC mesenchymal stromal cell
PI propidium iodide
SL short-living
WBC working cell bank
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