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Abstract: Myogenic transcription factors with a basic helix–loop–helix (bHLH) such as MYOD,
myogenin, MRF4, and MYF5 contribute to muscle differentiation and regulation. The MYF5 gene
located on chromosome 12 encodes for myogenic factor 5 (MYF5), which has a role in skeletal and
extraocular muscle development and rib formation. Variants in MYF5 were found to cause external
ophthalmoplegia with rib and vertebral anomalies (EORVA), a rare recessive condition. To date,
three homozygous variants in MYF5 have been reported to cause EORVA in six members of four
unrelated families. Here, we present a novel homozygous MYF5 frameshift variant, c.596dupA p.
(Asn199Lysfs*49), causing premature protein termination and presenting with external ophthalmople-
gia, ptosis, and scoliosis in three siblings from a consanguineous family of Pakistani origin. With four
MYF5 variants now discovered, genetic testing and paediatric assessment for extra-ocular features
should be considered in all cases of congenital ophthalmoplegia.

Keywords: MYF5; myogenic factor 5; external ophthalmoplegia with vertebral and rib anomalies
(EORVA); external ophthalmoplegia; scoliosis; rib anomalies; myogenic transcription factors

1. Introduction

During mammalian development, skeletal muscle differentiation is regionalised with
skeletal muscles of the trunk, limbs, diaphragm, and tongue derived from somites, while the
craniofacial muscles, including extraocular muscles (EOM), originate from prechordal and
paraxial mesoderm [1]. In the case of disease or injury, skeletal muscles can be regenerated
by myogenic precursor cells called satellite cells [2,3]. EOM are more complex than limb
skeletal muscles with smaller motor units, higher mitochondrial content, increased blood
flow from a dense vascular bed, and co-expression of several myosin isoforms. They are
the fastest contracting muscles in the human body and are highly resistant to fatigue [4,5].

Embryonic and post-natal myogenesis of skeletal muscle and EOM is regulated by
four basic helix–loop–helix (bHLH) transcription factors: MYF5, MYOD, MYOG (also
called myogenin), and MRF4 (also called MYF6 or herculin) [6–10]. MYF5 is the first
myogenic factor to be expressed; in mice, Myf5 expression occurs around embryonic day
8 (E8), preceding somite differentiation into the dermis, axial muscles, vertebrae, and
ribs [11]. Myf5 or Mrf4 activates myogenesis via MyoD expression, which initiates MyoG
expression [12–16] (Figure 1).
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Figure 1. The role of myogenic transcription factors in extraocular myogenesis in mice. Extraocular 
muscles (EOM) are derived from cranial mesoderm progenitors. Expression of either Myf5 or Mrf4 
is required for EOM progenitor cells to acquire their myogenic fate. Myf5 or Mrf4 activates MyoD, 
which in turn activates MyoG and EOM differentiation. Created with Biorender. 

Disruption of the Myf5 gene in mice causes abnormal development of the distal parts 
of the ribs and postnatal death due to respiratory distress [15]. Studies on mice carrying 
heterozygous variants in Myf5 in trans with a second heterozygous variant in Mrf4 
(Myf5+/m1 Mrf4+/bh1) showed severe rib anomalies and undetectable myotome formation, 
similar to Myf5 knockout models [17]. Homozygous Mrf4 mutants also exhibit rib defects, 
but the most severe rib anomalies are present in Myf5 null models [17,18]. Myf5 mutant 
mice with normal expression of Myod1, MyoG, and Mrf4 develop normal skeletal muscles, 
but are lethal due to an inability to breathe [15]. Inserting MyoG cDNA into the Myf5 locus 
via homologous recombination leads to partial phenotypic rescue, with development of a 
normal rib cage in MyoG knock-in mice [19]. In mice lacking both MYF5 and MYOD tran-
scription factors, no skeletal muscles were formed, and mice died postnatally within 
minutes from birth. The presence of a healthy copy of either MyoD or Myf5 in mutant mice 
led to partial or full skeletal muscle development [7]. 

Congenital fibrosis of extraocular muscles (CFEOM) characterises a non-progressive 
congenital ophthalmoplegia with or without ptosis. It is a development disorder primarily 
affecting cranial nerves (a cranial innervation disorder) and results in fibrosis and hypo-
plasia of innervated EOMs. It can be inherited in an autosomal dominant or autosomal 
recessive manner and there are five types; types 1 and 3 are autosomal dominant, whilst 
types 2, 4, and 5 are inherited recessively. Six genes are known to be associated with this 
condition: COL25A1, KIF21A2, PHOX2A, TUBA1A, TUBB2B, and TUBB3. Systemic fea-
tures can present as neurodevelopmental, brain, or limb anomalies, including reduced 
numbers of fingers or toes (oligodactyly). 

External ophthalmoplegia with rib and vertebral abnormalities (EORVA) is a rare au-
tosomal recessive disease associated with MYF5 variants and is characterised by congen-
ital, non-progressive ophthalmoplegia and ptosis, with vertebral and rib anomalies, scoli-
osis, and torticollis. First described in 2018, Di Goia et al. reported three families present-
ing with this condition caused by biallelic mutations in the MYF5 gene (OMIM # 159990) 
located on 12q21.31 [20]. Unlike CFEOM, the primary pathology is not neurological but 
originates in the muscle. The characteristic ocular features are similar in both EORVA and 
CFEOM. Overlooking mild systemic features that differ in both these conditions can lead 
to misdiagnosis and suboptimal management (Table 1). Ocular management in EORVA 
and CFEOM include monitoring and correction of refractive error and amblyopia; in some 
cases, surgery to correct ptosis or extraocular muscles alignment should be considered. 
Management of systemic complications will vary depending on presenting features and 
include multidisciplinary management and the involvement of a paediatrician. 

Table 1. Similarities and differences between CFEOM and EORVA. CFEOM: congenital fibrosis of 
extraocular muscles; EORVA: external ophthalmoplegia with rib and vertebral anomalies. Pheno-
typic differences between CFEOM and EORVA are highlighted in bold. 

Condition CFEOM EORVA 
Pathophysiology Cranial innervation disorder Muscle disorder 

Ocular features Non-progressive ophthalmoplegia 
+/− ptosis 

Non-progressive ophthalmople-
gia 

Figure 1. The role of myogenic transcription factors in extraocular myogenesis in mice. Extraocular
muscles (EOM) are derived from cranial mesoderm progenitors. Expression of either Myf5 or Mrf4
is required for EOM progenitor cells to acquire their myogenic fate. Myf5 or Mrf4 activates MyoD,
which in turn activates MyoG and EOM differentiation. Created with Biorender.

Disruption of the Myf5 gene in mice causes abnormal development of the distal
parts of the ribs and postnatal death due to respiratory distress [15]. Studies on mice
carrying heterozygous variants in Myf5 in trans with a second heterozygous variant in Mrf4
(Myf5+/m1 Mrf4+/bh1) showed severe rib anomalies and undetectable myotome formation,
similar to Myf5 knockout models [17]. Homozygous Mrf4 mutants also exhibit rib defects,
but the most severe rib anomalies are present in Myf5 null models [17,18]. Myf5 mutant
mice with normal expression of Myod1, MyoG, and Mrf4 develop normal skeletal muscles,
but are lethal due to an inability to breathe [15]. Inserting MyoG cDNA into the Myf5 locus
via homologous recombination leads to partial phenotypic rescue, with development of
a normal rib cage in MyoG knock-in mice [19]. In mice lacking both MYF5 and MYOD
transcription factors, no skeletal muscles were formed, and mice died postnatally within
minutes from birth. The presence of a healthy copy of either MyoD or Myf5 in mutant mice
led to partial or full skeletal muscle development [7].

Congenital fibrosis of extraocular muscles (CFEOM) characterises a non-progressive
congenital ophthalmoplegia with or without ptosis. It is a development disorder primarily
affecting cranial nerves (a cranial innervation disorder) and results in fibrosis and hy-
poplasia of innervated EOMs. It can be inherited in an autosomal dominant or autosomal
recessive manner and there are five types; types 1 and 3 are autosomal dominant, whilst
types 2, 4, and 5 are inherited recessively. Six genes are known to be associated with this
condition: COL25A1, KIF21A2, PHOX2A, TUBA1A, TUBB2B, and TUBB3. Systemic features
can present as neurodevelopmental, brain, or limb anomalies, including reduced numbers
of fingers or toes (oligodactyly).

External ophthalmoplegia with rib and vertebral abnormalities (EORVA) is a rare auto-
somal recessive disease associated with MYF5 variants and is characterised by congenital,
non-progressive ophthalmoplegia and ptosis, with vertebral and rib anomalies, scoliosis,
and torticollis. First described in 2018, Di Goia et al. reported three families presenting
with this condition caused by biallelic mutations in the MYF5 gene (OMIM # 159990) lo-
cated on 12q21.31 [20]. Unlike CFEOM, the primary pathology is not neurological but
originates in the muscle. The characteristic ocular features are similar in both EORVA and
CFEOM. Overlooking mild systemic features that differ in both these conditions can lead
to misdiagnosis and suboptimal management (Table 1). Ocular management in EORVA
and CFEOM include monitoring and correction of refractive error and amblyopia; in some
cases, surgery to correct ptosis or extraocular muscles alignment should be considered.
Management of systemic complications will vary depending on presenting features and
include multidisciplinary management and the involvement of a paediatrician.

Herein, we describe a novel homozygous c.596dupA variant in the MYF5 gene associ-
ated with EORVA in three siblings from a consanguineous family of Pakistani origin.
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Table 1. Similarities and differences between CFEOM and EORVA. CFEOM: congenital fibrosis of
extraocular muscles; EORVA: external ophthalmoplegia with rib and vertebral anomalies. Phenotypic
differences between CFEOM and EORVA are highlighted in bold.

Condition CFEOM EORVA

Pathophysiology Cranial innervation disorder Muscle disorder

Ocular features Non-progressive ophthalmoplegia
+/− ptosis

Non-progressive ophthalmoplegia
+/− ptosis

Extra-ocular features
Neurodevelopmental anomalies
Brain anomalies
Limb anomalies

Rib defects
Vertebral defects
Scoliosis
Torticollis

Inheritance Autosomal recessive or autosomal
dominant Autosomal recessive

Causative genes COL25A1; KIF21A2; PHOX2A;
TUBA1A; TUBB2B; TUBB3 MYF5

2. Case Description

Two brothers aged 8 (IV-1) and 7 years (IV-2), and their younger sister aged 4 years
(IV-3) from a consanguineous family of Pakistani origin were referred to the genetic eye
disease clinic at Moorfields Eye Hospital (MEH) with a diagnosis of CFEOM. Their parents
were unaffected (Figure 2).

Patient IV-1 first presented to a general paediatric ophthalmology service aged six
months with left exotropia, left hypertropia, and ophthalmoplegia. Magnetic resonance
imaging (MRI) of the head and orbits showed smaller left medial rectus, superior rectus
and superior oblique muscles compared to the contralateral side, leading to a presumed
diagnosis of CFEOM (Figure 3J). At most recent presentation, age 8 years, his ophthalmic
examination showed a best corrected visual acuity (BCVA) of 0.00 LogMAR in the right
and 0.30 LogMAR in the left eye (Table 2). Orthoptic assessment showed constant left
exotropia, bilateral ophthalmoplegia, chin elevation, and mild bilateral ptosis. Anterior
and posterior segment examination showed no abnormalities. Optos imaging and optical
coherence tomography (OCT) of the macula showed no abnormalities (Figure 3M).

Table 2. Orthoptic and ophthalmic examination of Patient IV-1, Patient IV-2, and Patient IV-3.
Abbreviations: M: months; Y: years; BC-RVA: best corrected right visual acuity (logMAR); BC-LVA:
best corrected left visual acuity (logMAR); R: right eye; L: left eye; LXT: left exotropia; R/AXT:
right/alternating exotropia; r/o: restriction of; B/L: bilateral.

ID Age at
Presentation

Age at Last
Exam BC-RVA BC-LVA Refractive

Error Strabismus Torticollis Ocular Motility Ptosis Anterior
Segment

Posterior
Segment

Pt IV-1 6M 8Y 0.00 0.30 R: +1.00/−0.50 × 180
L: +1.75/−1.75 × 180 Constant LXT Chin elevation

B/L marked r/o elevation
B/L small r/o depression
R minimal r/o abduction
R moderate r/o adduction
L minimal r/o adduction
L small r/o abduction

Mild
B/L Normal Normal

Pt IV-2 23M 7Y 0.00 0.08 R: +1.50DS
L: +0.75DS

Constant
R/AXT Nil B/L moderate r/o elevation

B/L minimal r/o adduction
Mild
B/L Normal Normal

Pt IV-3 4M 4Y 0.24 0.24 R: −1.50DS
L: −0.50/−1.00 × 170

Intermittent
Distance LXT Nil

B/L mild r/o elevation
B/L slight r/o depression
B/L full abduction and
adduction

MildR Normal Normal

Pt IV-1 Pt IV-2 Pt IV-3
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Figure 2. Family pedigree—three siblings from a consanguineous Pakistani family are affected with 
external ophthalmoplegia, with vertebral and rib anomalies. Square symbols indicate males; circles 

Figure 2. Family pedigree—three siblings from a consanguineous Pakistani family are affected with
external ophthalmoplegia, with vertebral and rib anomalies. Square symbols indicate males; circles
indicate females. Diamonds represent either gender. The number inside the shape is the number of
individuals. Filled symbols are affected individuals. The black arrow indicates the proband.

Patient IV-2 presented to a general paediatric ophthalmology clinic at 23 months with
ophthalmoplegia. There were no notable concerns regarding intellect or development.
At age 7 years, his ocular examination showed BCVA of 0.00 LogMAR in the right and
0.08 LogMAR in the left eye, a constant right alternating exotropia, bilateral ophthalmople-
gia, and mild bilateral ptosis (Table 2). Anterior and posterior segment examination was
within normal limits.

Patient IV-3 was originally found to have restricted eye movements aged four months.
She had normal intellect but there were some minor concerns about clumsiness; her neuro-
logical examination was unremarkable but mild in-toeing was noted. At age 4 years BCVA
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was 0.24 LogMAR in each eye. An intermittent distance left exotropia was detected with bilat-
eral ophthalmoplegia and mild right-sided ptosis (Table 2). Anterior and posterior segment
examination was normal, Optos imaging and OCT scans were within normal limits.
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Figure 3. (A) Facial photo; (B) dental photo; (C) Patient IV-1 skeletal X-ray, antero-posterior view-
mild thoracic scoliosis centred at T6-T7 concave to the left; (D) Patient IV-1 skeletal X-ray, lateral
(L) view; gaze position photos (N.B. not all positions of gaze were obtained due to ptosis obscuring
eye position); (E) dextro-elevation; (F) direct elevation; (G) laevo elevation; (H) primary position;
(I) laevo version; (J) MRI orbits Patient IV-1: left medial rectus, left superior rectus, and left superior
oblique muscles smaller comparing to respective EOMs in the right eye; (K) colour fundus photo;
(L) autofluorescence photo; (M) macular OCT.

Previously reported variants in MYF5 were known to cause external ophthalmoplegia,
with vertebral and rib anomalies [18]. Therefore, following the genetic results, patients
IV-1, IV-2, and IV-3 were assessed by a developmental paediatrician to look for syndromic
features, in particular torticollis, scoliosis, spinal, and rib cage or chest abnormalities, none
of which were found on physical examination. Neurological examination and growth
indices were within normal limits. Patients were referred for spinal X-rays to investigate
for radiological evidence of ribcage and spinal abnormalities. Varying degrees of thoracic,
thoracolumbar, and lumbar scoliosis were reported in all three patients (Figure 3C,D).
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3. Genetic Testing

Informed consent was obtained from all subjects involved in the study through the
Genetic Study of Inherited Eye Disease (REC reference 12/LO/0141). A clinical exome
(Agilent SureSelect Focused Exome +1 capture) for Patient IV-1 was performed on the
Illumina NextSeq 500 platform, with sequence data generated across the full capture region
of greater than 5000 genes. Next-generation sequencing analysis was then performed
for a virtual panel of coding exons (+/− 20 bp) of 14 genes associated with eye move-
ment disorders (EMD_v2 panel, North East Thames Regional Genetics Laboratory: CHN1,
COL25A1, DCC, FRMD7, HOXA1, HOXB1, KIF21A, MAFB, PHOX2A, ROBO3, SALL1,
SALL4, TUBB2B, TUBB3). Larger insertion/deletion mutations and copy variants were
analysed using ExomeDepth. Variants were filtered according to minor allele frequency
(>2%) from 1000G, ExAC or EVS databases.). No pathogenic or likely pathogenic variants
were identified. Variants in non-coding regions that could affect gene expression could not
be excluded.

Both brothers IV-1 and IV-2 were subsequently recruited to the Genomics England
100,000 Genomes Project together with their unaffected parents for whole genome se-
quencing as previously described [21,22]. Both brothers were found to be homozygous,
and the unaffected parents heterozygous carriers for a novel duplication c.596dupA in
the MYF5 gene resulting in a frameshift variant p.(Asn199Lysfs*49). Targeted sequence
analysis of the MYF5 variant confirmed the 100,000 Genome Project findings. The third
affected sibling, IV-3, underwent familial MYF5 testing and was found to be homozygous
for the same variant. In the gnomAD population database, this variant was found at
heterozygous state in two individuals (f = 0.00000124) and has not been described before
at homozygous state.

According to ACMG variant classification guidelines, MYF5 c.596dupA is likely
pathogenic. It is a null variant in a gene where loss of function is the presumed mechanism
of disease and the variant results in a reduction of more than 10% of the protein (PVS1
strong). The variant is present in only two alleles (no homozygotes) in the gnomAD v4.0
database (PM2 moderate). In vitro studies would help confirm if any residual function of
the truncated protein is present and would help to upgrade the classification.

4. Discussion

Here we present the three siblings with EORVA (non-progressive ophthalmoplegia,
ptosis, and scoliosis), without vertebrae anomalies and torticollis, caused by a novel ho-
mozygous MYF5 frameshift variant, c.596dupA, p.(Asn199Lysfs*49), in exon 3. Three
MYF5 variants have been previously reported to be associated with EORVA in six members
of four unrelated families: (i) deletion c.23_32del p.(Gln8Leufs*86); (ii) deletion c.191del
p.(Ala64Valfs*33); and (iii) missense variant c.283C>T p.(Arg95Cys), all located in exon 1
(Figure 4, Table 3) [18,21].

The homozygous 10bp deletion, c.23_32del, in exon 1 was reported in a brother, age
9 years, and his sister, age 19 years, of Turkish descent from unaffected consanguineous
first cousins. Both exhibited external ophthalmoplegia, ptosis, squint, scoliosis, torticollis,
and dysmorphic hypoplastic ribs. The same variant c.23_32del was discovered in another
16-year-old male from the same village, with similar ocular and vertebral features, and
pectus carinatum [20]. The c.23_32del variant appears to exert a more severe extra-ocular
phenotype compared to our reported c.596dup variant, where scoliosis was the only skeletal
feature detected on X-ray imaging. The c.191del variant in exon 1 was found in an 8-year-
old Chinese boy with paternal uniparental disomy. Extra-ocular features included scoliosis
and hypoplastic ribs. This patient had a milder ocular phenotype with only ptosis reported:
however, the ocular features were not provided in detail [23].
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Figure 4. Mutational spectrum of MYF5 related external ophthalmoplegia, with vertebral and rib
anomalies. (A) Variants previously described depicted across exon 1 of MYF5 gene (NM_005593.3),
while the novel disease-causing variant reported in this study is located in exon 3. (B) Amino
acid changes mapped across MYF5 transcription factor (NP_005584, UniProt P13349); bHLH-
basic helix–loop–helix protein domain (amino acid residue 83 to 134) binding DNA. The novel
disease-causing variant reported in this study is indicated in bold. Asterisk (*) indicates premature
termination (stop) codon.

Table 3. Genotype–phenotype correlation in MYF5 variants. Abbreviations: EOM: extraocular
muscles; R: right eye; L: left eye; XT: exotropia; HoT: hypotropia; HT: hypertropia; +: mild; ++:
moderate; +++: severe; ND: no data; ✔: present; ✗ absent.

Reference Homozygous
MYF5 Variant MYF5 Protein Patient ID External

Ophthalmoplegia Ptosis Strabismus Scoliosis Torticollis Ribs Anomalies Vertebral
Anomalies

[20] c.23_32del p.Gln8Leufs*86 I-1 ✔ ✔ R>L XT++, HoT R+ Cervical
scoliosis ✔ ✔ ✔

I-2 ✔ ✔ R>L XT++ ND ✔ ✔ ND

I-3
✔—EOMs
hypoplastic to
absent

✔ R>L HoT++
Cervical and
thoracic
scoliosis

✔ ✔ ✔

[23] c.191delC p.Ala64Valfs*33 II-1 ND ✔ ND ✔ ND ✔ ✗

[20,24] c.283C>T p.Arg95Cys III-1 ✔ ✔ L XT+++ HoT L+ ND possibly ND ND

III-2 ✔ ✗ XT+ Lumbar
scoliosis ND ND ND

This study c.596dup p.Asn199Lysfs*49 IV-1
✔—EOMs L
hypoplastic
comparing to R

✔ XT L+ Thoracic
scoliosis ✗ ✗ ✗

IV-2 ✔ ✔ XT R+,HT R + Thoracic and
lumbar scoliosis ✗ ✗ ✗

IV-3 ✔ ✔ R XT L+ HT L+ Lumbar
scoliosis ✗ ✗ ✗

The two frameshift variants in exon 1, c.23_32del p.(Gln8Leufs*86) and c.191del
p.(Ala64Valfs*33), introduce a premature termination codon (PTC) at least 280 nucleotides
after the start codon. These PTCs are predicted to be sensitive to nonsense-mediated decay
(NMD) [25,26], leading to degradation of mRNA and an absence of the MYF5 protein.

The missense variant p.(Arg95Cys) forms a full-length protein and has been associated
with EORVA in two members of one Yemeni family [20,24]. In vitro and in silico assays
reported that mutant MYF5 is mislocalised to the cytoplasm and has lost its DNA binding
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ability [20]. Even if the consequence of the mutation on the protein differs between null
or truncated protein with an alternative C-terminus, only a few EORVA patients have
been described and a larger cohort of patients are required for more significant genotype–
phenotype correlation.

Several mouse models have shown that rib morphogenesis is indirectly affected by
Mrf4 and Myf5 expression via fibroblast growth factor (Fgf) and platelet-derived growth
factor (Pdgf) mediation in myotome–sclerotome interactions. Myf5/Mrf4 activation in
hypaxial myotome signals to the adjacent sclerotome using Pdgf and Fgf to promote
rib and vertebrae formation [14,27,28]. Mice lacking Pdgfra, the gene encoding the Pdgf
receptor, have severe rib anomalies [29]. In addition, insertion of Pdgfra cDNA into the Myf5
locus results in increased rib and vertebral development [14]. The genes encoding MRF4
and MYF5 are closely linked, with approximately 8.5kb separating their coding sequences
on human chromosome 12 [30–32], and cis-acting interaction of MRF4 negatively impacts
expression of adjacent MYF5 [17,18]. A Mrf4 knockout mouse model exhibits rib defects and
lacks Myf5 expression. Rib anomalies are more severe in compound heterozygote Myf5/Mrf4
than Mrf4 knockout models, and the most severe are in Myf5 homozygous mutants [15,
17,33] (Table 4). These mouse models did not examine the influence of Myf5/Mrf4 on
extraocular muscle function. Rib development is highly sensitive to quantitative difference
in MYF5 function [15,17].

Table 4. Genotype–phenotype correlation in mice models with rib morphogenesis defects; ND—no
data; wt—wild type.

Genotype Mice Model Rib Cage Defects Vertebrae Defects

Mrf4−/− [34]

Ribs not attached to the sternum
Truncation of ribs
Bifurcation and fusion of adjacent ribs
Irregular sternum ossification

ND

Mrf4−/+Myf5−/+ [17]

Ribs not attached to the sternum
Truncation of ribs: shorter vs wt/Mrf4-/-; longer vs.
Myf5-/-

Bifurcation and fusion of adjacent ribs
Irregular sternum ossification

ND

Myf5−/− [15]
Absence of the distant parts of the ribs
Complete ossification of the sternum
Lethal immediately postnatally (inability to breath)

ND

Pdgfra−/− [29]
Ribs mostly attached to the sternum
Bifurcation and fusion of adjacent ribs
Irregular and shorter sternum

Structural anomalies of cervical and
thoracic vertebrae
Spina bifida
Anomalies of spinal column curvature

After a genetic diagnosis, detailed phenotyping is important to assess for features that
can aid diagnosis and provide clinical evidence in support of variant pathogenicity. Our
cases presented with a presumptive diagnosis of CFEOM due to characteristic features of
ophthalmoplegia and ptosis, however, radiology revealed scoliosis in all three patients,
which revised the diagnosis to EORVA. Recognition of these additional features allows
for a multi-disciplinary approach to provide the best possible care for the patients in the
long-term.

5. Conclusions

In conclusion, we report three siblings of consanguineous parents with a novel homozy-
gous variant c.596dupA p.(Asn199Lysfs*49) in exon 3 of MYF5 associated with EORVA,
a newly recognised syndrome easily mistaken for CFEOM, which has a different patho-
genesis and systemic implications. With four EORVA-associated variants now discovered,
it is important to perform genetic testing on patients with external ophthalmoplegia with
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and without extra-ocular features. Our family had no extra-ocular abnormalities on clinical
examination, but genetic results prompted further radiological investigation, revealing
scoliosis in all affected members. Patients with signs of ocular fibrosis, especially with
a family history of ophthalmoplegia should undergo genetic testing and be referred to
paediatric services for a full work up.
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