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Abstract: A Point-of-Care system for molecular diagnosis (PoC-MD) is described, combining GaN
and CMOS chips. The device is a micro-system for fluorescence measurements, capable of analyzing
both intensity and lifetime. It consists of a hybrid micro-structure based on a 32 × 32 matrix
addressable GaN microLED array, with square LEDs of 50 µm edge length and 100 µm pitch, with an
underneath wire bonded custom chip integrating their drivers and placed face-to-face to an array of
16 × 16 single-photon avalanche diodes (SPADs) CMOS. This approach replaces instrumentation
based on lasers, bulky optical components, and discrete electronics with a full hybrid micro-system,
enabling measurements on 32 × 32 spots. The reported system is suitable for long lifetime (>10 ns)
fluorophores with a limit of detection ~1/4 µM. Proof-of-concept measurements of streptavidin
conjugate Qdot™ 605 and Amino PEG Qdot™ 705 are demonstrated, along with the device ability to
detect both fluorophores in the same measurement.

Keywords: Point-of-Care; multiplex; microLED array; SPAD; fluorescence; lifetime fluorescence;
GaN; CMOS; microLED driver

1. Introduction

During the last decades, the increase in life expectancy has led to a global population
aging, significantly increasing the demand for healthcare services for elderly individuals.
According to the World Health Organization (WHO), this trend of the global population’s
average age rising is anticipated to continue in the years ahead. It is expected that by 2030,
1 in 6 people worldwide will be over 60 years old (1.4 billion), and by 2050, this number
is projected to reach 2.1 billion. Additionally, the number of people over 80 years old is
expected to triple from 2020 to 2050. The expectation is that by 2050, 80% of older people
will live in low- and middle-income countries [1]. In these environments, access to the
health system is difficult due to several factors, including lack of resources, low staff pay,
and lack of equipment and infrastructure, including accessibility of health services or low
levels of education [2]. One outcome of inadequate access to the health system is the delay in
disease diagnosis, which can be critical for saving patients’ lives and preventing the spread
of infectious diseases [3–6]. Moreover, studies indicate that early detection and analysis of
diseases led to a decreased time, cost, and necessity for further diagnostic procedures, for
example, early detection of a disease such as influenza in children presenting with fever at
emergency rooms [7].

The emergence of technologies that enhance efficiency and reduce diagnosis time has
spurred the development of several rapid diagnostic platforms suitable for Point-of-Care
(PoC) applications [8]. With the application of fast diagnostic methods such as PoC devices
for just four common diseases–syphilis, tuberculosis, malaria, and bacterial pneumonia–it
is possible to prevent 1.2 million deaths annually [9,10].
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PoC takes special relevance by bringing the clinical laboratory closer to the patient
and with reduced cost. This is especially relevant since the majority of the population
that would require higher access to healthcare services is located in places with limited
access to these services. The key features of PoC include portability, ease of use, and rapid
result turnaround times. These features enable diagnosis and monitoring of diseases, and
furthermore, management near to the patient, which facilitates personalized therapy and
enhances patient outcomes with a reduced overall cost for the National Health Systems [11].
According to WHO, PoC tests considered appropriate for the delivery of healthcare in
this resource-limited environment should meet the criteria of “ASSURED”, which stands
for Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and
Deliverable [12,13].

A PoC device is usually formed by five components: sensing tool, transducer, target,
prove, and signal readout device [14]. PoC devices have been proven to be useful in a
wide range of applications, such as diagnosis of immunological [15], cardiovascular [16],
infectious [12], neurodegenerative [17], and oncological diseases [18]. Moreover, they can
also be used in blood [19], genetic [20], and microbiology testing [21]. All these applications
are performed by different transducers, but the most common and inexpensive one is optics,
specifically imaging analysis by fluorescence [22–24]. There are several PoC devices that use
fluorescence as transduction tools in the literature. The research reports that PoC devices
based on fluorescence have good efficiency and performance, and they aim to improve
the limit of detection (LoD) and miniaturization. In these devices, the most used light
source to produce fluorescence is a laser [25–28]. However, in recent years, the use of Light
Emitting Diodes (LEDs) and microLEDs has been introduced in some PoC devices [29–32].
Additional elements of these PoC are lenses to focus light on the sample and to improve
the detection of light coming from the fluorophores, emission and excitation filters, and
a photodetector.

Fluorescence-based PoCs are typically designed to identify the presence of a specific
substance through intensity measurements. The intensity measurements are performed by
continuously illuminating the sample that is excited by the light. If the targeted analyte is
present, the sample emits fluorescence light red-shifted compared to the original excitation
light. The emitted light is tracked and utilized to measure a biochemical reaction or binding
occurrence, offering high accuracy, sensitivity (capable of single molecule detection), and
precise labeling of biological samples [33]. Nevertheless, fluorescence techniques relying on
intensity measurements are susceptible to misinterpretation because they depend on factors
such as excitation light intensity and fluorophore concentration. It can be found in the
literature that one of the solutions proposed to overcome these limitations is provided by
time-resolved techniques, in which the lifetime or the decay of the fluorophores is measured.
The lifetime of a fluorophore is an intrinsic characteristic of each molecule, and is therefore
independent of the concentration or excitation intensity of the fluorophore [24,34]. In
these measurements, the light source is pulsed, exciting the sample for a specified time.
Once the light source is turned off, it is possible to measure the lifetime of the fluorophore.
A key feature that limits the capability to detect fluorophores lifetimes is the speed at
which the device can turn off the light source, limiting the minimum detectable lifetime.
Moreover, the possibility of detecting fluorophore lifetimes enhances the specificity of
the measurement by time domain discrimination, thus allowing us to discern the light
of interest from the background noise [35]. Furthermore, it allows us to discern between
different fluorophores with overlapping emission spectra but with different lifetimes in
multiplexed assays [36–38].
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In recent years, several advances have been made in PoC devices, especially using
LEDs, since they are less expensive than lasers. Furthermore, the use of LEDs in arrays
allows multiplexing. U. Obahiagbon et al. [39] presented a PoC using an array of 2 × 2
green LEDs to detect antibodies to HPV16 and 18 proteins. In [40], F. B. Myers et al.
designed a PoC and performed an assay for the HIV integrase gene, which they were
able to detect at a concentration of 103 copies/µL. J. T. Smith et al. [41] used the device
presented in [39] to measure a disposable 4-site fluorescent microscope slide reader with
high sensitivity for LMIC disease diagnosis. Manzanas et al. [42] developed a rapid
and sensitive multiplexed PoC device capable of simultaneous detection of SARS-CoV-
2 and influenza A HINI viruses in 50 min with the use of a blue LED. In [43], B. Shu
et al. pursued an ultraportable, automated, and multiplexed PoC molecular platform
that can provide screening of infectious pathogens rapidly and with high sensitivity. The
PoC device reported has the possibility to work with 15-channel performing real-time
quantitative detection.

In this work, we present a PoC device that uses a GaN-based microLED array chip, in-
stead of lasers, LEDs, or LED arrays, as an excitation source. By following the trend in LED
platform development and making use of the advances in GaN-based microLED arrays, it
is possible to develop a device with high multiplexity. Specially, the high brightness capa-
bilities of the GaN-based LEDs [44,45] allow them to be a suitable substitute for the lasers
that are typically used in fluorescence PoC devices. Furthermore, their high modulation
bandwidth [46,47] (up to 1 GHz) makes them a perfect candidate for time-resolved fluores-
cence measurements. Therefore, in this work, a PoC device is built with a 32 × 32 matrix
addressable (MA) microLED array and a single-photon avalanche photodiodes (SPAD)
camera as the main components; that the device is able to perform both intensity and
time-correlated fluorescence measurements. Moreover, this device can perform both types
of measurements without any optical components.

In the subsequent sections, we describe the instrument and its components, followed
by a detailed characterization of the device. This includes measurements of fluorescence
intensity and fluorescent lifetimes across varying concentrations of two distinct quantum
dot molecules.

2. Materials and Methods
2.1. Instrument

A device was constructed that enables the acquisition of fluorescence intensity and
facilitates time-resolved experiments to assess fluorescence lifetime (Figure 1a,b). The setup
built for both fluorescence methods is the same. To perform the measurements, the LED
light is pulsed, and time gating is applied before the failing edge of the excitation [48,49].
For intensity measurements, the light measured after the LED is turned off is measured,
thus detecting a fluorophore or background. To perform time-correlated measurements,
the arrival time of the photons is measured, and the lifetime is obtained after processing the
obtained histogram [50]. Thus, when performing the measurements as described, a filter
is not necessary. This allows the setup to increase its miniaturization and reduce its cost,
which are both key factors for PoC devices, following the “ASSURED” criteria. The main
part of the setup consists of a sandwich with the microLED array (Figure 1c) on one side
driven by a custom CMOS chip (Figure 1d) underneath and a custom CMOS SPAD optical
sensor on top. The sample is placed in between using a micromesh. Validation of the
instrument was conducted with two different quantum dots (QD605 and QD705, described
in Section 2.5) with different lifetimes. The quantum dots are deposited in different wells of
a micromesh plate (Section 2.6).
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Figure 1. The schematic view of the setup is shown in (a), and a picture of the setup is in (b). (c) is a
microscopic picture of the array of microLEDs with different LEDs turned on and (d) is a picture of
the CMOS driver wire bonded to the PCB.

2.2. microLED Array

The fabrication of the matrix-addressed LED arrays (Figure 1c) is described in detail
in a previous publication [51]. It consists of 32 × 32 squared LEDs of 50 µm edge length
edge length with 100 µm pitch (Figure 1c). This array is matrix addressable, having all
the anodes in the same column connected and all the cathodes in the same row connected
(Figure 2). This means the LED chip needs only 32 anode connections and 32 cathode
connections to address 1024 LEDs (32 × 32). They were fabricated from standard blue LED
wafers on InGaN/GaN basis, emitting at a peak wavelength of approximately 450 nm.
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The microLED chip was created by etching fin structures into the GaN film. Coupled
plasma reactive ion etching (ICP-RIE) was used to etch down to the sapphire substrate. A
subsequent wet etch in KOH ensured smoother fin sidewalls and improved passivation. A
Ti/Au-based metal pad was provided to each cathode on two opposite edges of the chip as
electrical contacts. Subsequently, the trenches in between the array of fins were filled with
the polymer benzocyclobuthene (BCB) that was applied by spin-coating. The following
hardbake is required to cure the BCB. After this procedure, the resin covers the whole array,
and careful mechanical polishing was used for removal and planarization of the BCB, until
the fin surfaces were exposed again. Subsequently, an SU-8-based insulation layer was
created on the planarized surface, with 32 × 32 openings that define the pixel positions on
the fins. Pd/Au contact pads to the p-GaN were then deposited in the opening of the SU-8,
and metal lines of Ti/Au were deposited perpendicular to the fins, each connecting a row
of pixels and leading to a contact pad at the two remaining chip edges. Another SU-8 layer
was then applied as encapsulation of the chip.

From matrix addressable LED chips, it is expected that the larger the number of pixels
is, the larger the capacitance to drive is, since the capacitance of every LED per row (or
column) is added to the anode (or cathode) node. This would affect the driving rate of
the LEDs and, for a large number of pixels, a higher current will be required compared
to a smaller number. However, a similar problem affects direct addressable (DA) arrays,
since the resistance of the interconnection between each LED with its driver increases
considerably, causing a similar RC delay [52,53].

2.3. Custom Driver Chip

A chip was produced with the capability of driving the 32 × 32 matrix addressing LED
array. The chip contains 32 anodes (p-contacts) and 32 cathodes (n-contacts) drivers. Each
driver consists of a combination of these two main circuits (one anode driver Ai and one
cathode driver Bi), both shown in Figure 3b. In MA, to switch on an LED, the associated
row (anode) must be biased positive while the associated column (cathode) is at ground
(Figure 2). The rest of the columns must be biased positive too. First, a column of cathodes
Bi (Figure 2) is selected by switching the voltage to 0 V, thus allowing us to drive the LEDs
in that column. Then, the LEDs in each row are turned on and off by switching the anode
drivers Ai (Figure 2). These circuits are designed so the critical node is the anode, which
determines the rate at which the LED is charged/discharged.

The driver can operate up to 10 V, thus allowing the LED to provide high optical
power (~30 µW at 6 V [51]). The capability of these drivers to generate driving voltages up
to 10 V also enables the circuit to be used to drive nanoLEDs [54], which usually work at a
higher voltage bias [55] because of the high resistance associated with the interconnection
of the LED with the CMOS [54]. In the matrix addressing LED array of this work, the
driver can turn off an LED in 2 ns (Figure 4), thus allowing this circuit to be used in
time-resolved fluorescence.

Each anode driving pixel measures 572 × 95 µm2 and contains a low-voltage short
pulse generator (Figure 3a) and the high-voltage driving circuit (Figure 3b M5–M8). The
cathode driving pixel measures 175 × 115 µm2, has the low-voltage short pulse generator
(Figure 3a), and the high-voltage driving circuit (Figure 3b M9–M12). The short-pulse
generator consists of an AND gate between an external input signal (Trig) and its delayed
and inverted version. The width of the pulse (PA for the anode and PC for the cathode)
is controlled by a bias voltage (Vbias) that changes the resistance of M4. To allow longer
pulses, M2 is driven by an enable (En) signal, which disables the circuit, allowing the use
of an external signal to drive the LED. The anode driver consists of a level shifter (M5
and M6) and a high voltage inverter (M7 and M8) with a high W/L ratio that allows fast
charge/discharge of the LEDs. The cathode driver consists of a level shifter (M11 and M12)
and a high-voltage inverter (M9 and M10).
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Figure 3. Short pulse generation circuit (a) and the anode and cathode driving elements (b). The
anode and cathode driving circuits are composed of high voltage output buffers (M7–M8 for the
anode driver and M9–M10 for the cathode driver) and level shifters (M5–M6 and M11–M12) with a
NAND gate per driver to select the specific LED.

Biosensors 2024, 14, x FOR PEER REVIEW 6 of 17 
 

 
(a) 

 
(b) 

Figure 3. Short pulse generation circuit (a) and the anode and cathode driving elements (b). The 

anode and cathode driving circuits are composed of high voltage output buffers (M7–M8 for the 

anode driver and M9–M10 for the cathode driver) and level shifters (M5–M6 and M11–M12) with a 

NAND gate per driver to select the specific LED. 

To measure the response time of the fluorophore and to calculate its decay time con-

stant (or lifetime), the sample must be excited with a light source that is able to turn off as 

fast as possible. The faster the driver can turn off the light source, the shorter the decay 

times of the fluorophores the device would be able to measure. Figure 4 shows the results 

of performing time-correlated single photon counting with single LED pulses to observe 

its rapid response. To conduct such measurements, the SPAD camera described in the 

following section was used. As can be observed in Figure 4, the CMOS driving circuit is 

designed to be able to perform fast transitions, thus enabling it to harness the rapid re-

sponse that GaN LEDs provides. In this case, it is proven that the LED can be turned off 

in the 2 ns range for all the bias voltages (calculated from 90% to 10% of the maximum 

signal), which allows the device to perform detections of fluorophores with lifetimes 

down to the range of several ns. 

 

Figure 4. Driving circuit turning off a microLED for different bias voltages. It can be observed that 

the turn off time is the same for all the bias voltage, therefore making the circuit speed robust to 

Figure 4. Driving circuit turning off a microLED for different bias voltages. It can be observed that the
turn off time is the same for all the bias voltage, therefore making the circuit speed robust to changes
in the driving voltage of the LEDs. The y axis (Counts) represents the optical intensity captured by
the SPAD sensor.

To measure the response time of the fluorophore and to calculate its decay time
constant (or lifetime), the sample must be excited with a light source that is able to turn
off as fast as possible. The faster the driver can turn off the light source, the shorter the
decay times of the fluorophores the device would be able to measure. Figure 4 shows the
results of performing time-correlated single photon counting with single LED pulses to
observe its rapid response. To conduct such measurements, the SPAD camera described in
the following section was used. As can be observed in Figure 4, the CMOS driving circuit
is designed to be able to perform fast transitions, thus enabling it to harness the rapid
response that GaN LEDs provides. In this case, it is proven that the LED can be turned
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off in the 2 ns range for all the bias voltages (calculated from 90% to 10% of the maximum
signal), which allows the device to perform detections of fluorophores with lifetimes down
to the range of several ns.

2.4. SPAD Camera

Details about the custom CMOS SPAD camera, designed in Barcelona, Spain, and
manufactured by Austria MicroSystems, Premstaetten, Austria, can be found in a previous
publication [56]. It was manufactured in a 0.35 µm High-Voltage (HV) CMOS process. The
camera consists of 16 × 16 circular SPAD sensors with 10 µm diameter and a pitch of 70 µm.
The camera has low noise, with a Dark Count Rate (DCR) below 1 kHz for 90% of the
pixels at the working conditions (19 V breakdown voltage, with an overvoltage of 1.3 V).
However, for the experiments performed here, one pixel is selected with a DCR of only
300 Hz. The Photon Detection Probability (PDP) of the chip is 12% centered in 570 nm. For
timing measurements, a SPAD sensor provides a time resolution in the order of ps [57,58].
Acquisition in this work is performed with an external FPGA (ZedBoard Zynq.7000, pur-
chased from Digilent, Pullman, WA, USA [59]) with a minimum bin resolution of 68 ps and
a maximum number of bins of 6402 [60].

2.5. Fluorescent Particles

QDot® 605 ITK™ Streptavidin [61] and QDot® 705 ITK™ Amino PEG [62], referred to
as QD605 and QD705, respectively, were both purchased from Life Technologies, Waltham,
MA, USA. D705 is equipped with amine-derivatized polyethylene glycol (PEG) ligands
covalently bonded to an amphiphilic coating, which enhances their water solubility and
facilitates the conjugation of biomolecules. This conjugation is enabled through the reactive
amino groups via N-hydroxysuccinimide (NHS) esters. QD605 is comprised of a biotin-
binding protein linked to a fluorescent label. Due to its high affinity for biotin, streptavidin
in QD605 is typically used with biotinylated conjugates for the targeted detection of various
proteins, protein motifs, nucleic acids, and other biomolecules.

The maximum emission peaks for QD605 and QD705 are in 605 nm and 705 nm,
respectively. Both are excited in the UV but have a reasonable excitation, with maximum
emission at 450 nm for the LEDs used in this work around 20%. QD605 has an expected
lifetime in the order of 32 ns, reported by J. Canals et al. [24]. QD705 has an expected
lifetime of around 80 ns, as reported in [63] by S. Bhuckory et al.

2.6. Micromesh

To distribute the fluorophores in known distance zones, a micromesh was used. The
micromesh was purchased from Tebu-bio Spain S.L., Barcelona, Spain [64]. Microwell
diameter is 250 µm with 500 µm pitch. In the experiments, a volume of 5 nL QD was loaded
in selected microwells of the micromesh.

3. Results
3.1. Intensity of Fluorescence Measurements

For fluorescence intensity measurements, the LEDs were initially calibrated to provide
the same optical output, measured as 150,000 counts in the SPAD. The SPAD sensor
measured 255,000 times, with windows of detection of 200 ns for each LED. In Figure 5,
we present the map of the intensity the LEDs have at 6 V bias voltage (Figure 5a) and the
equalization for 150,000 counts (Figure 5b).



Biosensors 2024, 14, 264 8 of 17

Biosensors 2024, 14, x FOR PEER REVIEW 8 of 17 
 

detected in the two microwells as it is shown in Figure 6, such that there are five LEDs 

under every microwell. As can be observed, the only place where QD605 is detected is in 

the orange areas, corresponding to two crosses formed by the LEDs, where the microwells 

contain samples. The number of counts measured in the areas where QD605 was depos-

ited is in the range from 950 to 1050. On the other areas, the number of counts measured 

is lower than 150. So, the device can discriminate areas with QD605 at concentration of 1 

µM at low volumes (5 nL). 

 
(a) 

 
(b) 

Figure 5. LEDs at 6V bias voltage (a) without any calibration. Each LED emits different power. In 

(b) all the LEDs were calibrated to 150 kcounts. In (b) there are visible non-working LEDs. 

 

Figure 6. Image acquired by the device, where QD605 is detected in the orange areas (above 1000 

counts in each one). The other part of the image corresponds to absence of QD605. 

Moreover, to test the capabilities of the device, different concentrations were meas-

ured for both QD605 and QD705, with the device being able to achieve a LoD of 1/4 µM. 

As can be observed, at 1/8 µM, the same number of counts are detected as in the Instru-

ment Response (IR), i.e., the background counts when there is no fluorophore (Figure 7). 

Figure 5. LEDs at 6V bias voltage (a) without any calibration. Each LED emits different power. In (b)
all the LEDs were calibrated to 150 kcounts. In (b) there are visible non-working LEDs.

With the LEDs calibrated, the experiment was performed. A micromesh with QD605
placed in two microwells was positioned on top of the microLED array. The measurement
for each LED was performed for 2 ms. In this period, the LED was pulsed 10,000 times.
First, the LED was switched on for 130 ns to excite the fluorophore. Then, the LED was
switched off and the SPAD was activated to measure the light emitted by the fluorophore.
The SPAD sensor was activated 3 ns after the LED was turned off. Figure 6 shows the
intensity emitted by the QD605 after exciting the 32 × 32 LEDs one by one. QD605 was
detected in the two microwells as it is shown in Figure 6, such that there are five LEDs
under every microwell. As can be observed, the only place where QD605 is detected is in
the orange areas, corresponding to two crosses formed by the LEDs, where the microwells
contain samples. The number of counts measured in the areas where QD605 was deposited
is in the range from 950 to 1050. On the other areas, the number of counts measured is
lower than 150. So, the device can discriminate areas with QD605 at concentration of 1 µM
at low volumes (5 nL).
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Figure 6. Image acquired by the device, where QD605 is detected in the orange areas (above
1000 counts in each one). The other part of the image corresponds to absence of QD605.

Moreover, to test the capabilities of the device, different concentrations were measured
for both QD605 and QD705, with the device being able to achieve a LoD of 1/4 µM. As
can be observed, at 1/8 µM, the same number of counts are detected as in the Instrument
Response (IR), i.e., the background counts when there is no fluorophore (Figure 7).
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3.2. Time-Correlated Fluorescence Measurements

Time-Correlated Single Photon Counting (TCSPC) was used to acquire temporal
information. This method consists of exciting the sample with a pulsed light source. After
each excitation pulse, one of the photons emitted by the fluorophore can be detected by
the SPAD sensor, which stays inhibited after the detection. The arrival time of the photon
is then measured and catalogued in the corresponding histogram bin. By repeating this
method several times, a histogram that represents the decay curve of the fluorophore can
be reconstructed. The number of times the measurement was performed is one million,
with an exposure time of each measurement of 200 ns, which makes a total exposure time
of 200 ms. In this case, the number of photons detected never exceeds 5% of the total
number of measurements performed (1 million measurements, maximum of 50,000 counts)
in order to avoid pile-up effects [65]. In this work, the maximum counts detected for 1 µM
concentration is 15,000 counts, so it can be assured that pile-up effects would not affect
the device.

Figure 8 shows different reconstructed histograms corresponding to the two different
fluorophores and a measurement of the Instrument Reference Function (IRF). As can be
observed, the first 11 ns correspond to the LED source lighting the sample. After that,
the LED is turned off and the sum of the fluorophore light and the LED light decays are
detected. Then, after 3 ns, the LED is completely off (response < 3 counts). So, the influence
of the LED decay is negligible and the QD fluorescence light decay can be measured. The
decay of the fluorescence of QDs is described as a multi-exponential curve [66]. However,
sometimes it can be approximated as a mono-exponential decay

(
I f luor = Ae(−t\τ)

)
[24].

Figure 8 presents a linear fit of the logarithmic representation of the decay curve from
30 to 60 ns. Thus, from the inverse of the slope, the extracted lifetimes for QD605 and
QD705 are of ~31.3 ns ± 0.6 ns and ~81.7 ns ± 0.9 ns, respectively, which are in good
agreement with the reported values (32.7 ± 0.2 ns and 80.0 ± 3 ns, respectively) [24,63].
We also performed the analysis with a mixture of both QDs, as both fluorophores are
excited by the same wavelength. Figure 8c,d shows the fit with a bi-exponential model(

I f luor = A1e(−t\τ1) + A2e(−t\τ2)
)

. Two different fluorescence lifetime channels can be
selected, and we can estimate the QD605/QD705 ratio on the sample from the amplitude
coefficients of both exponentials. Simple linear unmixing of the dyes can be conducted
while assuming that there is no modification of the individual lifetimes [67].
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Figure 8. Decay time for QD605 at a concentration of 1 µM (a) (with A = 1953 and τ = 32.1 ns) and for
QD705 also at a concentration of 1 µM (b) (with A = 306 and τ = 80.4 ns). In both cases, it is shown the
fitted line (in red) where the amplitudes (A) and the lifetimes (τ) are obtained. (c,d) correspond to a
mixture of QD605/QD705 in ratio 1 µM/1 µM and 0.5 µM/1 µM, respectively. Bi-exponential fitting
results in A1 = 1915 and τ1 = 32.1 ns; A2 = 417 and τ2 = 81.1 ns in (c) and A1 = 989 and τ1 = 32.2 ns;
A2 = 397 and τ2 = 80.9 ns in (d).

The LoD of this device using time-correlated fluorescence measurements is the same as
that obtained with intensity measurements: 1/4 µM, as expected. Using the measurement
method mentioned above, 100 histograms were obtained. From these histograms, the
lifetime of each fluorophore was calculated for statistics. They are shown in Figure 9, where
QD605 has a mean lifetime of 31.3 ns ± 0.6 ns for concentrations from 1 µM to 1/4 µM and
QD705 has a mean lifetime of 81.7 ns ± 0.9 ns for concentrations from 1 µM to 1/4 µM.

Figure 10 shows a representation of the lifetimes measured on top of each LED. As
is clear from Figure 8, the slopes of QD705 and the IRF are very similar. To ensure that
we could discern the signal from the background, bins were integrated for every LED in
the range [30 ns, 60 ns], and a threshold of 5000 counts was established. Then, lifetimes
were evaluated, as described previously, for curves with higher counts. In Figure 10, the
zones where the fluorophores were detected correspond to the LEDs marked for QD605
and QD705. Pseudocolor was used to identify lifetimes, so that purple corresponds to
QD605 and yellow to QD705. Considering the differences observed among the different
fluorophores tested, we validated the instrument to develop a PoC based on fluorescence
lifetime measurements using microLED arrays operating by matrix addressing.
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4. Discussion

This research proposes a compact multiplex fluorescence detection system using an
array of matrix addressable microLED arrays. The advancements in GaN technology over
the past few years indicate that these devices could potentially replace lasers and other
illumination sources in the field of fluorescence, particularly in PoC technology [68,69].
GaN-based devices offer simplicity, greater integration capabilities, and cost-effectiveness,
making them promising alternatives. The performance of the device was validated through
experiments using reference fluorophores. Furthermore, the system was employed to
detect two different QD using time-correlated fluorescence measurements in the same
assay. Further studies on the proposed PoC device with fluorophores bonded to antibodies
and target infections are required to determine applicability. Moreover, the LoD of this
setup, with its current characteristics, is 1/4 µM. Nevertheless, this does not invalidate
the potential of the technique for detecting even lower concentrations, since the sensitivity
depends directly on factors such as the distance between the SPAD and the sample. In this
setup, the sample is located at 8 mm of the SPAD sensor, hence the low sensitivity. Some
improvement could be obtained by reducing the distance between the sample and the
sensors. Additionally, microlenses can be incorporated into the LED array chip to increase
the optical power on the fluorophores [70]. Similarly, microlenses can be added to the
SPAD array to gather the light being emitted from the fluorophores [71]. The upper LoD of
this setup could also be increased from 1 µM until the pile-up effect appears (5% counts
over total number of measurements) [65]. Nevertheless, to avoid pileup distortion in case
it occurs at higher concentrations, we can decrease the intensity of the excitation light by
controlling the bias current of the LEDs [72].
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Arrays of microLEDs were used for the first time in [73]. Thus, the use of microLEDs
for fluorescence detection has been implemented over and over in the past decades, but
typically this has been performed with directly addressable LED arrays, which are limited
by their own structure. The LED downscale size, pitch, and density in directly addressable
arrays is limited by the size that the connection lines can achieve. Thus, to have drivers
capable of providing the necessary speed to perform time-correlated fluorescence mea-
surements, an array with a certain pixel and pitch size is required, or, alternatively, a low
LED density on the chip. D. Bezshlyakh et al. [55] reported an array with 400 nm LED size
and 400 nm distance between adjacent LEDs with a maximum number of pixels achieved
of 6 × 6 due to limitations in space to connect the center pixels to the exterior. Thus, a
tradeoff must be made between the size and pitch of the pixels and the size of the array.
In [74], a custom chip was used to drive an array of 8 × 8 microLEDs for time-resolved
fluorescence measurements. There, the microLED array was bonded by flip-chip onto
the custom CMOS driver chip to obtain a direct addressing mode. The state of the art in
microLED arrays driven by CMOS circuits is hybrid interconnected arrays [75]. In these
devices, the CMOS driver must fit under the pixel; therefore, the smaller the pixel size
and pitch is, the smaller the driver is, which limits the switching speed of the circuit. The
circuits that achieved the higher speed in the field are reported by J. Canals et al. [76] and
N. B. Hassan et al. [77], achieving maximum speeds of 1 MHz, which makes these devices
unsuitable for time-resolved fluorescence measurements. Thus, this approach is a tradeoff
between driving capabilities, due to the size of the driving circuit that is below the LED,
and the density and size of LEDs. Given that the trend of microLED technology for displays
is to make smaller microLEDs integrated in higher density arrays, it is a limitation for the
use of this addressing mode. On the other hand, there is no limit on the size of the driving
circuitry for matrix addressable driving since there is a driver for each column and row of
the array that does not need to be under the LED pixel. This allows the driver to provide
enough driving current for fluorescence excitation and to be as large as necessary to achieve
the driving speeds required for time-resolved fluorescence.

Table 1 summarizes microLED arrays for framerate and array size used for different
fields. It can be observed in the tradeoff between array and pixel size, power, and speed.
An array with high PPI used for display applications is presented [78] for comparison. Such
an array has 1920 × 1080 pixels, but with a limited speed of 125 fps. On the high current
side, Poher et al. [79] described a matrix addressable array of 64 × 64 used for neuron
stimulation. They achieve high optical power by driving the LEDs up to 10 mA, but with a
limited speed of 600 fps.

Table 1. Comparison of GaN microLED arrays driven by CMOS circuits.

Reference [77] [76] [78] [79] [74] This Work

Driver type in-pixel in-pixel in-pixel MA DA MA

Application display display display neuron
stimulation fluorescence fluorescence

Resolution 128 × 128 512 × 512 1920 × 1080 64 × 64 8 × 8 32 × 32
Pixel pitch 50 µm 18 µm 2.5 µm 40 µm 200 µm 100 µm

Pixel density 508 PPI 1411 PPI 10,000 PPI 635 PPI 127 PPI 254 PPI

Switch speed 83 kfps 1 MHz–9.15
kfps n.a. 600 fps 1.28 GHz 500 MHz

Max. LED current 87 µA 120 µA 1.6 µA 10 mA n. a. 20 mA
LED bias voltage 5 V up to 5V n.a. V up to 4V up to 5V up to 10 V

CMOS Tech. Node 0.18 µm 0.18 µm n.a. n.a. 0.35 µm 0.35 µm

In this work, we propose the use of microLEDs for multiplexed time-resolved fluo-
rescence in PoC devices. It is centered on matrix addressable arrays that allow for high
integration, with the only limit being on the pixel pitch and size, which is determined
by the GaN technological limit. Moreover, the driving circuit can be placed outside the
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microLED array, which eliminates the limitation of the driver size that appears in hybrid
interconnected arrays, thus allowing us to design the driver to achieve the rates required
for time-resolved fluorescence measurements.

In addition, the research presented in this work paves the way for the development of
miniaturized microscopes [80–84] based on fluorescence, the gold standard tool used in
biology. This promising advancement is envisaged through the utilization of large arrays
integrating smaller LEDs, complemented by the appropriate driving circuits.

5. Conclusions

In this paper, we present a fluorescence detection device that allows for both inten-
sity and lifetime measurements. The device is small and easy to assemble, achieved by
joining the advantages of a camera with high SNR CMOS SPAD detectors with an array
of microLEDs, which provide high optical power and fast switching speed. Moreover, by
using time-gating with the SPAD, the device avoids the use of any optical filter to isolate
the fluorescence intensity from the LED light. This is possible thanks to the measurement
being taken after the LED is turned off. However, with the auxiliary electronics used to
control the device, this approach has some limitations. For lifetime evaluation, it restricts
the use of fluorophores to those with decay times longer than ~10 ns. This limits the use of
the PoC for organic fluorophores, with lifetimes well below 5 ns. To address such range,
new arrays with smaller LED size can be developed to reduce the parasitic capacitance and
decrease the switching response. Additionally, more efficient LED drivers with improved
switching times can be produced. Nevertheless, addressing such lifetimes could be difficult
for a miniaturized microLED-based PoC.

The results obtained by the system endorse that it can detect fluorophores in in-
tensity mode at a high speed, and, moreover, it can detect different fluorophores in the
same measurement by using the time-resolved fluorescence method. All of this can be
achieved while operating with very small samples volumes (5 nL). This device holds high
potential for applications in the scan of biological samples, analytical laboratories, and for
clinical diagnosis.

Furthermore, the device enables the possibility of advances in different fields, such
as building a fluorescence microscope by using an array of microLEDs [85] or building
multi-well detection devices for multiplexed assays.
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