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Abstract: In recent years, infectious disease diagnosis has increasingly turned to host-centered
approaches as a complement to pathogen-directed ones. The former, however, typically requires the
interpretation of complex multiple biomarker datasets to arrive at an informative diagnostic outcome.
This report describes a machine learning (ML)-based classification workflow that is intended as a
template for researchers seeking to apply ML approaches for developing host-based infectious disease
biomarker classifiers. As an example, we built a classification model that could accurately distinguish
between three disease etiology classes: bacterial, viral, and normal in human sera using host protein
biomarkers of known diagnostic utility. After collecting protein data from known disease samples,
we trained a series of increasingly complex Auto-ML models until arriving at an optimized classifier
that could differentiate viral, bacterial, and non-disease samples. Even when limited to a relatively
small training set size, the model had robust diagnostic characteristics and performed well when
faced with a blinded sample set. We present here a flexible approach for applying an Auto-ML-based
workflow for the identification of host biomarker classifiers with diagnostic utility for infectious
disease, and which can readily be adapted for multiple biomarker classes and disease states.

Keywords: machine learning; biomarker; host; diagnostic; protein; classification; infectious disease

1. Introduction

Infectious diseases represent a significant burden on human health, particularly in
austere or resource-limited settings. Despite advances in medical diagnostic capability, the
persistence of this issue, particularly in areas of the world with endemic and emerging
diseases, poses an increasing challenge. The majority of infectious disease diagnostic
assays are pathogen-focused tests that support accurate clinical decision-making; the most
common types being culture, polymerase-chain reaction (PCR), and serology. Pathogen-
targeted assays, however, can only detect what they are designed against and are blind to
novel or unexpected threats, as was seen for both the 2009 H1N1 influenza and SARS-CoV-2
pandemics [1–4]. Furthermore, it can take considerably longer to develop sensitive and
specific tests for an emerging pathogen. Even after the development of pathogen-specific
diagnostic tests, these assays are sometimes limited in sensitivity until the pathogen has
reached a critical bioburden at which point it can be detected in the sample matrix (e.g.,
viral load in whole blood), potentially delaying any effective clinical intervention. In
consideration of this, applications exist where a rapid, flexible identification strategy that is
not dependent on pathogen culture or targeted assays would be ideal.

An alternative to pathogen-specific identification lies in disease complementary ap-
proaches to infectious disease that instead focus on host response [5,6]. Measurement of
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host response to infection can encompass numerous biomarker classes, including soluble
proteins, cytological profiles, nucleic acids, and assorted metabolites. Regardless of the
specific biomarkers used, this type of diagnostic approach is pathogen agnostic; it does not
require a priori knowledge of the specific pathogen to be viable, instead relying on perturba-
tions to host biomarker homeostasis [7]. Detection of host biomarker changes in response to
infection can also be quite rapid, sometimes even preceding direct detection of the pathogen
itself [8–10]. As most of these soluble biomarkers exist at detectable endogenous levels in
healthy specimens, a threshold cutoff value typically segments diagnostic outcomes based
on differences from the nominal healthy baseline. For example, a research group recently
identified a panel of five host proteins present in plasma that could accurately predict a
patient’s Tuberculosis status up to 2 years prior to formal diagnosis based on detection of
Mycobacterium tuberculosis in patient biofluids [11]. In such a scenario, clinical access
to prognostic and/or diagnostic tools that are independent of direct pathogen detection
represents a significant value. Successful deployment of such clinical diagnostic assays
holds significant benefits including the ability to rapidly repurpose existing assays for novel
threats and to make timely and effective clinical interventions. In the case of bacterial vs.
viral etiology identification, this could inform patient care with decisions like antibiotic use,
quarantine from other patients, and general patient risk stratification [12]. To realize this po-
tential, considerable obstacles must be overcome, most significantly the ability to correctly
interpret multiparametric data. Due to patient-to-patient disease variance, reliance on a
single host biomarker for a disease diagnostic may have poor diagnostic value [13]. This is
compounded by the fact that host proteins can be impacted by a range of factors, microbial
as well as non-microbial influences including age, diet, obesity, stress, and individual
genetics [14]. To address this relative lack of non-specificity at the single biomarker level, an
alternate approach involves relying on multiplexed pools of host biomarker analytes to in-
crease both assay diagnostic performance and robustness. Introducing this complexity into
an assay, however, poses challenges to the definition of an exact classifier for determining
the diagnostic outcome.

Machine learning (ML) is a subfield of artificial intelligence that has rapidly gained
traction in recent years in several areas, including biology [15–17]. ML approaches have
recently been utilized to untangle complex, interdependent features to elucidate new
biomedical insights, particularly in the cancer and infectious disease fields [18–21]. The
sophisticated algorithms employed have demonstrated the capability to discern subtle
differences and detect correlations that might elude traditional statistical methods or
human analysis; this is especially true with multivariate datasets. For the classification
of host response biomarkers, the identification of an infection’s etiology from a series of
biomarker concentrations derived from a set of specimens is well-posed as a supervised
ML classification problem. It has clearly defined numerical inputs (i.e., the biomarkers’
measured laboratory values) associated with a categorical output (i.e., bacterial, viral, no
infection, or indeterminate). ML is uniquely suited to handle the inherent complexity
of host immune response variability, whereas traditional approaches often struggle to
account for this complexity, leading to delayed or inaccurate diagnoses. ML models excel
in this context by their ability to process and analyze vast datasets, identifying patterns
and correlations that are not immediately apparent.

An application where considerable work has been conducted in the use of host-based
biomarkers for infectious disease diagnosis is in bacterial versus viral disease differenti-
ation [22]. Rapid sample-to-answer solutions for this problem at the point of care enable
better antibiotic stewardship, improve decisions on patient isolation, and inform further
pathogen-specific diagnostics downstream (e.g., requesting a bacterial or viral-specific PCR
panel). Procalcitonin (PCT) and C-reactive protein (CRP) have been used for many years
as diagnostics for bacterial sepsis [23]. Over the past decade, multiple groups have also
published different host-based signatures for this purpose. Most of these are based on the
detection of protein biomarkers such as CRP, interferon-γ-induced protein-10 (IP-10), and
TNF-related apoptosis-induced ligand (TRAIL) [24–29]. As mentioned above, however,
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identifying the correct combinations and “weights” of different biomarkers in a classifier
can be difficult. The interpretation of such complex datasets and the elucidation of useful
biomarker classifiers for identifying disease etiology is fertile ground for some of the tools
offered by recent advances in artificial intelligence.

As agnostic, host-centered approaches to disease identification become more prevalent,
machine learning can be leveraged to identify multi-parametric biomarker classifiers with
robust predictive power. To this end, we applied an ML-guided approach to the challenge
of differentiating viral, bacterial, and normal clinical samples as a case study; similar
publications have been released for the application of ML methodologies in other avenues
of biomedical research [30,31]. The primary intent of this manuscript is to present an
effective template workflow for designing ML pipelines for building multiplexed, host-
based infectious disease classifiers. A secondary objective of this work is to demonstrate
the capabilities of automated machine learning (Auto-ML) platforms, emphasizing their
potential utility for individuals without extensive expertise in machine learning to rapidly
develop high-performing models for infectious disease diagnostics.

2. Materials and Methods
2.1. Institutional Review Board Statement

All data and human participants research were previously de-identified and given
“research not involving human participants” determinations by the U.S. Army Medical
Research Institute of Infectious Diseases (USAMRIID) Office of Human Use and Ethics; log
numbers FY17-08 and FY17-31.

2.2. Human Clinical Samples

The initial round of wet lab sample testing consisted of de-identified human clinical
serum samples selected from the United States Army Medical Research Institute of In-
fectious Diseases (USAMRIID, Ft. Detrick, MD, USA), BioIVT Inc. (Westbury, NY, USA),
Walter Reed National Military Medical Center (WRNMMC, Silver Spring, MD, USA), and
Theratest laboratories (Lombard, IL, USA). Healthy donor sera were sourced from all
four entities. WRNMMC provided 76 samples positive for Escherichia coli, Enterococcus
faecalis, Enterobacter asburiae, Citrobacter koseri, Entercoccus sp., Klebsiella pneumonaie, Pan-
toea agglomerans, Staphylococcus sp., Staphylococcus aureus, Cytomegalovirus, Epstein–Barr
Virus, Hepatitis B and Hepatits C. All WRNMMC human clinical samples were residual
material collected in the course of normal clinical patient management and treatment.
BioIVT provided 57 samples positive for Borrelia burgdorferi, Chlamydia trachomatis, Neis-
seria gonorrhoeae, Treponema pallidum, Hepatitis A, Hepatitis B, Hepatitis C, Influenza A,
Influenza B, Influenza sp. and Dengue virus. For the blinded evaluation, USAMRIID
provided 16 human serum samples positive for Chikungunya virus that were sourced from
a disease outbreak in Puerto Rico that occurred in 2014 [32]. Work with Chikungunya
samples was undertaken by trained personnel in a BSL-3 containment suite. All other
work was completed at BSL-2 with appropriate safety precautions. For infectious samples,
we focused on acute, active disease samples; infectious disease etiology was ascribed to
samples based on a combination of direct pathogen detection (i.e., culture or PCR) and
other clinical parameters.

2.3. Host Protein Immunoassays

All human clinical serum samples were processed using the Luminex MAGPIX® in-
strument (DiaSorin Inc., Saluggia, Italy) and commercially available assays from R&D
Systems (Minneapolis, MN, USA) and CloudClone (Katy, TX, USA). The CloudClone kit is
a single-plex Immunoassay that detects the MxA protein. All other proteins were detected
by R&D Biosystems Immunoassays including a 1-plex kit (C-Reactive Protein/CRP), a
2-plex kit (Ferritin & Lipocalin-2/NGAL) and a 9-plex kit (TNF-alpha, IL-6, IL-8/CXCL8,
CXCL10/IP-10/CRG-2, IL-10, TRAIL/TNFSF10, Procalcitonin/PCT, IL-2 & IL-4). Samples
were diluted in the provided assay diluent for use in each assay based on manufacturer
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recommendations, except for the MxA assay, which recommended using 100 µL of each
sample. A 2-fold dilution was used for the MxA assay due to sample availability. Man-
ufacturer protocols were followed for all R&D Biosystems Immunoassays. CloudClone
protocols were followed for the MxA assay, except samples were incubated at room tem-
perature and humidity. Analyte concentrations were extrapolated based on standard
curves provided with each kit. Data were extracted as CSV files, which were then used for
downstream analysis.

2.4. Analysis Hardware

All data visualization and machine learning model development was performed on a
dedicated server with the following specifications: 3.2 GHZ 8-Core Intel Xeon W processor,
Radeon Pro Vega 56 8 GB graphics, and 32 GB 2666 MHz DDR4 memory.

2.5. Analysis Software

Analysis was performed using the LabAble® data analysis package (v1.1.3, Atticus
Labs, Baltimore, MD, USA), with additional custom software modification. The software
package is written in Python (v3.9.16) [33], and uses open-source packages for data load-
ing, filtering, manipulations (Pandas v1.5.3) [34], data visualization (Seaborn v0.12.2 [35],
Matplotlib v3.6.3) [36], and machine learning model building, training, and performance
analysis (SciKitLearn v1.2.2 [37], mljar-supervised v0.11.5) [38,39]. All packages used in
this work are freely available and have permissive licenses (e.g., MIT, BSD, Python Software
Foundation). Data were cleaned for missing, incomplete, or incompatible values prior to
usage; this included the conversion of undetectable biomarker values to the minimum
of the detectable threshold of the specific assay. Exploratory data analysis (EDA) was
performed to identify initial patterns, outliers, and gain a general understanding of the
data. Prior to machine learning model training, target labels (i.e., infectious etiologies)
were encoded with numerical values, and non-numeric columns in the dataframe pertain-
ing to sample identification and source were dropped. The auto-ML library used in this
study, mljar-supervised, automatically applies normalization to non-tree-based methods
(e.g., linear, neural networks). The scaling method used was SciKitLearn’s StandardScaler,
which removes the mean and scales to unit variance, creating a mostly normal distribution.
Following a typical Auto-ML workflow, models of increasing complexity but decreasing
interpretability were built: exploratory/preliminary models, performance models, and
optimized models. At each stage, different model architectures were trained and evaluated,
including the following: baseline models (always predicts the most common class from
the training data), linear regression, decision trees, neural networks, Xgboost, Catboost,
random forest, and an ensemble of these models. In earlier stage models, feature impor-
tance metrics were analyzed to inform any model or feature downselections. In later stages,
more advanced hyperparameter tuning was performed to maximize performance.

2.6. Machine Learning Model Performance Metrics

Several common statistical metrics were used to evaluate the machine learning models,
both training and diagnostic performance:

Sensitivity (recall, true positive rate): the proportion of true positives out of the total
actual positive cases (TP + FN). It is calculated as Sensitivity = TP/(TP + FN).

Specificity (true negative rate): the proportion of true negatives out of the total actual
negative cases (TN + FP). It is calculated as Specificity = TN/(TN + FP).

Positive Predictive Value (PPV) (precision): the proportion of true positives out of the
total predicted positive cases (TP + FP). It is calculated as PPV = TP/(TP + FP).

Negative Predictive Value (NPV): the proportion of true negatives out of the total
predicted negative cases (TN + FN). It is calculated as NPV = TN/(TN + FN).

Accuracy: the proportion of correct predictions (both true positives and true negatives)
out of the total predictions (TP + TN + FP + FN). It is calculated as Accuracy = (TP +
TN)/(TP + TN + FP + FN).
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F1 score: a commonly used performance metric in machine learning that combines
precision and recall into a single value. It is particularly useful when both precision
and recall are equally important in a problem, and a balance between the two is desired.
The F1 score is the harmonic mean of precision and recall, and is calculated using the
following formula:

F1 Score = 2 × (Precision × Recall)/(Precision + Recall)

The F1 score ranges between 0 and 1, where a higher value indicates a better model
performance. The F1 score is often used in binary classification problems, where there are
only two classes: positive and negative. However, it can also be extended to multi-class
problems using micro-averaging (each model prediction treated equally, regardless of the
prediction’s class) or macro-averaging techniques (each class treated equally, regardless of
the number of predictions in that class) when multiple classes are involved.

Logloss: short for logarithmic loss, also referred to as cross-entropy loss, is a common
evaluation metric used in machine learning to measure how well a classification model is
performing. Logloss measures how different the predicted probabilities of a model are from
the actual outcomes. The lower the logloss value, the better the model is at predicting the
correct outcome for each observation. Logloss is the method primarily utilized throughout
this work to describe model performance during training. The multiclass logloss, which
reduces to a binary logloss in the event of only two class labels, can be calculated with the
following formula [37]:

Llog(Y, P) = − log Pr(Y|P) = − 1
N

N−1

∑
i=0

K−1

∑
k=0

yi,k log pi,k

The application of these metrics for binary classification problems is straightforward.
For multi-class classification problems, where there are more than two target classes,
these metrics can be calculated in different ways depending on the context and specific
requirements of the problem. A common approach for multi-class problems, used in this
work, is to treat each target class as the positive class and calculate the sensitivity for that
class against the rest of the classes combined as the negative class. This is often referred to
as “one-vs-rest” or “one vs. all” approach.

2.7. Additional Statistical Calculations

To evaluate the distribution of laboratory values for each biomarker across the different
classes, we initially conducted Shapiro–Wilk and Levene’s tests to assess normality and
equality of variances—conditions required for the application of ANOVA for determining
significance. As these conditions were not met, we employed the Kruskal–Wallis test to
evaluate significance across the three classes. If this test indicated significant differences,
we proceeded with Dunn’s test, applying a Bonferroni correction for pairwise comparisons.

Similarly, to evaluate the distribution of the blinded viral specimens to the distributions
of the viral training set, we initially conducted a Shapiro–Wilk test to assess the normality—
required for the application of a t-Test. As either the blinded viral specimen distribution
or the viral training set distribution was not normal, we used a Mann–Whitney U test
with a Bonferroni correction to evaluate the significance across the two training sets for
each biomarker.

The correlation ratio was used to evaluate how well the categorical variables (i.e.,
classes) explain the variance of the numerical variables (i.e., biomarker distributions). It
was calculated as follows:

η2 =
∑x nx(yx − y)2

∑i(yi − y)2

Here, η2 is the square of the correlation ratio, x is a particular class, nx is the number
of observations in class x, yx is the mean of the observations in class x, y is the mean of
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all observations across all classes, i is the index of a particular observation, and yi is the
individual observation.

3. Results and Discussion

We employed an iterative, Auto-ML pipeline for building our infectious disease
classifier model. An overview of this workflow is summarized in Figure 1. In this approach,
multiple ML algorithms are trained and tested at each stage, model performance is analyzed,
and, finally, features and ML algorithms are downselected. Exploratory models that are fast
and have explainable outcomes are utilized at the outset, ultimately giving way to more
computationally intensive and less explainable, but more accurate, performance models
with optimized parameters.

Diagnostics 2024, 14, 1290 6 of 21 
 

 

the normality—required for the application of a t-Test. As either the blinded viral 
specimen distribution or the viral training set distribution was not normal, we used a 
Mann–Whitney U test with a Bonferroni correction to evaluate the significance across the 
two training sets for each biomarker. 

The correlation ratio was used to evaluate how well the categorical variables (i.e., 
classes) explain the variance of the numerical variables (i.e., biomarker distributions). It 
was calculated as follows: 𝜂ଶ = ∑ 𝑛௫ሺ𝑦ത௫ − 𝑦തሻଶ௫∑ ሺ𝑦 − 𝑦തሻଶ  

Here, 𝜂ଶ is the square of the correlation ratio, x is a particular class, 𝑛௫ is the number 
of observations in class x, 𝑦ത௫ is the mean of the observations in class x, 𝑦ത is the mean of all 
observations across all classes, i is the index of a particular observation, and 𝑦  is the 
individual observation. 

3. Results and Discussion 
We employed an iterative, Auto-ML pipeline for building our infectious disease 

classifier model. An overview of this workflow is summarized in Figure 1. In this 
approach, multiple ML algorithms are trained and tested at each stage, model 
performance is analyzed, and, finally, features and ML algorithms are downselected. 
Exploratory models that are fast and have explainable outcomes are utilized at the outset, 
ultimately giving way to more computationally intensive and less explainable, but more 
accurate, performance models with optimized parameters. 

 
Figure 1. Flow chart describing the iterative steps to build an Auto-ML pipeline: data preprocessing, 
modeling training, and performance evaluation. 

3.1. Data Collection, Cleaning, and Exploratory Analysis 
For this case study, we first assembled a collection comprised of human sera samples 

of known bacterial, viral, or normal etiology (Table 1). There were 221 valid samples for 
analysis included in the dataset. All samples had a target class, “infection identifier”, 
which was the label to be used for machine learning model training and testing. Of this 
target class, the dataset contains the following distribution across its classes: normal = 88, 
viral = 71, bacterial = 62. There is a slight class imbalance in this training set, so care was 
exercised when evaluating models to ensure that they were not biased towards the 
predominant “Normal” infection identifier. There were 23 clinical disease designations 
(14 bacterial and 9 viral) which were in turn segmented into bacterial and viral classes 

Figure 1. Flow chart describing the iterative steps to build an Auto-ML pipeline: data preprocessing,
modeling training, and performance evaluation.

3.1. Data Collection, Cleaning, and Exploratory Analysis

For this case study, we first assembled a collection comprised of human sera samples
of known bacterial, viral, or normal etiology (Table 1). There were 221 valid samples for
analysis included in the dataset. All samples had a target class, “infection identifier”,
which was the label to be used for machine learning model training and testing. Of this
target class, the dataset contains the following distribution across its classes: normal = 88,
viral = 71, bacterial = 62. There is a slight class imbalance in this training set, so care
was exercised when evaluating models to ensure that they were not biased towards the
predominant “Normal” infection identifier. There were 23 clinical disease designations
(14 bacterial and 9 viral) which were in turn segmented into bacterial and viral classes
with infection, and 1 class for “None” (associated with healthy/normal specimens). Next,
we subjected these samples to multiplexed immunoassays targeted against an array of
host proteins that have been reported in the literature in recent years for infectious disease
research and especially for bacterial/viral differentiation. These included MxA, C-Reactive
Protein/CRP, Ferritin, Lipocalin-2/NGAL, TNF-alpha, IL-6, IL-8/CXCL8, CXCL10/IP-10,
IL-10, TRAIL/TNFSF10, Procalcitonin/PCT, IL-2, and IL-4 [24–29,40]. With the exception
of MxA, all of these biomarkers are secreted and have been detected in sera and plasma.
As a predominantly intracellular biomarker, the interferon-inducible protein MxA is an
exception; however, it has been reported in some studies as a biomarker of viral infection
in whole blood in multiple studies [41,42]. We chose to include it in this panel based on



Diagnostics 2024, 14, 1290 7 of 20

preliminary evidence from our group suggesting it could be reliably detected in extracellular
matrices like serum.

Table 1. Summary of clinical samples used for model classifier training.

Infectious Agent Number of Samples Classifier

Escherichia coli 14 Bacterial

Enterococcus faecalis 7 Bacterial

Enterobacter asburiae 4 Bacterial

Citrobacter koseri 3 Bacterial

Entercoccus sp. 3 Bacterial

Klebsiella pneumonaie 3 Bacterial

Staphylococcus sp. (coag neg) 3 Bacterial

Staphylococcus aureus 3 Bacterial

Borrelia burgdorferi 6 Bacterial

Chlamydia trachomatis and
Neisseria gonorrhoeae 1 Bacterial

Chlamydia trachomatis 3 Bacterial

Neisseria gonorrhoeae 4 Bacterial

Treponema pallidum 5 Bacterial

Enterococcus faecalis, Pantoea agglomerans, Kleb. Pneumo 3 Bacterial

Cytomegalovirus 6 Viral

Epstein–Barr Virus 14 Viral

Hepatitis A 2 Viral

Hepatitis B 13 Viral

Hepatitis C 17 Viral

Influenza A 7 Viral

Influenza B 1 Viral

Influenza sp. 1 Viral

Dengue virus 10 Viral

Naive Sera 88 Normal

Following data collection, data were cleaned as follows. All numeric data were ana-
lyzed for NaNs (not-a-number values in numeric columns). This dataset comes from
laboratory assays with minimum signal cutoff values, and when a specimen had an
immeasurable amount of biomarker, the instrument output applies a minimum thresh-
old value as a text string (e.g., “<0.09765625”, “<3.7037037037037”, “<6.25514403292181”,
“<36.9958847736625”). The raw data contained values in this form, which must be con-
verted to a numerical value for visualization and machine learning purposes. Two common
solutions to this approach are as follows: (1) setting these values to zero, (2) setting these
values to the minimum cutoff threshold value. Since each independent assay has a different
scale, and these thresholds span multiple orders of magnitude, the latter approach was
used: the result of any assay that was undetectable was set to the minimum threshold for
that assay.

After data cleaning, we performed exploratory data analysis looking at individual
biomarker distributions. Each of the 13 biomarkers of interest is represented in the dataset
as a numeric value. It is helpful to first visualize the distributions of individual biomarkers
(SI Figure S1, segregated by their target class “infection identifier”). Having carried this
out, multiple preliminary conclusions were readily apparent: no single biomarker value
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is likely to be sufficiently discriminatory to be used as a classifier for all three infection
identifiers, there are biomarkers that are highly correlated with a single target infection
identifier, and it is likely that machine learning model performance will improve when
the objective is to classify a single infection identifier rather than discriminate against all
possible outcomes (e.g., bacterial vs. not-bacterial (viral + normal)). The distributions
of protein biomarkers were noted to exhibit outliers for their given infection identifiers
(39.8% of specimens with at least one biomarker outliers, SI Figure S2). Outliers were
more frequent in bacterial and viral specimens than in normal sera, and they were not
uniformly distributed across all biomarkers. When samples were found to have an outlier,
it most often was observed as a single biomarker outlier (25.8% of specimens); 14.0%
of specimens were observed to have more than one biomarker outlier (9.9% 2 outliers,
3.2% 3 outliers, 0.9% 4 outliers). We elected not to remove outliers from the training
data set, based on the recognition that outliers could represent biologically significant
variations in human populations, possibly reflecting severe disease states. These extreme
values might carry critical biological insights and excluding them could potentially omit
valuable information. As there is a target variable of interest (i.e., infection identifier),
it is logical to calculate the correlation ratios between individual biomarker data and
this categorical variable. Examining each of these biomarkers in isolation, we performed
correlation analysis evaluating the ability of each individual host protein to correlate to its
categorical disease state (Figure 2A). We also examined the correlative interactions between
the individual analytes to assess biomarkers that were likely to behave similarly (Figure 2B),
as this may impact biomarker downselection. Interestingly, we observed several instances
of sets of proteins (e.g., TRAIL/CXCL10 and NGAL/PCT/TNF-alpha) that responded
to infection in a similar manner. This reinforces findings from the field that describe the
complex network effects and/or redundancy that are observed in biomarkers associated
with host pathogen-response pathways [40,43].
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Prior to machine learning model building, the following steps were taken to further pre-
process the dataset: (1) target labels (“infection identifier”) were encoded with numerical
values (0: bacterial, 1: normal, 2: viral) and (2) all non-numeric columns were dropped
from the dataset (“Sample”, “Source”, “Organism”).

3.2. Impact of Auto-ML Modeling on Model Performance Metrics

Preliminary modeling quickly evaluates several machine learning algorithms with de-
fault hyperparameters and can be useful at the outset to evaluate the following: (1) whether
machine learning is an appropriate tool, (2) which features may be the most important,
and (3) which models should receive the most focus for rigorous tuning. Preliminary
modeling has the highest level of “explainability”, as the goal of this stage is still to gain an
understanding. In this preliminary modeling, the dataset is split into 75%/25% train/test
sets, and 7 common ML models were evaluated: Baseline (a crude model that returns
the most frequent class as a prediction), Decision Tree, Neural Network, Linear, Xgboost,
Random Forest, and an Ensemble model of the other models combined. Comparing models
(by computing the percentage difference of the logloss metric used for model evaluation)
to the Baseline is a useful means of evaluating the need for machine learning approaches.
As is shown in Figure 3A, with the lone exception being the Decision Tree algorithm, all
algorithms outperformed the Baseline model. The best performing model (Ensemble)
showed a 37.7% improvement over the Baseline model. An empirical heuristic that can be
applied here would be that if model performance is less than 5% of an improvement over
the Baseline, then the data would appear to be random and the use of machine learning
modeling approaches should be reconsidered. Even applying this heuristic cautiously, this
preliminary modeling would suggest that the usage of machine learning is justified and
that the dataset does not appear to be random/noisy data.

Given that connected immune and inflammatory pathways regulate responses to
exogenous pathogens, and quantities of biomarkers within these pathways are used as
features in the ML models, feature importance metrics can provide further insight and
assist in the refinement of the ML pipeline. SHAP (Shapley Additive Explanations) [44]
feature importance values for the random forest model in the preliminary model stage
(SI Figure S3), the best performing model at this stage, mostly show agreement with
the infection identifier correlation ratios (Figure 2A). More useful at this stage, there is
agreement on the least important features, and we chose to remove IL-8, IL-10, and IL-4 as
features. While having low feature importance scores, Ferritin and TNF-alpha were not
downselected due to their higher infection identifier correlation ratios.

To optimize our model selection process for performance, we discontinued the use of
lower-performing models (Baseline, Linear, Decision Tree) in favor of more sophisticated,
higher-performing models (LightGBM and CatBoost). This decision was made not from a
standpoint of computational efficiency, as the latter models are more demanding in terms of
computation, but because the enhanced predictive capabilities and significant improvement
in results justified the additional computational resources required. Continuing to train
and evaluate the less effective models would not be an efficient use of time or resources,
given their comparatively limited performance. This selection of models demonstrates
mostly comparable performance, with the CatBoost model showing the closest performance
agreement with the Ensemble model. As we began to look for increased model performance,
in this round of evaluations, we increased the computational effort expended on training
each model. Previously, a single CatBoost model was trained and tested. In this stage, we
trained multiple CatBoost models with different parameters. Aside from the Ensemble
model (which includes the trained CatBoost models), the CatBoost models had the best
performance (Figure 3A). This model showed robust improvements in ML performance
metrics (Precision, Recall, and F1) for the bacterial class and marginal improvements for
the normal and viral classes during the optimization process (Figure 4A).
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Figure 3. (A). Performance improvement of different ML models over the course of iterative Auto-
ML process. Lower logloss scores convey improved model performance metrics relative to true
classifier identity. (B). Biomarker features used at each stage of machine learning model development.
(C). The micro-average of the area under the ROC curve (AUROC) for the best performing model
at each stage. For each model, a ROC curve is made for each class individually, and then the micro-
average is an aggregate measurement that takes the average across all classes, thus giving each class
equal importance.
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Along with common machine learning metrics, we performed a statistical analysis
on the Optimized CatBoost Model with metrics that are more aligned with traditional
diagnostic benchmarks, based on a one vs. all approach to multi-class analysis (Figure 4B).
Using a one vs. all approach, the optimized model’s sensitivity and specificity for each
individual target class exceeded 0.75, a reasonable target at this stage to demonstrate
proof-of-concept feasibility. While the metrics above treat all classifications (i.e., true
positives, false positives, true negatives, false negatives) with equal weights, an important
consideration moving forward is the determination of an appropriate penalty to apply for
certain misclassifications. To demonstrate the practical implications of this, two examples
are as follows: (1) a model prediction of bacterial etiology for a true healthy specimen will
likely result in an unnecessary antibiotic prescription; (2) a model prediction of normal
etiology for either a true bacterial or a true viral specimen will result in a patient not
receiving treatment when it may improve their condition. In the future, the model could
be biased to consider that the consequences of each type of misclassification are context-
specific and not always equal. Making these weights non-uniform across the confusion
matrix during training will improve the model’s practical utility.

3.3. Feature Importance Downselection

One of the objectives of this research was to make downselections from the initial list
of potential biomarkers to a recommended assay panel, with the expectation that this subset
of candidate biomarkers may have implications in future diagnostic algorithms and devices.
To this end, correlation ratios with infection identifiers calculated during exploratory data
analysis, SHAP feature importance values, and permutation feature importance metrics
during explainable model development [45] (Figure 2, SI Figures S3 and S4), would both
suggest the same top-8 biomarkers be used in a final panel: CRP, TRAIL, MxA, NGAL,
Ferritin, PCT, CXCL10, and TNF-alpha. Downselection to this list of biomarkers requires
retraining a new model, as the previously best-performing model from before used data
from features that are now removed from consideration. This would be expected to affect
model performance: it will remove “noisy” contributions from unhelpful features that have
little contribution to model predictions. This newly trained and optimized algorithm (with
the downselected set of biomarkers) had a performance nearly identical to the previous
model, with slight losses classifying bacterial infections and slight gains classifying viral
and normal specimens (Figure 5). With similar performance metrics Figures 3C and 5), the
downselected model has the distinct advantage of having fewer features—all things being
equal, simpler solutions are usually preferred [46]. Along with easier understandability,
there are computational benefits as well as practical advantages for future assay design.
On the computational side, models with fewer features require less computing power for
training, can be trained more quickly, and are less vulnerable to spurious outputs due to
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abnormal values in non-important features. On the biomedical and clinical side, fewer
biomarker measurements require fewer biochemical assays to be performed in order to
evaluate a new specimen—thus reducing the cost and time per sample to be evaluated.
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Model performance exhibited a plateau in later development stages, prompting a
closer examination of training curves. Figure S5 illustrates the training and testing logloss at
each iteration for the optimized and downselected model, which is the highest-performing
individual model at this stage. Each “learner” denotes a model trained and tuned on a data
subset via cross-fold validation, eventually combined into a single, unified model. Initially,
all learners show expected learning behavior from the training dataset, with initially
high logloss values decreasing monotonically. However, as training progresses, some
curves begin to plateau, indicating a variance in learning capacity and efficiency among
learners. Specifically, learners that achieve lower logloss values, nearing 0.05, demonstrate
superior training data modeling. A training curve plateau suggests that further iterations
yield marginal performance improvements, likely due to models reaching their maximum
learning potential given their complexity and the available data. Testing curves for all
learners initially show a monotonic decrease for about 30 iterations, reflecting improved
model generalization to the testing dataset. The variance in testing curve plateau points
underscores differences in learners’ generalization capabilities. This observed variability,
both in training and testing performance, underscores the necessity of exploring multiple
model configurations in machine learning. Notably, some training curves continue to
decrease at a reduced rate, even as their corresponding testing curves plateau, suggesting
overfitting. This phenomenon, characterized by a widening gap between testing and
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training performance at higher iterations, indicates models could be learning training data
idiosyncrasies rather than generalizable patterns. The presence of outliers—particularly
when shuffled in our relatively small training dataset—could have created testing splits
that do not accurately reflect the training data, which might also contribute to the observed
gap between the training and testing performance curves. Additionally, some learners
are halted earlier than others, a potential indication of Auto-ML detecting performance
divergence between testing and training. The observed overfitting and instances of learners
reaching their learning capacity, especially given our dataset’s limited size, point to the
need for additional training data as a potential solution.

3.4. Model Evaluation on a Blinded Sample Set

To evaluate the optimized model trained on the downselected features, a small set of
65 samples (Table 2) were experimentally analyzed using the same assay panel as that in the
data utilized for training, testing, and optimizing, and were evaluated using the new model.
None of these samples were used in any of the previous model training and testing iterations
described above. The infectious etiology of these specimens, 16 Chikungunya Virus and
49 normal specimens, was blinded to the modeling team. Chikungunya virus, a mosquito-
borne enzootic RNA virus that is prevalent in tropical regions, was previously identified
in these human sera samples by PCR. The model inference was performed using the
optimized model with downselected features, and the model predicted 0 bacterial samples,
37 normal samples, and 28 viral samples. Distributions of the biomarker concentrations
from the blinded samples, alongside distributions for each of the classes from the training
data, are shown in Figure 6. The individual markers are placed in the class that the ML
model classified them to, and they are color-coded by where the algorithm placement
was correct. This can be particularly useful in comparing the distributions of the blinded
set to the training data, as well as identifying what the model focused on when making
classifications. For example, several samples that were incorrectly classified as viral had
elevated MxA, which aligned well with the training distribution. Most importantly, the
overlapping concentration distributions across the different infection identifiers shown in
Figure 6 illustrate the importance of using a multi-biomarker signature, rather than relying
on one or two biomarkers to make diagnostic decisions.

Table 2. Summary of clinical samples used for blinded evaluation.

Infectious Agent Number of Samples Classifier

Chikungunya Virus 16 Viral

Naive Sera 49 Normal

A confusion matrix for the classes of viral and normal predicted during the blinded
evaluation is shown in Figure 7A; since there were no bacterial true positive or false positive
predictions, the bacterial class was omitted from the figure. The model correctly identified
all 16 true viral infections, with only 12 false positive viral infections and 0 false positive
bacterial infections. In this evaluation, the assay had 100% diagnostic sensitivity and 75%
specificity. Diagnostic performance metrics are shown in Figure 7B. These results were
impressive for a first attempt, especially given the modest size of our training data set (i.e.,
221 samples). Furthermore, the blinded dataset only included two classes (i.e., normal and
viral), whereas the model was trained to discern between three classes. As the model did
not mistakenly predict any samples as belonging to the missing bacterial class, it confirmed
that it effectively learned and applied decision boundaries that were established during
training. While the source of infection is never known a priori, model performance would
be expected to be improved had it only been trained using normal and viral training
data. We do note the decrease in specificity from model training to evaluation on this
blinded dataset. The higher-than-expected rate of false positives could be attributed to an
overlap in biomarker expressions between healthy and viral samples. Certain features of
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the healthy class may closely resemble those of the viral class, particularly in scenarios
that were not encountered or were underrepresented during training. The model’s high
sensitivity to biomarker signatures associated with viral infections might have exacerbated
these misclassifications.
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To further investigate the difference in performance from training to evaluation on the
blinded sample set, we compared the distributions of the blinded viral specimens to that of
the viral class from the training dataset (SI Figure S6). As noted, all viral specimens from
the blinded dataset were from an organism, Chikungunya virus, that was not a part of the
training dataset, which contained specimens infected with nine other viral organisms. We
found four host biomarkers that had significantly different distributions in Chikungunya
virus than in the distributions used for training the classifier: CXCL10, TRAIL, CRP, and
MxA. This is likely a substantial contributing factor to the increased false positive rate
between training and blinded analysis. Additionally, it highlights the utility of a host
biomarker signature over single-plex or even 2- and 3-plex assays, and the importance of
training data, particularly in the face of unknown infectious agents.

Further expanding on the difference in viral biomarker distributions, we isolated the
individual viruses used in training and compared the biomarker distributions with the
Chikungunya virus (from the blinded dataset) in SI Figure S7. MxA was observed to be at
the assay’s minimum threshold for six viruses, including MxA. This observation is of note
as it would seemingly offer evidence to counter the broad discriminatory utility of MxA to
discern viral infections, beyond the causative agents used in the previous literature studies.
Other comparisons across biomarker distributions would suggest the potential of certain
biomarkers to specifically identify different viral organisms—or at the least, narrow the
focus (i.e., PCT to isolate CMV, TNF-alpha to isolate CMV and EBV, and Ferritin to further
differentiate CMV from EBV). While individual sample sizes of the causative organisms
are too low for statistically meaningful comparisons, the differences across biomarker
distributions merit future investigation.

4. Conclusions

This manuscript describes a machine learning-based classification approach for dis-
criminating between three disease etiology classes: bacterial, viral, and normal using
host-based soluble protein biomarkers, including cytokines and acute-phase proteins, for
which commercial off-the-shelf immunoassays already exist. To this end, we collected
protein biomarker data from 221 human sera samples of known disease etiology and used
this to train a series of increasingly optimized models through feature downselection and
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model parameter tuning, ultimately resulting in an optimized classifier against our three
infection classes.

Training a machine learning model has historically required significant expertise and
computational resources. In this work, the number of features and the overall volume of
the training dataset were relatively modest and model training could be accomplished on
a consumer-grade machine. With on-demand computing power now readily accessible
and inexpensive, even larger scale datasets can now be readily analyzed without dedicated
resources. The optimized model with downselected features described in this manuscript
is lightweight at only 471 KB on disk. In its current implementation, it is stored as a Python
binary file that can be loaded using any compatible Python interpreter. After bundling all
model dependency packages and the script necessary to load and execute model inference,
the total software package size is 271 MB without any compression. While this could likely
be reduced, the package could readily be deployed in its current form to several cloud or
mobile device architectures.

Auto-ML was leveraged in the workflow presented herein to rapidly evaluate different
model architectures. This approach removes the burden of a priori selection of model
type, which would require deep domain expertise to understand model strengths and
weaknesses. Rather, Auto-ML rapidly iterates through multiple algorithms and proceeds
to optimize the hyperparameters of only the most promising models. This allows critical
decisions on model architecture and hyperparameter values to be automatically decided
based on performance, and not operator expertise. In this sense, the approaches described
in this work could be readily implemented in other life sciences applications. While we
selected a particular library for use in this work, other auto-ML libraries (e.g., Auto-sklearn,
H2O autoML, TPOT, AutoGluon) exist and have relative strengths and weaknesses that
must be evaluated in the context of any particular application [47]. In applying this
Auto-ML approach to identifying a bacterial vs. viral biomarker classifier, we identified a
Categorical Boosting (CatBoost) model. This model is itself a gradient-boosting technique
meant to optimize classification models from an ensemble of weaker models as the best
approach. We eventually arrived at a downselected model with sensitivity/specificity
values of 0.7/0.938 for the bacterial class, 0.776/0.914 for the viral class, and 0.892/0.843
for the normal class. Two widely used agnostic infectious diagnostics for the identification
of bacterial etiology in clinical use are CRP and PCT. In practice, these diagnostics give
widely varying degrees of diagnostic performance when not used in combination with
other clinical measures like white blood cell count, etc. A recent systemic review and meta-
analysis of the literature for bacterial infections reported average sensitivity/specificity
of 0.88/0.81 and 0.75/0.67 for PCT and CRP, respectively [48]. Overall, then, our initial
effort fared very well, especially considering it tackled a more difficult scenario of three-
class differentiation instead of the two-class situation described above. This model was
then evaluated on an entirely blinded dataset consisting of two sample classes (viral
and naïve), in which it had 100% diagnostic sensitivity and 75% specificity, impressive
outcomes given the modest size of our training data set. From a future assay optimization
standpoint, detailed analysis of both our training and blinded evaluation datasets reveals
apparent patterns in the host protein biomarker distributions, illustrating the need for a
biomarker signature to be used in the classification of infectious etiology, rather than a
single biomarker. The preliminary assessment of our model performance is encouraging as
the apparent gap we saw in the logloss performance of the training and test curves for our
optimized models (SI Figure S5) suggests that their performance could be further improved
in future iterations, likely with additional training on larger sample sets. Furthermore,
while the AutoML library employed in this study did implement scaling methods to
diminish the impact of outliers, these methods were not extensively explored beyond the
default settings for each model type. This could also be a possible explanation, combined
with the natural resilience of tree-based ensemble models like CatBoost and XGBoost to
outliers, for their consistently superior performance throughout the various stages of model
development. Consequently, it is conceivable that exploring alternative scaling techniques
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could enhance the performance of other model architectures by more effectively mitigating
outlier effects. Finally, while not pursued further, the number of biomarkers present in
future iterations of this bacterial/viral classifier could possibly be decreased even further
with limited deterioration in diagnostic performance. As noted earlier, in consideration of
SHAP feature importance scores, ferritin and TNF-alpha are two biomarkers that would be
likely candidates for future removal.

While not explicitly considered in this work, it is important to note that in multi-class
problems, different classes may have different levels of importance or relevance, and choos-
ing appropriate performance metrics depends on the specific context and objectives of the
problem. Sometimes, other metrics such as macro or micro-averaging may also be used
to calculate aggregate performance measures across multiple classes. Within a diagnostic
context, both false positives and false negatives carry risk. However, the precise weight of
those risks can vary widely depending on the diagnostic application scenario, such as the
differences between cancer diagnosis versus infectious disease diagnosis. Infectious disease
diagnostics, especially those at the point of care, penalize false negatives more as they
can impact not only clinical decisions related to treatment but also prevention/quarantine
measures that may impact community spread, as has been seen for SARS-CoV-2 manage-
ment [49].

In conclusion, we have identified a flexible approach for applying machine learning-
based classification tools to identify human host biomarker signatures for infectious disease
diagnostic applications. In this instance, we applied this classification scheme to identify a
multiplexed protein biomarker signature that had promising initial diagnostic performance
against a blinded sample set for viral/bacterial/normal diagnosis. We have identified areas
for improvement in future modeling efforts, including refining feature engineering and
scaling techniques to enhance the distinction between healthy and viral classes, especially
in the presence of novel pathogens and varied class distributions, and conducting extended
validation and robustness testing with a broader array of external datasets that expose
the model to diverse class distributions, co-infections, and novel pathogens. Training this
model with larger, well-curated human infectious disease sample sets would undoubtedly
strengthen the model and improve performance. While the test case chosen for this effort
was agnostic bacterial/viral disease classification, this Auto-ML method could easily
be applied to any scenario where a disease diagnostic based on multiparametric host
biomarker interpretation is required. Once designed and validated, these host-centered
diagnostics can inform clinical decision making by providing an understanding of patient’s
past infection status, their current immune profile, infection severity, and disease prognosis.
In this regard, they can be seen as complementary to pathogen-focused diagnostics and can
help address existing gaps in the global ability to respond to novel or unidentified threats.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics14121290/s1, Figure S1. Individual biomarker dis-
tributions for all protein analytes in this study; Figure S2. Exploratory analysis of training dataset
outliers, calculated as outside 1.5 times the interquartile range of an individual biomarker, for a
given infection identifier (as opposed to an individual biomarker across all infection identifiers) in
the downselected biomarkers of the training dataset; Figure S3. Additional preliminary modeling
metrics; Figure S4. Feature importance during modeling; Figure S5. Training curves on optimized,
downselected model; Figure S6. Statistical analysis comparing the virus specimens from the blinded
testing (all Chikungunya virus) to the virus specimens used in model training (which contained
no Chikungunya specimens); Figure S7. Biomarker distributions comparing the viral causative
organisms used in the model training, in addition to the distribu-tion of Chikungunya virus (CHIKV)
used in blinded testing.
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