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Abstract: Friedreich’s ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all
patients by expanded guanine–adenine–adenine (GAA) trinucleotide repeats within intron 1 of the
FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial
protein crucial for iron–sulfur cluster biogenesis. Currently, there is only one medication, omavelox-
olone, available for FRDA patients, and it is limited to patients 16 years of age and older. This
necessitates the development of new medications. Frataxin restoration is one of the main strategies in
potential treatment options as it addresses the root cause of the disease. Comprehending the control of
frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential
therapeutic approaches for addressing the illness. This review aims to provide a general overview of
the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA.

Keywords: FXN; Friedreich’s ataxia; GAA repeat expansion; transcription factors; iron; miRNAs;
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1. Introduction

Friedreich’s ataxia (FRDA) is the most common hereditary ataxia, with an incidence
of 1 in 50,000 people in Caucasian populations worldwide. FRDA is characterized by
progressive gait and limb ataxia, scoliosis, dysarthria, visual loss, and hypertrophic car-
diomyopathy [1]. The pathological change appears to occur first in the large sensory
neurons of the dorsal root ganglia (DRG) and their axons in the posterior columns, with
later atrophy of the corticospinal and spinocerebellar tracts of the spinal cord and the den-
tate nucleus in the cerebellum [2–4]. The age of onset is usually within the first two decades
of life, and individuals are wheelchair-bound within 10–15 years of disease onset [5,6].
For patients with FRDA, cardiomyopathy-associated heart failure is the main cause of
mortality.

FRDA is usually (96%) caused by biallelic guanine–adenine–adenine (GAA) trinu-
cleotide repeats within intron 1 of the FXN gene [7]. The expanded GAA repeats transcrip-
tionally repress FXN gene expression, leading to reduced frataxin proteins. Frataxin is
involved in iron homeostasis [8,9], the biosynthesis of iron–sulfur clusters (ISCs) [10–12],
and energy production in the cell [13,14]. Frataxin is a mitochondrial matrix localized
protein that is encoded in the nucleus. It is synthesized as a precursor in the cytosol that
is imported into the mitochondria, where it undergoes a sequential cleavage to mature
into a functional frataxin [15]. A lack of frataxin leads to altered iron metabolism, de-
creased energy production, and increased oxidative stress, all of which ultimately result in
pathological changes. Frataxin levels in peripheral tissues correlate with both the disease
severity and the age of onset [16]. Since FRDA is caused by a deficiency in frataxin, which
is controlled at transcriptional, post-transcriptional, and post-translational levels, several
strategies are being developed to restore frataxin levels toward normal in order to treat the
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disease, including gene therapy, gene editing, and interventions to slow down the turnover
of frataxin protein. The components of frataxin regulation will be outlined in this review
along with their treatment-related implications.

2. Transcriptional Regulation of the FXN Gene

Transcriptional regulation is a crucial regulatory mechanism that governs the expres-
sion of the FXN gene. Multiple factors, including the size of the GAA repeats within the
pathological range, transcription factors, and activators, have been identified to influence
the transcription of FXN gene, both physiologically and pathologically. These factors are
also the focus of therapy directed towards frataxin restoration.

3. FXN Gene Structure

The FXN gene is encoded in the long arm(q) of chromosome 9 (9q13–q21) and spans
150 kb [17,18]. Its promoter is not a typical TATA box, but instead, a CpG promoter with
CpG island in the vicinity of the transcription start site [7]. The main transcription start
site is 220 bp upstream from the start codon, and it includes an E-box/Mt-binding site [19].
Transcription factors that bind to this site and enhance FXN expression include SRF and
TFAP2 [20]. The FXN gene contains six exons (1–4, 5a, and 6) [7]. Exon 1, which encodes
an N-terminal fragment (55 amino acids) including the mitochondrial targeting sequence,
is followed by intron 1, which contains 10,436 bp including the GAA repeats [19,21]. A
total of 96% of FRDA patients have biallelic (100–1700) GAA triplet repeat expansions;
4% have GAA expansion in one allele and point mutation or deletion in the other FXN
allele [7]. The repeat starts ~1 kb from the start of intron 1 [19]. Given that some epigenetic
marks including acetylation of histone at lysine 27 (H3K27ac) and methylation of histone
H3 at lysine 4 (H3K4me1,2,3) typically present in regulatory/enhancer regions are found in
parts of exon 1 and intron 1, those regions are likely needed for FXN transcription. More
precisely, the first 110 bp endogenous sequence in intron 1 are indispensable for frataxin
expression [22]. In addition, at the 5′UTR before the start codon, 115 bp are necessary for
FXN transcription [22]. This sequence may also be a binding region for the transcription
factor TFAP2, which is critical for frataxin expression [22].

4. FXN Transcript Isoforms

Four different FXN gene transcripts have been identified. FXN-1 mRNA is composed
of six exons (1–4, 5a, and 6) and encodes a 210-amino acid protein, the canonical frataxin
isoform (also called FXN-M) ubiquitously expressed in all tissues [23]. Instead of exon 5a,
FXN-3 mRNA has exon 5b. Exon 5b has an in-frame stop codon, so that FXN-3 transcript
generates a shorter 171 amino acid protein, whose 11 COOH-terminal residuals differ
from FXN-1 [7]. FXN-2 mRNA was found in an attempt to clone the full-length frataxin
cDNA by PCR targeting the extremities of the FXN-1 coding sequence. FXN-2 has an
8 bp insertion between exons 4 and 5a due to an alternative splicing site at the 5′ end
of intron 4. The 8 bp insertion generates a frameshift that introduces a new stop codon
site. The FXN-2 transcript thus encodes a 196-amino-acid protein that differs from FXN-1
after residue 160. This transcript is found at lower levels in brain, cerebellum, spinal cord,
heart, and skeletal muscle [24]. In human mononuclear cells, FXN-2 and FXN-3 mRNA
expressions are 4.72% and 2.47% of FXN-1 mRNA, respectively. FXN-2 and FXN-3 not
only have identical residues in the functional region (amino acids 90–160) compared with
FXN-1 but also have the same ability to interact with synthetic enzymes for iron–sulphur
complexes, suggesting a possible biological role of FXN-2 and FXN-3 [25]. To support
this, the antioxidant tocotrienol, a member of the vitamin E family, preferentially increases
FXN-3 mRNA in FRDA patients. Neither FXN-1 nor FXN-2 shows any effects [25]. The
underlying mechanism may involve variable splicing regulation in addition to an increase
in gene transcription and/or mRNA half-life.

FXN-4 mRNA, also called FXN-E, is a novel isoform lacking the mitochondrial tar-
geting sequence. FXN-E transcript originates in intron 1 via non-coding exon 1b, which
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independently splices to exon 2 via three alternate splice donor sites (IIa, IIb, and IIc) [26].
The predicted translational initiation codon for all variants of FXN-E is located within
exon 2 and corresponds to the methionine at position 76 in FXN-1. Thus, this transcript
encodes a 135-amino-acid protein (76–210) with an acetylated N-Terminus. FXN-E is found
at relatively high levels in erythrocytes [27], and is extramitochondrial because it does not
possess a mitochondrial targeting sequence. FXN-E is also expressed in the cerebellum and
heart from both humans and animals [26]. Blood samples from typical FRDA patients show
lower levels of this protein, which correlate with the length of shorter enlarged GAA triplet-
repeat in these patients. Similar to FXN-1, FXN-E modulates mitochondrial dynamics and
function [23,28]. In individuals with a single expanded GAA allele and a point mutation in
the early part of exon 1, FXN-E levels are normal in blood as the alternatively spliced exon
is not affected. Such patients still have severe disease, showing that in vivo FXN-E cannot
substitute for deficient FXN-M.

5. GAA Repeat Expansion

The GAA repeat expansion is the most significant factor affecting FXN gene transcrip-
tion when compared to all other variables. Normal individuals have no more than 30 GAA
repeats (and usually have around 7 repeats), whereas FRDA patients can have as many as
1700 GAA repeats. The length of the shorter of the two expanded alleles inversely correlates
with FXN levels and age of onset and positively with disease severity [1]. FRDA-associated
expanded GAA repeats originate from normal alleles by recurrent expansions of alleles
at risk [29]. The size threshold that determines GAA repeat instability and expansion is
between 26 and 44 uninterrupted GAA repeats [29–31]. Expanded GAA repeats are geneti-
cally unstable, exhibiting both expansions and contractions with a significant predilection
for large contractions [31–34]. The somatic instability of expanded GAA repeats is length-
dependent and tissue-specific, with significantly longer GAA tracts detected in hearts and
pancreases than in other tissues [31–33]. The expansion bias found in hearts and pancreases
is likely to contribute to the onset of symptoms and disease progression. While maternally
transmitted expansions can contract or expand with equal frequency, paternal transmission
typically results in a contraction of the repeats [29,35–37].

The pathogenic nature of expanded GAA repeats is determined by its unusual DNA
structure. Uninterrupted long GAA repeats adopt an intramolecular R·R·Y triplex structure
resulting in length- and orientation-dependent transcriptional inhibition both in vitro [38]
and in vivo [39,40]. On the other hand, intronic interrupted GAA repeats, like hexanu-
cleotide repeat (GAAGGA)65, do not inhibit transcription like same-length GAA repeats do,
are not associated with FRDA, and can be stably transmitted from parent to child for three
siblings [40]. Short interruptions like (GAGGAA)5–9 are also found in normal individuals
and appear to be nonpathogenic [29]. The structural analysis of hexanucleotide repeat
(GAAGGA)65 demonstrates that it does not adopt a triplex conformation the way GAA re-
peats of similar length do, suggesting that the presence of a triplex structure is essential for
the pathogenicity of expanded GAA repeat and its ability to suppress gene expression [40].
The greater the extent of interruptions, the less inhibition of in vitro transcription [41].
FRDA patients with small interruptions at the 3′ end of the GAA repeat tract are linked to
shorter GAA1 repeat tracts and a later age at disease onset, which is consistent with the
impact of interruptions on FXN gene transcription [42]. Large interruptions are extremely
uncommon in the expanded GAA repeats of FRDA [43].

GAA repeat expansion not only adopts a triplex structure but also forms hybrid
conformations between DNA and RNA (R-loops) and heterochromatin to reduce FXN
mRNA transcription [44–48]. Stable triplexes and R-loops impede RNA transcription on
the FXN gene by either directly interfering with RNA polymerase (Pol) II transcription or
sequestering transcription factors/RNA polymerase [45–47]. Heterochromatin-mediated
transcriptional silencing is associated with epigenetic modifications in the intron 1 re-
gion flanking the GAA repeat expansion. Repressive histone marks, including histone
trimethylation (H3K9me3 and H3K27me3) and hypoacetylation (H3 and H4), and DNA
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hypermethylation are among these alterations [19,26,49–51]. Both histone marks and DNA
methylation are found in FRDA-patient-derived cells including brain tissue [26,51]. DNA
methylation also correlates with FXN transcriptional deficiency and age of onset [26]. The
chemical reactivation of transcription of the FXN gene with HDAC inhibitors or other
chromatin targeting drugs can partially rescue frataxin deficiency [50,52]. There is also an
interplay between R-loops and epigenetic changes. Increasing R-loop levels by treatment
with the DNA topoisomerase inhibitor camptothecin upregulates repressive histone marks
(H3K9me2), while a decrease in the amount of repressive histone mark has no effect on
R-loop levels [45], suggesting that epigenetic changes are secondary to abnormal DNA
confirmation.

Both transcriptional initiation and elongation are proposed to be involved in FXN
gene transcriptional silencing [53–55]. In induced pluripotent stem cells (iPSCs) derived
from FRDA fibroblasts, GAA repeat expansions have no effect on the recruitment of RNA
Pol II to the FXN promoter region but significantly reduce the phosphorylation of Pol II at
Serine 5 and Serine 2 at the C-terminal domain, an indicator of active initiation/elongation,
suggesting the inhibitory effect of GAA repeat expansions on the transition from initi-
ation to productive elongation [56]. Both FRDA and control cells can actively initiate
FXN transcription; however, the GAA repeat expansion induces an aberrant transcription
termination, resulting in a short and polyadenylated mRNA transcript that prematurely
terminates upstream from the GAAs. This RNA transcript contains exon 1 and a fragment
of the FXN intron1 and is alternatively spliced as the intronic part of this transcript lacks the
first 683 nt, immediately downstream from the end of exon 1 (designated as FXN-ett, FXN-5
mRNA). Interestingly, FXN-ett level correlates with the length of the longer of the two
GAA alleles and is stable and expressed in different cells, including FRDA patient cardiac
cells and in FRDA-humanized transgenic mice. CRISPR-Cas9 excision of the expanded
GAAs decreases FXN-ett expression and restores FXN expression, confirming that the GAA
expansion is responsible for the transcriptional impediment during early elongation and
formation of the aberrantly spliced, prematurely terminated FXN-ett RNA [56].

The profound impact of GAA repeat expansion on the transcriptional barrier of the
FXN gene has led to the development of multiple strategies for their excision in an effort
to restore normal amounts of FXN transcripts. CRISPR technology uses guide RNAs to
identify the target sequence and Cas9 nuclease to break it. CRISPR-Cas9 efficiently re-
moves the GAA repeat expansion from intron 1 in FRDA patient hematopoietic stem and
progenitor cells, thus leading to increased frataxin expression and mitochondrial func-
tion [57]. An extension of that study also demonstrates improvement in cellular apoptosis
and mitochondria–endoplasmic reticulum interactions in patient-derived iPSC neurons [58].
CRISPR-Cas9 can also remove the entire intron 1 in dorsal root ganglia organoids derived
from FRDA patient iPSCs. This intron 1 excision reactivates FXN gene expression; reduces
epigenetic silencing marks, such as H3K9me3 and H3K9ac at the intron 1 chromatin; and
improves mitochondrial morphology in the DRG axons [59]. Interestingly, the deletion
of most of intron does not impact frataxin expression despite many studies concluding
that intron 1 contains transcriptional regulation sequences; perhaps, those sequences exist
in mice but not human frataxin [59]. Another approach to increasing frataxin expression
focuses on genomic editing with zinc finger nucleases, which removes one copy of the
GAA repeat region from intron 1. This approach increases frataxin expression and reverses
the biochemical phenotype associated with frataxin deficiency in cells [60].

6. Transcription Factors

The transcription factors identified for the FXN gene include serum response factor
(SRF), transcription factor family activator protein 2 (TFAP2), and Octamer transcription
factor-1 (Oct-1). SRF is a member of the MADS (MCM1, Agamous, Deficiens, and SRF) box
superfamily of transcription factors, which binds to the serum response element (SRE) in
the promotor region of target genes and participates in cell cycle regulation, cell growth,
and differentiation [61,62]. TFAP2 is a developmentally regulated, retinoic-acid-inducible
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transcriptional activator [63], while Oct-1 binds to the “ATTTGCAT” sequence and regulates
a variety of tissue-specific and general housekeeping genes [64,65]. Both SRF and TFAP2
bind to the region about 200 bp upstream from the start codon of the FXN gene while the
binding site of Oct-1 is located 4.95 kb from the start codon [20,66]. The deletion of these
transcription factors or mutations in the binding sites of these transcription factors result in
a reduced expression of the FXN gene, while overexpressing SRF and TFAP2 increases the
FXN mRNA levels in both cell lines and FRDA patient lymphoblasts [20]. Interestingly, the
intronic sequence downstream from exon 1 is also necessary for SRF and TFAP2 activity.
The transcriptional activity of SRF and TFAP2 is dramatically reduced upon removal of the
intronic region downstream from exon 1. Both SRF and TFAP2 mRNA levels are decreased
in FRDA patient lymphoblasts [20]. TFAP2 mRNA levels are also subject to iron regulation.
Iron depletion with iron chelator DFO decreases TFAP2 mRNA and FXN mRNA levels
in vitro in cell lines, suggesting that frataxin-deficiency-caused cellular iron deficiency may
impact TFAP2 mRNA, leading to a further decrease in FXN mRNA [20].

Tumor suppressor protein p53 also controls the transcription of the FXN gene by
binding to the p53-responsive element located upstream from the putative start site of
transcription [67,68]. The inhibition of p53 function by pifithrin-α or the knockdown of p53
decreases the levels of FXN mRNA and protein. A recent study demonstrated that p53
directly binds to GAA-repeat-formed non-B DNA structures [69], though the outcome of
this binding remains to be investigated.

Approaches that target the regions between SRF and TFAP2 binding sites significantly
increase FXN gene expression. Transcription Activator-Like Effectors (TALE) are among
them [70]. TALEs are DNA-binding proteins that contain repeated blocks of 34 amino acids
that can be rearranged to target new DNA sequences [71]. TALE proteins can be fused with
transcriptional activators such as VP64 or p300 to increase endogenous gene expression
by the activation of transcription initiation of the target gene. In vitro in FRDA fibroblasts
and in vivo in YG8R mice, nucleofecting plasmids expressing TALE-VP64s or delivering
TALE-VP64s via the AAV vector induces the expression of the FXN gene and increases
aconitase activity [70].

7. Iron

Frataxin plays a critical role in the synthesis of Fe-S clusters, which are protein cofac-
tors that mediate redox reactions within the electron transport chain and in other pathways.
The mitochondrial Fe-S cluster assembly complex comprises a few components: the cys-
teine desulfurase NFS1, its accessory protein ISD11, the assembly scaffold ISCU2, and
frataxin itself [72,73]. Within this complex, frataxin is an activator of NFS1 activity and
facilitates the transfer of sulfur to ISCU2 [74]. The interaction between frataxin and the
Fe-S cluster assembly complex not only increases the efficiency of sulfur transfer but also
supports the formation of a stable Fe-S cluster, which is essential for mitochondrial function.
Therefore, in conditions such as FRDA, reduced frataxin levels compromise these Fe-S
cluster biogenesis activities.

In patients with Friedreich’s ataxia (FRDA), there appears to be a positive feedback
loop relating to iron levels and frataxin expression. Reduced levels of frataxin and disrup-
tions in an Fe-S cluster assembly lead to iron accumulation within the mitochondria and a
depletion of cytosolic iron [75,76]. This cytosolic depletion, in turn, leads to iron-dependent
downregulation of FXN transcription [77]. As demonstrated in human cell lines and FRDA
patient lymphoblasts and fibroblasts, iron chelator desferal (DFO) treatment decreases FXN
mRNA and protein levels while ferric ammonium citrate, an iron salt, increases its levels.
DFO treatment also reduces the expression of luciferase under the control of FXN promoter
in vitro [77]. More specifically, frataxin deficiency results in the upregulation of transferrin
receptor 1 (Tfr1) expression. Tfr1 binds to transferrin, a protein that transports iron in
the blood, and allows for its cellular uptake. In FRDA, increased levels of Tfr1 on cell
surfaces result in a greater influx of iron into the cells [78,79]. Rather than remaining in the
cytosol, iron is preferentially directed towards the mitochondria, which senses a deficiency
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in iron due to the frataxin-related impairment of Fe-S cluster formation. Additionally,
frataxin deficiency results in concurrent downregulation of ferroportin 1 (Fpn1), an iron-
exporting protein [79]. The net result is a compounding problem of iron buildup within
the mitochondria and iron depletion in the cytosol, leading to further downregulation of
frataxin (Figure 1). Unknown is the precise mechanism via which iron regulates FXN gene
transcription.
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Figure 1. Mechanism linking iron metabolism and frataxin expression in the context of FRDA.
Deficiency in frataxin leads to decreased NFS1 activity and reduced Fe-S cluster assembly. This results
in elevated mitochondrial iron levels, which prompts an adaptive cellular response, characterized
by upregulated Transferrin receptor 1 (TfR1) and downregulated Ferroportin 1 (Fpn1). This leads
to enhanced iron import and reduced export, respectively. Because imported iron is preferentially
directed to the mitochondria, cytosolic iron levels decline, leading to further frataxin decrease. In
essence, this feedback loop perpetuates mitochondrial overload and frataxin deficiency in FRDA.

Strategies are developed to improve the distribution of iron between the cytosol and
mitochondria in order to achieve a beneficial effect. Deferiprone, an iron chelator with
a cell membrane crossing ability and low iron affinity, restores mitochondrial function
in frataxin-deficient HEK293 cells [80], reduces ROS production, and improves calcium
handling kinetics in an FRDA iPSC-derived cardiomyocyte model [81]. Deferiprone treat-
ment, however, has mixed results in FRDA patients. While a low dose improves cardiac
parameters, a high dose decreases frataxin levels and Fe-S enzyme activity, reflecting the
iron depletion effect [82]. Therefore, iron chelator therapy should be used with caution.

8. Post-Transcriptional Regulation of FXN Gene Expression

Post-transcriptional regulation is the process of controlling the expression of genes
at the RNA level through splicing, structural modification, or alteration of RNA stability.
FXN is one of the genes whose expression can be altered by post-transcriptional regulation.

9. miRNAs

MicroRNAs (miRNAs) are short (18–23 nt) non-coding RNAs which bind predom-
inantly to the 3′UTRs of complementary mRNAs and regulate their expression at the
post-transcriptional level [83]. miRNAs are generally negative regulators of gene expres-
sion, yet they have occasionally been found to be positive regulators [84]. Differentially
expressed miRNAs, both upregulated and downregulated, are found in FRDA patient
cells including lymphoblasts, fibroblasts, periodontal ligament cells, and blood [85–88].
miRNA-224-5 and miRNA-886-3p are two upregulated miRNAs in FRDA patient cells that
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target the FXN transcript [85,86]. Overexpressing miRNA-224-5 decreases FXN mRNA and
protein levels in Hela cells in vitro [85] while blocking miRNA-886-3p with anti-miRNA
oligonucleotide raises FXN mRNA and proteins levels in FRDA fibroblasts. As the action
of miRNA-886-3p also involves transcriptional control [86], further research is necessary to
fully understand the mechanism underlying the regulation of miRNAs on FXN mRNA.

In addition to directly regulating FXN mRNA levels, miRNAs are also implicated in
the pathogenesis of FRDA by regulating other genes such as brain-derived neurotrophic
factor (BDNF). BDNF is an important regulator of neuronal growth, and reduced BDNF
gene expression is found in patients with FRDA [85]. The gene transfer of BDNF into both
primary neurons and a mouse model of FRDA impedes neurodegeneration [89]. miRNA-
10a-5p negatively regulates BDNF mRNA by binding to its 3′UTRs [85]. In FRDA fibroblasts,
miRNA-10a-5p is upregulated, while BDNF mRNA levels are decreased. Zinc-finger
nuclease-mediated excision of the expanded GAA repeats corrects miRNA-10a-5p elevation,
BDNF mRNA deficit, and FXN deficiency [85], highlighting the importance of miRNAs in
the pathogenesis of FRDA and the possibility of miRNAs as FRDA treatment targets.

10. Post-Translational Regulation of Frataxin

Frataxin is produced in the cytosol as a precursor. Following synthesis, the frataxin
precursor is imported into the mitochondria, where it undergoes mitochondrial processing
peptidase (MPP)-mediated cleavage and maturation [90]. As a result, before becoming
functional mature frataxin, frataxin post-translational regulation can happen at several
stages and in several places.

11. Chaperones

GRP75, also known as mortalin or mtHsp70, is a multifunctional mitochondrial molec-
ular chaperone of the heat shock protein family that is predominantly localized within the
mitochondria, although it is also found in other cellular compartments [91,92]. GRP75 is
involved in several physiological functions, such as protein folding, ISC protein synthesis,
and cell survival, and is essential for maintaining cellular homeostasis and responding to
stress [92–95]. Additionally, GRP75 participates in mitochondrial protein import. GRP75 is
the core of the mitochondrial import motor complex that is required for translocation of
most inner membrane or matrix-targeted proteins [96–98]. Whereas its C-terminal-peptide
binding domain directly interacts with substrates, its N-terminal ATPase domain binds to
ATP and hydrolyzes it to ADP. ATP hydrolysis not only provides energy for the membrane
transport of the precursor polypeptides but also causes a conformational change in GRP75
that causes the precursor polypeptides to bind and to be released. GRP75 undergoes
regulated cycling during the import process [98]. In yeast, the import and processing of
the yeast frataxin homolog Yfh1p are impaired by mutations in the yeast GRP75 homologs
SSC1 and SSQ1, which share 66% and 49% identity to GRP75, respectively. In contrast,
GRP75 complements the function of yeast homologs in the maturation of Yfh1p [99–101].
GRP75 physically interacts with frataxin in human embryonic kidney 293 (HEK293) and
COS7 cells, and knockdown of GRP75 decreases the level of frataxin in cancer cell lines [99].

GRP75 is a key post-translational regulator of both the amount and function of frataxin,
controlling it both before and following mitochondrial import [102]. GRP75 overexpression
raises the levels of precursor, intermediate, and mature frataxin in heterogeneous systems
and rescues frataxin deficiency, ATP deficiency, and mitochondrial network defects in FRDA
patient cells. GRP75 predominantly affects the frataxin precursor as the increase brought
about by GRP75 overexpression on frataxin precursor is about nine times greater than that
of the intermediate and mature forms, most likely reflecting its chaperone activity, which
prevents the aggregation and degradation of frataxin precursor during its trafficking to
mitochondria. The effect of GRP75 on mature frataxin is attributed to both increases in the
pool of frataxin precursor and the interaction of GRP75 with frataxin and MPP, which results
in the formation of a tertiary complex and enhanced accessibility and processing efficiency
of frataxin by MPP [102]. Importantly, GRP75 overexpression has more prominent effects
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on clinically relevant missense frataxin variants including G130V, W168R, I154F, W155R,
R165C, G137V, and I154F, which are found in compound heterozygote patients and, in
general, lead to lower frataxin levels because of reduced protein stability and mitochondrial
import. As GRP75 levels are decreased in multiple cell types of FRDA patients [102],
restoring GRP75 might be effective in treating both typical FRDA patients with two GAA
repeat expansions and compound heterozygous patients with point mutations.

Tumorous imaginal disc 1 (TID1), also called DnaJ homolog subfamily A member 3,
mitochondrial (DNAJA3), is a novel binding partner of frataxin recently identified with a
proteomic approach. TID1 is another member of the heat shock protein (Hsp) 40 family
functioning as a cochaperone and regulatory component for Hsp70. TID1 interacts with
the Hsp70 family of chaperone proteins via its distinctive J domain, a highly conserved
tetrahelical region, which increases their ATPase activity for substrate binding [103–107].
TID1 also affects cell survival, proliferation, and responses to stress [108–112]. Acute and
sub-acute frataxin deficiency results in elevated TID1 levels in multiple tissues including
the cerebellum, skeletal muscle, and heart in a FRDA mouse model [113]. This elevation in-
creases the frataxin precursor and decreases intermediate and mature forms in heterologous
systems. In primary culture cells, TID1L and TID1S, two splice variants of TID1, exhibit dif-
ferential roles in regulating frataxin levels. TID1S overexpression decreases mature frataxin,
while TID1L overexpression has no effect. This could be ascribed to differences in their
half-lives, protein interactome, and binding affinity to frataxin. The negative regulation of
TID1S on frataxin is mediated by its last six amino acids (TID1S448-453) as a competing
peptide generated from this sequence rescues frataxin deficiency and mitochondrial defects
in FRDA patient-derived cells [113]. The small molecular weight and ease of modification
offers the TID1S448-453 peptide a potential small molecule treatment option for FRDA.

12. Proteasome

Targeting the ubiquitin–proteasome system (UPS) is an increasingly more common
method of small molecule therapeutics. The UPS is a major pathway in regulating the
degradation of intracellular proteins, including that of frataxin. Proteins in the mitochondria
are generally shielded from UPS-mediated degradation, but precursor frataxin levels are
significantly reduced by the UPS before being imported into the mitochondrial matrix for
maturation [114–117]. There is a possibility, however, that UPS-mediated degradation of
frataxin may even occur on extramitochondrial mature frataxin [114]. Inhibition of the UPS
causes the accumulation of both precursor and mature frataxin; therefore, a UPS-targeted
strategy may be a beneficial therapy for treating FRDA patients.

Ubiquitination is a process involving the E1 ubiquitin-activating enzyme, E2 ubiquitin-
conjugating enzyme, and E3 ubiquitin ligase. The E3 ligase recognizes the substrate to be
ubiquitinated. The really interesting new gene (RING) finger protein 126 (RNF126) is the E3
ligase responsible for recognizing and interacting with the frataxin precursor, resulting in
its ubiquitination and subsequent degradation. The inhibition of RNF126 leads to increased
frataxin levels, making it a possible therapeutic target [115]. Since RNF126 has biological
importance in quality control, an approach that does not disturb RNF126’s catalytic activity
would be desirable.

Out of 13 potential lysine ubiquitination targets in frataxin, K147 is the main target be-
cause it is necessary and sufficient for frataxin ubiquitination through mono-ubiquitination.
Loss of this ubiquitination site results in increased stability of frataxin due to its relative
resistance to UPS-mediated degradation [114,116,117]. K147 is also the most conserved of
frataxin’s 13 lysines [114]. K147 is a member of a well-defined, druggable cleft on the surface
of frataxin. Small molecules called ubiquitin-competing molecules (UCMs) can be used
to bind directly to the molecular cleft containing K147 to prohibit frataxin ubiquitination
and degradation [114,116]. UCM interaction does not seem to alter frataxin function. This
physical interaction leads to the accumulation of frataxin, as well as increased aconitase
activity and ATP levels. Importantly, mature frataxin accumulation from UCM treatment
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reactivates Fe-S cluster biogenesis, supporting UCM as a potential FRDA therapeutic
application [116].

Phosphorylation is another post-translational modification that interacts with ubiq-
uitination to lead to frataxin degradation. Src tyrosine kinase phosphorylates frataxin on
Y118, which then promotes frataxin ubiquitination. Inhibiting Src activity increases frataxin
levels and rescues aconitase defects [117]. Therefore, Src kinase also has potential as a
therapeutic target.

13. Mitochondrial Proteases

Mitochondrial proteases are the central regulators of mitochondrial proteostasis. In
addition to their role as quality control enzymes that remove damaged proteins and prevent
their possible deleterious accumulation, mitochondrial proteases regulate the half-life of
proteins, play roles in mitochondrial protein maturation, such as MPP, and occasionally
act as scaffolds without proteolytic activity [90,118,119]. The four functional groups of
mitochondrial proteases include ATP-dependent peptidases, oliogo-peptidases, processing
peptidases, and other mitochondrial peptidases [118]. Several mitochondrial proteases
regulate the turnover of frataxin protein in addition to MPP. An siRNA screen in 293T
cells targeting known mitochondrial proteases identified PITRM1, an ATP-dependent
metalloprotease that breaks down post-cleavage mitochondrial transit peptides. Although
the exact role of intermediate frataxin remains unknown, PITRM1 knockdown raises the
amounts of intermediate frataxin in multiple cell lines and FRDA fibroblasts [120]. Other
identified mitochondrial proteases in the same siRNA screen are SPG7/paraplegin and
ClpP; however, their effects are not as strong as those of PITTRM1 [120].

The yeast mitochondrial Lon protease Pim1, which controls the turnover of oxidized
proteins [121,122], also regulates frataxin. The deletion of Pim1 reverses the loss of Yfh1,
the homolog of human FXN, in Erg29-deficient cells. A loss of function in the Erg29
gene (involved in the synthesis of ergosterol in yeast) increases the levels of 4′methyl
sterol intermediates, leading to an iron-dependent oxidation of Yfh1 and subsequent
decrease in Yfh1 levels [123]. Mitochondrial iron exporter (Mmt1) overexpression shields
Yfh1 in ERG29-deficient cells from Pim1 mediated degradation [124]. In the same way
that iron-treated FRDA fibroblasts exhibit a further reduction in frataxin levels, the Lon1
protease inhibitor 2-cyano3,12-dioxooleana-1,9-dien-28-oic acid methyl ester (CDDO–Me)
counteracts this effect [124], suggesting that frataxin-deficiency-caused mitochondrial
oxidative stress can in turn cause a further decrease in frataxin levels via Lon1 protease.

14. Autophagy

Autophagy is a highly regulated mechanism that prevents the cell from self-destruction
in a low-resource-nutrient environment. Autophagy is a multiple process involving the
formation of autophagosomes, a double membrane-bound vesicle that engulfs a wide range
of intracellular materials including misfolded proteins and damaged organelles, the fusion
of autophagosome with lysosome, and the degradation of enclosed contents within the
lysosome [125]. Along with the UPS, it is regarded as one of the main protein degradation
systems. It is also thought of as a defense mechanism against ROS since it facilitates the
breakdown of damaged proteins and cytosolic components [126]. Autophagy is often
activated in FRDA in the aftermath of dysregulated iron and energy metabolism (Figure 2).
Upregulated autophagic markers such as Atg3, p62, and FUNDC1 are observed in the
hearts of the muscle creatine kinase conditional frataxin knockout mouse-MCK [127]. Such
mice have positive iron staining in the hearts and markedly reduced cardiac function. In
the nematode Caenorhabditis elegans model with frataxin silencing, autophagy is induced in
a Parkin/pdr-1-, Pink/pdr-1-, and Bnip3/dct-1-dependent manner and involved in animal
lifespan extension [128]. It was later found that Beclin and p53 are required for the induction
of autophagy in Caenorhabditis elegans [129]. FRDA-patient-derived lymphoblasts also
display increased autophagy, indicating an evolutionarily conserved response to reduced
frataxin expression.
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Figure 2. Autophagy activation. The decreased amount of frataxin leads to a dysregulated iron
metabolism, a low amount of iron–sulfur clusters, and an upregulation of reactive oxygen species.
This ultimately leads to the activation of autophagy.

The role of autophagy has also been studied to determine its effect on precursor,
intermediate, and mature frataxin levels. Transfecting siRNAs targeting ULK1 (UNC-51-
like kinase 1), a regulator and a potential early initiator of autophagy, leads to a slight
increase in intermediate but not mature frataxin in HEK293T cells [120]. Conversely,
pharmacologically inducing autophagy with mTORC1/2 inhibitor INK128 diminishes
intermediate frataxin signals without any effect on mature FXN levels, indicating that
modulation of the autophagy pathway regulates intermediate frataxin but not mature
FXN levels. Further understanding the role of intermediate frataxin and the mechanism
underlying the regulation of autophagy on frataxin might provide a potential avenue for a
therapeutic effect.

15. Conclusions

Further drugs are required for the treatment of FRDA, a neurological illness that
progresses over time. One of the main therapeutic strategies for FRDA patients is the
restoration of their frataxin levels. The knowledge of frataxin gene regulation at the tran-
scriptional, post-transcriptional, and post-translational stages has advanced significantly.
This has led to the identification of potential therapies including gene therapy, gene editing,
and intervention to protein turnover (Table 1). However, there are still many unanswered
questions and aspects of the control of the frataxin gene and its function that need to be
explored. The answers to these queries may open new opportunities for treatment.

Table 1. Treatment options related to FXN gene expression regulation.

FXN Gene Regulation Factors Treatment Options

GAA repeat expansion CRISPR-Cas9- or zinc finger nuclease-mediated removal of GAA repeat expansion

Transcription factors Transcription Activator-Like Effectors (TALE) (TALE-VP64s)

Iron Iron chelator-Deferiprone

miRNAs Anti-miRNA oligonucleotide targeting miRNA-224-5 or miRNA-886-3p

Chaperones GRP75 overexpression, TID1S448-453 peptide

Proteasome Ubiquitin-competing molecules and Src tyrosine kinase inhibitor

Mitochondrial proteases Inhibitors of PITRM1 and Lon1 protease

Autophagy ULK1 inhibitor
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