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Abstract: LONP1 is the principal AAA+ unfoldase and bulk protease in the mitochondrial matrix, so
its deletion causes embryonic lethality. The AAA+ unfoldase CLPX and the peptidase CLPP also act
in the matrix, especially during stress periods, but their substrates are poorly defined. Mammalian
CLPP deletion triggers infertility, deafness, growth retardation, and cGAS-STING-activated cytosolic
innate immunity. CLPX mutations impair heme biosynthesis and heavy metal homeostasis. CLPP
and CLPX are conserved from bacteria to humans, despite their secondary role in proteolysis. Based
on recent proteomic–metabolomic evidence from knockout mice and patient cells, we propose that
CLPP acts on phase-separated ribonucleoprotein granules and CLPX on multi-enzyme condensates
as first-aid systems near the inner mitochondrial membrane. Trimming within assemblies, CLPP
rescues stalled processes in mitoribosomes, mitochondrial RNA granules and nucleoids, and the
D-foci-mediated degradation of toxic double-stranded mtRNA/mtDNA. Unfolding multi-enzyme
condensates, CLPX maximizes PLP-dependent delta-transamination and rescues malformed nascent
peptides. Overall, their actions occur in granules with multivalent or hydrophobic interactions,
separated from the aqueous phase. Thus, the role of CLPXP in the matrix is compartment-selective,
as other mitochondrial peptidases: MPPs at precursor import pores, m-AAA and i-AAA at either
IMM face, PARL within the IMM, and OMA1/HTRA2 in the intermembrane space.

Keywords: Perrault syndrome type 3 (PRLTS3); iron toxicity; pyridoxal-5′-phosphate; VWA8; GFM1;
PNPT1; RNA-G4; ISC; ALAS; OAT

1. CLPP Is a Key Modifier of Growth and Lifespan, but Its Substrates Remain Unclear

LONP1 is the principal proteolysis factor of the mitochondrial matrix, combining an
AAA+ ATPase unfoldase domain with a serine peptidase domain within the same protein
sequence. LONP1 homo-multimerizes in a ring or barrel shape to maximize its efficiency
and plays a crucial role in the turnover of respiratory chain complexes and most other
proteins in this compartment [1–3]. According to studies on bacteria, CLPXP is perceived
as a similar but stress-responsive proteolysis machine, also in the mitochondrial matrix.
However, CLPX as an AAA+ ATPase unfoldase component and CLPP as a serine peptidase
component are separate proteins. To obtain proteolytic capacity, via assembly in a barrel-like
conformation similar to LONP1, they can hetero-multimerize. Nonetheless, in proteolysis,
they play a secondary role, becoming prominent only after cellular stress [4]. Both systems
have been conserved from bacteria to humans, so each of them has to play very relevant
roles in the mitochondrial matrix. Indeed, the loss of LONP1 in a homozygous state causes
lethality already during early embryonic development [1]. In contrast, the loss of CLPP
was observed to extend the lifespan in the eukaryotic fungus Podospora anserina, and CLPP
is constitutively absent from the yeast Saccharomyces cerevisiae [5,6]. This emphasizes a
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dramatic difference in the functional impact of these two systems, which is at odds with
the idea that both act similarly in proteolytic degradation.

Genetic analyses of human diseases recently showed mild LONP1 mutations to be
responsible for CODAS syndrome, where craniofacial dysmorphia, cataracts, ptosis, a
median nasal groove, delayed tooth eruption, delayed epiphyseal ossification, metaphyseal
hip dysplasia, vertebral coronal clefts, short stature, psychomotor and developmental delay,
and hearing loss are diagnostic hallmarks [7,8]. In contrast, CLPP mutations cause Perrault
syndrome type 3 (PRLTS3) [9–15]. Perrault syndrome was clinically and genetically defined
as the combination of early female infertility due to primary ovarian failure, with the
subsequent onset of progressive sensorineural hearing impairment and autosomal recessive
inheritance. Later, it was observed that not only deafness but also sensory neuropathy,
ataxia, and brain white matter changes can appear as neurodegenerative features [16–20].
Judging by human genetics, the functions of LONP1 and CLPP therefore appear to target
different pathways, and their dysfunctions have widely different consequences.

Genetic causes of PRTLS are almost exclusively due to mtDNA/mtRNA or mitoribo-
some machinery errors [13,21]. The role of mtDNA in Perrault syndrome’s pathogenesis is
substantiated by causal mutations in the mitochondrial DNA/RNA helicase TWNK/PEO1
and in the mitochondrial transcription factor TFAM [22,23]. The role of mtRNA processing
is corroborated by causal mutations in the mitochondrial rRNA chaperone ERAL1 and the
mitochondrial RNase P component PRORP [16,24,25]. The roles of mt-tRNA processing
and mitoribosomal translation are evident from causal mutations in the mitochondrial
tRNA–amino acid ligases HARS2 and LARS2, as well as the mitoribosome-associated factor
RMND1 [13,26–35]. The detailed correlation of mutant mitochondrial factors with the
consequent phenotypes (Figure 4 in [36]) indicates that primary infertility is mostly due
to abnormal mtDNA or mt-tRNA processing, whereas hearing impairment is frequently
due to abnormal mtRNA processing or mitoribosomal translation. Thus, CLPP appears to
selectively modulate mitochondrial RNA processing and translation.

Also in a complete phenotypic contrast, human CLPX mutations were observed
to cause erythropoietic protoporphyria 2 (leading to acute skin photosensitivity, mild
microcytic anemia, and rarely, severe liver disease) [37,38]. The credibility of these findings
is enhanced by observations from yeast to humans that CLPX, independently from CLPP,
activates heme biosynthesis [5,37,39].

The recent generation of several independent Clpp-knockout (KO) mouse lines, by
means of Gene-Trap random insertion [40] and targeted conditional technology [41], pro-
vided authentic genetic animal models of PRLTS3 with the characteristic phenotypes and
allowed for the elucidation of the underlying molecular and functional deficits. Indepen-
dently and in perfect agreement, the biochemical analyses of each research team showed
that CLPP homo-multimer rings exist normally without CLPX association in blue-native
electrophoresis, where endogenous protein complexes are resolved according to their in-
teractive stability and molecular weight (Figure 2 in [42], Supplementary Figure EV3B
in [43]). Thus, in unstressed mammalian cells, CLPP rings do not associate with the energy-
providing AAA+ ATPase CLPX and cannot perform the degradation of protein substrates,
which would require ATP hydrolysis [4]. Therefore, CLPP functions would normally be
limited to act as a peptidase like chymotrypsin [44], trimming proteins or multi-protein
assemblies rather than completely eliminating them. This concept is in agreement with a re-
cent review where the role of CLPX and CLPP was seen in the fine-tuning of mitochondrial
matrix multi-protein assemblies rather than in proteolysis [44]. CLPX as a monomer or
homo-multimer ring would then employ its energy from ATP hydrolysis to unfold proteins
or protein complexes without subsequent destruction. Of course, CLPX and CLPP may join
forces under conditions of cell stress, e.g., when mitoribosomal translation is stalled and a
misfolded nascent polypeptide has to be degraded, or after cell damage to disaggregate and
cleave the toxic oligomers of ribonucleoproteins. An illustrated synopsis of this emerging
scenario is provided in Figure 1, and the detailed evidence is presented in the subsequent
text paragraphs with citations of recent research.
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Figure 1. CLPX and CLPP perform first aid in matrix granules where reaction intermediates are
separated from the aqueous phase. A depiction of a mitochondrial matrix compartment between two
cristae, where the LONP1 homomultimer is responsible for bulk proteolysis, while the homohexam-
eric ring of the AAA+ unfoldase CLPX and the homoheptameric ring of the peptidase CLPP perform
first aid in IMM-associated granular condensates, in cooperation with the AAA+ unfoldase VWA8.
CLPX maximizes the flux within the heme-biosynthesis multi-enzyme metabolon, unfolding ALAS
and OAT so that they can bind to their cofactor PLP, to perform transaminations at delta-carbon
positions. CLPX also associates with the translation elongation factor GFM1 when a nascent peptide
is misfolded. Indirectly via heme or directly via GRSF1, CLPX may also influence mtRNA-G4 pro-
cessing. The heme availability also impacts the respiratory chain and many processes outside the
mitochondria. Rather than performing proteolytic degradation, without assistance by the ATPase
CLPX, CLPP can only trim short polypeptides from proteins and assemblies, like chymotrypsin.
CLPP apparently has access to diverse phase-separated, ribonucleoprotein-containing condensates in
the matrix, where the transcription, processing, translation, degradation, and extrusion of mtRNA
are decided. The illustration presents the respiratory chain at each crista with its complexes I–V and
in association with iron (red dots)–sulfur (yellow dots) clusters, as well as the heme quadrangular
molecule. The mitoribosomal large subunit (green globe) and small subunit (light blue) are shown
with the sites for aminoacyl binding (A), peptidyl extension (P), and exit to tunnel (E), where the
GTPase GFM1 determines the elongation. The various terms and protein symbols are defined in the
Abbreviation List below.

To elucidate the exact roles of CLPP serves an urgent unmet medical need, given that
the modulation of CLPP activity by drugs is consistently observed to be very efficacious
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in counteracting solid cancers and infections [45–47]. Indeed, the effect of CLPP is strong
even under physiological conditions: its dysfunction leads to a short stature in patients [15],
and it is unclear if this represents impaired cell growth, reduced proliferation rates, or
developmental deficits. In the PRLTS3 mouse models, a reduction in weight of up to
50% was observed, together with an underlying similar decrease in the nitrogen-storing
amino acid L-arginine, which is consumed in the maximized biosynthesis of heme instead
of fueling growth [48]. This means that nitrogen availability in L-arginine could be the
limiting factor for organism growth. In a preliminary meta-analysis of CLPP substrate
trapping experiments and of CLPP–null proteome profiling in many organisms from
bacteria to humans, an enrichment of mitochondrial ribonucleoproteins was observed, with
the unfoldase CLPX, the mitoribosomal translation factor GFM1, and the RNA degradation
factor PNPT1 emerging as the proteins that most consistently interact with CLPP and show
accumulation upon its loss [36].

2. Novel Evidence on CLPP and CLPX’s Functions from Clpp-KO Mice and
PRLTS3 Patients
2.1. Prominent Impact of Absence of CLPP and Excess of CLPX on Mitochondrial Nucleoids

Upon the first generation of two independent Clpp-KO mouse embryonic stem cells
by inactivating Gene-Trap insertions in intron 1 and 2 at the Texas Institute of Genomic
Medicine (TIGM), the derived mice were shown to serve as authentic models of Perrault
syndrome [40]. These homozygous Clpp-KO mice exhibited complete infertility even at an
early age, an average weight reduction of up to 70% and length reduction of up to 90%
from 12 weeks, impaired locomotor activity by the age of 6 months, sensorineural hearing
impairment from 12 to 18 months, and a relative resistance to microbial infections [40].
In contrast to other forms of Perrault syndrome with exclusively female infertility due to
primary ovarian insufficiency, CLPP absence according to mouse data also causes male
infertility due to azoospermia after diplotene arrest [49]. Further analyses of the lean
phenotype of several Clpp-KO mouse lines showed a protection from diet-induced obesity
and from insulin resistance but also a deficit to adapt their body’s thermogenesis [50,51].

The molecular analyses of tissues showed the absence of CLPP to cause a >3-fold
accumulation of the unfoldase CLPX, together with increased amounts of the mitochon-
drial protein chaperone mtHSP75 (but not HSPD1) [40,52]. This corresponds partially to
previous observations in Caenorhabditis elegans studies on the unfolded protein response of
mitochondria (UPRmt), where hsp-6 and hsp-60 were induced [53]. Beyond the expected
impairment of proteostasis, careful quantification of mtDNA with qPCR in the testis, ovary,
heart, brain, liver, and blood demonstrated a 1.5- to 4-fold increase in the mtDNA copy
number [53]. This observation was not reproduced in mice with conditionally targeted
Clpp deletion when the full-length mtDNA from the heart muscle was assessed by means
of Southern blotting [43], but it was confirmed by an independent team in white adipose
tissue from the Gene-Trap Clpp-KO mice with qPCR [51] and also in CLPP-mutant patient
skin fibroblasts by means of qPCR [54]. Furthermore, the patient fibroblast analysis by
means of microscopy demonstrated an enlargement in the nucleoid area, with an apparent
elevation of mtDNA signals [54]. It is important to note that the increased mtDNA copy
number was not accompanied by an elevated abundance of TFAM as its primary binding
partner. Instead, the proteome profiling of the targeted Clpp-KO mouse heart tissue, Gene-
Trap Clpp-KO mouse embryonic fibroblasts, and patient fibroblasts documented prominent
accumulation of the nucleoid factor POLDIP2 [52,54,55], a protein that is known to associate
with mtSSB [55] and CLPX, which maximizes the activity as well as stability of CLPXP [56].
Mechanistic analyses of the drug ZG36, which acts as a CLPP agonist, showed a converse
impact, with a reduction in mtDNA to half [57]. In addition, in Clpp-KO testis at the early
stages of spermatogenesis, a consistent accumulation was observed for the Twinky isoform
of the mtDNA helicase TWNK/PEO1, which differs from the Twinkle isoform by absent
binding to the D-loop [58]. This finding appears to be particularly relevant given that
TWNK mutations can cause Perrault syndrome [23,59–66].
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These observations are compatible with the concept that the absence of CLPP results
in an increased dosage of mtDNA fragments rather than full-length copies, so that their
assembly with associated proteins is impaired, and the generation of the polycistronic
transcript may be affected.

2.2. Prominent Impact of Absence of CLPP and Excess of CLPX on Mitoribosomes, Mostly on
tRNA-/mRNA-Associated and rRNA-Containing mtSSU

Further evidence that CLPP and CLPX target granular components of the mitochon-
drial matrix was reported for mitoribosomes, initially in the targeted Clpp-KO mouse [43],
and then in the Gene-Trap Clpp-KO mouse as well [42].

Regarding ribosomal RNA, the 12S rRNA and MRPS15-MRPS35 protein components
of the mitoribosomal 28S small subunit (mtSSU) showed a much more elevated abundance
than the 16S rRNA and MRPL12-MRPL37 protein components of the large subunit of
mitoribosomes (mtLSU) in Clpp-KO mice [41]. Further analyses of the co-migration of
mitochondrial proteins in blue-native gel electrophoresis to define their interaction in
assembled complexes confirmed a general accumulation of all the components of the
mtSSU in a Clpp-KO testis, brain, and heart in the absence of CLPX co-migration [42].

Regarding the translation-associated enzymes, the elongation factor GFM1 (also
known as EFG1, an ortholog of bacterial fusA-encoded EF-G, see [67]) exhibited an el-
evated protein abundance in Clpp-KO mice as well, along with abnormal sedimentation in
sucrose gradients [41]. Indeed, the co-accumulation of CLPX together with its interactor
GFM1 was subsequently confirmed in proteome profiling studies of mouse brains, MEFs,
and patient fibroblasts [54]. This is in agreement with the notion that CLPX not only acts
in heme biosynthesis but is also able to target the GFM1-associated L7/L12 stalk and
central protuberance of mitoribosomal LSU to act in the translation elongation/recycling
apparatus [68–72].

These findings identify the molecular details that underlie previous observations that
CLPXP is necessary to rescue stalled translation complexes by unfolding the mitoribosome,
so that translation elongation via the addition of a CAT tail to the nascent misfolded
polypeptide can occur. CLPXP then eliminates this aberrant translation product before its
aggregation tendency has toxic effects [73–76].

2.3. Prominent Impact of Absence of CLPP and Excess of CLPX on Mitochondrial RNA
Processing Granules

A third line of evidence on the role of CLPP in mitochondrial matrix granules concerns
the RNA processing compartment. It was observed that mtSSU rRNA accumulates in
Clpp-KO mice [41]. ERAL1 serves as a mitochondrial rRNA chaperone, while the 12S rRNA
associates with ribonucleoproteins to form the mtSSU. Indeed, ERAL1 exhibited not only
an elevated protein abundance in Clpp-KO heart mitochondria but also abnormal sedimen-
tation in sucrose gradients [41]. Again, ERAL1 accumulation appears to be particularly
relevant, given that ERAL1 mutations can trigger Perrault syndrome [25,77–79].

Clpp-KO-triggered accumulation was also documented for a few mitochondrial tR-
NAs [41]. In particular, the tRNAs for valine (Val) and phenylalanine (Phe) exhibited higher
aminoacylation in a Clpp-KO heart [41]. Therefore, it is interesting that a very selective
protein accumulation exists for mtLSU components like MRPL18 and MRPL38, which
assemble with tRNA-Val/Phe in the central protuberance of mitoribosomes, and that this
CLPP-null effect on the central protuberance subunits of the mtLSU is conserved across eu-
karyotes until the ascomycete fungus P. anserina [42,48]. This selective impact on the mtLSU
may also be relevant for mtDNA and the cytosolic stress response: MRPL38 influences the
maintenance of the mitochondrial nucleoid, at least in yeast [80]. Furthermore, there is
a cytosolic isoform of MRPL18, which modulates the ribosomal translation of molecular
chaperones after cell stress [81] and can thus influence the UPR outside of mitochondria.

A key role of a tRNA-associated pathology in CLPP-dependent pathogenesis is also ev-
ident from human genetics data. Mutations in the mitochondrial tRNA–aminotransferases
for histidine and leucine, HARS2 and LARS2, cause the typical features of Perrault syn-
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drome [21,30,82–86], while mutations in the mitochondrially encoded tRNA sequences
trigger different and mostly neurodegenerative phenotypes, including progressive deaf-
ness [87]. Mirroring a joint pathogenetic pathway for different variants of Perrault syn-
drome, Clpp-KO testes from the early stages of spermatogenesis contain elevated amounts
of HARS2 [42]. It is furthermore worth noting that the deleterious effects of mutations in
DARS2 (mitochondrial tRNA–aspartate aminotransferase) in mice can be partially rescued
by an absence of CLPP [41,88], so in conditions of enhanced mitochondrial RNA processing
and translation blockade, it can be advantageous to have a CLPP loss-of-function that
reduces UPRmt and prolongs the lifespan.

The folding of mitochondrial tRNAs and rRNAs represents another pathway that is
affected both by the impact of CLXP on heme and by the impact of CLPP on ribonucleopro-
tein condensates. Bacterial tRNA and rRNA contain guanine-rich sequences that can adopt
quadruplex structures [89]. Also, for mammalian cytosolic ribosomes, the importance of
such rRNA quadruplexes for mature conformation has already been documented [90].
When guanine-rich sequences adopt a quadruplex conformation (G-tetrads) with four RNA
or DNA strands (RNA-G4 or DNA-G4), their structure can be stabilized by an association
with quadrangular porphyrin and heme molecules [90–93]. This interaction may activate
peroxidase- or oxidase-mimicking features in this DNAzyme/RNAzyme complex [92,93],
may modify the compaction and processing of DNA/RNA [94], and is crucial in ribosomes
for optimal translation efficiency [95]. The high abundance of such rRNA-G4 structures
even limits the bioavailability of heme in cells [90]. This pathway seems to be altered in
PRLTS3, in view of the selective accumulation of the RNA granule factor GRSF1 (G-Rich Se-
quence Factor 1) in Clpp-KO tissues [41,54]. Within mitochondria, GRSF1 is responsible for
non-coding RNA in the G4 conformation [96,97]. GRSF1 interacts with RNase P to influence
the cleavage of polycistronic transcripts [98], and its dysfunction leads to RNA processing
defects, the accumulation of mtRNA breakdown products, as well as increased levels of
dsRNA and RNA:DNA hybrids [99]. These problems lead to the formation of distinct
mitochondrial dsRNA foci [100]. In addition, GRSF1 dysfunction triggers the abnormal
loading of mRNAs and lncRNAs on the mitochondrial ribosome and impaired ribosome
assembly [101]. GRSF1 also influences the degradation of mtRNA in the degradosome in
cooperation with PNPT1 [96,102]. Overall, it is not surprising that GRSF1 is also involved
in iron toxicity like CLPX [103] and in lean body phenotypes like CLPP [104,105]. GRSF1
was observed in protein–protein interactions with CLPX [36].

RNA-G4 structures also control the activity of the mitochondrial GTPase NOA1 (also
known as C4ORF14) for mitoribosomal assembly [106–108]. NOA1 was also identified as a
CLPXP target protein [109].

The joint roles of absent CLPP and excess CLPX during the assembly of mitoribosomes
are further supported by the selective accumulation of VWA8 in Clpp-KO tissues [42]. The
mitochondrial matrix protein VWA8 [110] contains a domain that is related to porphyrin
chelatases [42], so it might interact with heme or its precursors. VWA8 also contains an
AAA+ unfoldase domain, whose protein targets are undefined in mammals. Its yeast or-
tholog midasin (also known as Rea1) was clearly shown to be responsible for the maturation
of the mitoribosomal LSU [111–113].

With excess heme being released from mitochondria in PRLTS3, abnormal G-tetrad
processing might also occur in the nucleus, where homologous recombination is known to
depend on DNA-G4 structures [114]. Thus, the complete infertility of PRLTS3 patients, with
the abortion of nuclear meiosis-I after diplotene arrest [49], might partially be a consequence
of defective G4 conformations.

Furthermore, the mitochondrial RNA granule factor LRPPRC undergoes selective
accumulation in Clpp-KO tissues [41,54]. LRPPRC is known to modulate the poly(A) tail
of mRNAs in mitochondria [115–119], and its dysfunction influences the efficiency of the
RNA degradosome together with the accumulation of toxic dsRNA [120].

Jointly, all this evidence indicates that the processing of polycistronic mtRNA, which
is transcribed from mtDNA and then cleaved to tRNAs, rRNAs, other non-coding RNAs,
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and mRNAs, is selectively altered by the absence of CLPP. CLPP could trim components
that are stuck within the RNA–protein complexes. CLPX clearly has a function in the
disassembly of stalled translation complexes and might play a role in the G4 conformation
of rRNA, which is important for the assembly of mitoribosomes.

2.4. Prominent Impact of Absence of CLPP and Excess of CLPX on Mitochondrial D-Foci Where
RNA Degradation, Extrusion, and Innate Immunity Activation Are Decided

A fourth indication of the role of CLPP for mitochondrial matrix granules concerns the
RNA degradosome in the so-called D-foci [121–123]. Its main component, the ribonuclease
PNPT1 (which is orthologous to the bacterial polynucleotide phosphorylase/polyadenylase
pnp, or PNPase), is associated with CLPP and is dysregulated upon CLPP deletion, exhibit-
ing consistency in hosts ranging from Escherichia coli to mice [36]. Together with the RNA
helicase SUPV3L1 (best known as SUV3, see [124]) and the RNA-G4-quadruplex modulat-
ing factor GRSF1, PNPT1 eliminates dsRNA, acting as 3′-5′ exonuclease [102,122,125–129],
and even its bacterial ortholog pnp is responsible for antiviral immunity [130]. The matrix
degradosome in D-foci appears to act not only on the abundant mtRNA, since PNPase and
SUV3 show a preference for mtDNA [131–135]. Similarly to mutations in CLPP, mutations
in PNPT1 are also the cause of progressive deafness and of a sensory neuropathy with
ataxia [136–141]. PNPT1 dysfunction causes the accumulation of toxic dsRNAs and their
extrusion from mitochondria into the cytosol, where antiviral innate immunity responses
are activated [142]. Again, the homozygous absence of CLPP or heterozygous absence
of mtDNA-binding TFAM in the mitochondrial matrix triggers cytosolic antiviral innate
immunity responses, like the induction of the AAA+ unfoldase RNF213. This unfoldase is
also activated by toxic dsRNA mimics such as poly(I:C) administration [143]. In Clpp-KO
mouse brains and MEFs, the selective activation of various cytosolic sensors for toxic
DNA and RNA was documented [144]. The problems in the packaging of mtDNA and in
degrading/extruding toxic nucleic acids from mitochondria in Clpp-KO cells were shown
to activate antiviral cytosolic responses via the cGAS/STING pathway [145].

Overall, the resulting steady-state activation of type I interferon signaling explains the
marked resistance of CLPP-null mice to bacterial and RNA/DNA virus infections [40,145].

As a preliminary conclusion, the above four paragraphs represent solid evidence that
CLPP has a selective impact on matrix granules in which RNA is a component, which
mediates the liquid–liquid phase separation (LLPS) around these condensates.

2.5. Prominent Impact of Absence of CLPP via CLPX Accumulation on Heme Biosynthesis and
Incorporation into Complex-IV of the Respiratory Chain

The absence of CLPP causes a several-fold accumulation of CLPX, as explained above.
CLPX has an important role in the heme metabolism multi-enzyme complex, which is
associated with the IMM [146], and serves to separate ferrous iron and reduced porphyrin
intermediates from unwanted reactions in the matrix [147,148]. This multi-enzyme chain
was previously shown to serve as a metabolon, which is by definition held together by non-
covalent interactions, as protein condensate with minimal hydration, to allow for substrate
channeling and maximal productivity [149–151]. The complex contains ALAS, which is the
first enzyme of heme biosynthesis and whose product delta-aminolevulinic acid (deltaALA)
is exported from mitochondria into the cytosol. It also contains CPOX-PPOX-FECH on
different IMM surfaces as the three terminal enzymes of the biosynthesis chain, whose prod-
uct, heme, is incorporated into complexes II, III, and IV of the respiratory chain within the
IMM [147,152]. ALAS is furthermore associated with SUCLA2 in differentiating erythroid
cells [147]. This IMM-associated multi-enzyme complex also serves as a bridge [153,154]
between at least three transmembrane proteins. Firstly, MFRN1 (also known as SLC25A37
or mitoferrin-1), which imports iron into the mitochondrial matrix [155]; secondly, ABCB10,
which exports biliverdin to the cytosol [156]; and thirdly, ABCB7, which exports glutathione-
coordinated iron–sulfur clusters to the cytosol [157], are connected to the IMM-associated
heme biosynthesis complex, according to several consistent reports. There is still de-
bate [147] about whether the tight association of IMM transmembrane proteins with this
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metabolon goes beyond the biliverdin/zinc-mesoporphyrin transporter ABCB10 [158–160]
to include also the TMEM14C protoporphyrin-IX transporter [161–164], the protoporphyrin-
IX transport modulator ANT2 [165], and the glutathione/succinate transport modulator
OGC [166,167]. Enzyme complexes with similar isolations of reaction intermediates from
the surrounding matrix have also been observed, e.g., during L-arginine metabolism and
bacterial cobalamin metabolism [168,169]. Heme and porphyrins are compounds that need
a hydrophobic environment [170–173]. According to recent human genetics findings, muta-
tions in FECH, ALAS2, and CLPX [174] underlie most cases of the disorder erythropoietic
protoporphyria, while mutations in ALAS2 and in the mitochondrial glycine transporter
SLC25A38 are the most frequent causes of congenital sideroblastic anemia [175].

CLPX was shown to unfold ALAS, so that its cofactor pyridoxal-5′-phosphate (PLP) can
bind and activate it to consume succinate-CoA and glycine for the production of the heme
precursor delta-aminolevulinic acid (deltaALA) with optimal efficiency [5,37,38,176–178].
CLPXP was claimed to be responsible for ALAS degradation [179]. In the Clpp-KO
mouse, the consequent elevation of CLPX abundance will also unfold OAT (ornithine
delta-aminotransferase), so that PLP binds to it and triggers the consumption of L-arginine
and L-ornithine via a delta-transaminase and delta-aminomutase reaction to produce GSA
as a precursor of heme. In parallel, a recruitment of L-glutamate occurs into maximized
deltaALA generation via the accumulation of the enzyme ALDH18A1 (also known as
delta-1-pyrroline-5-carboxylate synthase) [48,52]. Thus, both ALAS and OAT acquire the
ability to perform transaminations at the delta-carbon position, when CLPX unfolds them
and enables them to bind to PLP as cofactor [180]. At the same time, iron accumulates in
Clpp-KO tissue, together with the heavy metals molybdenum, cobalt, and manganese [42].
Thus, heavy metal toxicity and ferroptosis [181,182] may also be part of PRLTS3 pathogene-
sis mechanisms. The accumulation of the metal- and heme-binding protein COX15 and the
preferential affection of respiratory complex-IV in the IMM of Clpp-KO mice can thus be
explained as a consequence of iron/heme dysregulation [42]. Indeed, the expression dys-
regulation of the heme-binding, mtDNA-encoded Cox1 membrane subunit in complex-IV
stood out across the Clpp-KO testis, heart, liver, and brain as the main molecular underpin-
ning of respiratory dysfunction [40]. While heme is a protoporphyrin-IX that is chelated
with Fe2+, plant chlorophyll is a protoporphyrin chelated with Mg2+, so both heme and
chlorophyll biosynthesis depend on ALAS control by PLP and CLPX. Indeed, the regulation
of heme/chlorophyll metabolism by CLPX is conserved from bacteria across phylogenesis
to plants [183–187].

Unsurprisingly, the accumulation of CLPX in Clpp-KO tissues not only modulates
the binding of PLP to target enzymes but also leads to increased amounts of the PLP
storage/transport protein PLPBP in some cell types [42].

Altogether, CLPX appears to fine-tune the biosynthesis and maturation of porphyrins
and heme, with marked consequences for iron and heavy metal utilization, as well as
respiratory competence, through the continuous modulation of the IMM-associated multi-
enzyme complex, which channels hydrophobic reaction intermediates and isolates them
from the aqueous phase.

2.6. Prominent Impact of Absence of CLPP on Fe-S Cluster Containing Peripheral Arm of
Respiratory Complex-I

The fine-tuning of multi-protein assemblies, rather than proteolytic degradation, also
seems to characterize the selective role of the absence of CLPP and accumulation of CLPX
for the respiratory complex-I N-module [188]. Complex-I consists of a membrane arm,
embedded in the lipid bilayer of the IMM, and a peripheral arm with the N/Q modules
that protrudes into the aqueous phase of the matrix. The two modules serve to surround,
isolate, and channel electrons into a tunnel within the IMM and to protect the many
embedded iron–sulfur (Fe-S) clusters from oxidation [189–193]. The absence of CLPP
only results in a mild reduction in complex-I dependent state 3 respiration in mouse
heart mitochondria but not in other tissues, so the mutation-triggered functional deficit
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is subtle [40,43]. As a molecular underpinning, it was clearly shown that the turnover
of the core subunit NDUFV1-NDUFV2-NDUFS2 in the NADH-oxidizing N-module of
complex-I has a selective dependence on CLPP in an ongoing exchange process where
oxidatively damaged, inactive N-modules are substituted on the tip of the complex-I
peripheral arm [194]. In addition, the selective accumulation of SFXN4 in Clpp-KO tissue,
as a component of the complex-I assembly machinery that controls metal association,
indicates that the biogenesis of complex-I may be altered [42]. It has to be mentioned,
however, that none of the established complex-I subunits accumulate in Clpp-KO mouse
tissues and that proteome profiling in the CLPP-null fungal eukaryote P. anserina did reveal
some accumulated complex-I subunits but not for any specific module [48]. Thus, we
assume that complex-I assembly is not a primary and conserved target of CLPP. Our team
has observed upregulations of most factors in the iron–sulfur cluster (ISC) biogenesis
pathway, most strongly for the 4Fe–4S cluster generating enzymes, in the brain of Clpp-KO
mice, but of course, this effect may simply represent a molecular adaptation to maintain
sufficient ISC production despite the maximized iron utilization for heme biosynthesis.

Clearly, the functions of CLPP and CLPX seem to consist of the rapid refolding/trimming
or substitution of a selected subunit within a complex that keeps working, but not the
complete disassembly and disposal of entire respiratory complexes or supercomplexes.

3. Phase-Separated Condensates in Mitochondria and the Cytosol

Research over the past four years showed that nucleoid components, the RNA process-
ing granules, and the RNA degradasome of bacteria and mitochondria assemble in phase
separation [100,195–199]. The original concept of LLPS over twenty years ago [200,201]
was derived from lipid droplets, where components can move freely within a round com-
partment that excludes the aqueous phase. In the meantime, it has become clear that such
condensates do not need to be liquid but can also assume a gelatinous or even solidified
state, particularly in a disease context [202]. Although the mobility of individual compo-
nents within the condensate may be high, they would certainly move along given structures
within the phase-separated condensate, e.g., in the case of nucleolar ribosome biogenesis,
mtDNA transcription, or the processing of polycistronic mtRNA. Thus, these condensates
may be defined by the multivalent interaction forces that keep long and flexible molecules
such as lipids or RNA together [203,204]. They are also defined by the vulnerable reaction
intermediates that need protection from the aqueous or membrane phases, such as cleaved
unfolded RNA without modifications, unchelated porphyrins that are unassembled with
proteins, or pre-fibril oligomers with a propensity to disrupt membranes [205–207]. Regard-
ing its multivalent interaction forces and its long flexible structure, RNA was the prime
example for understanding LLPS, based on the phase contrast during the microscopic visu-
alization of the nucleolus. Therefore, other RNA-containing granules in the nucleus and
cytosol (e.g., paraspeckles, Cajal bodies, U bodies, PcG bodies, Balbiani bodies, stress gran-
ules, P-bodies, germ granules, and RNA transport granules) constituted an early focus of
LLPS research (Figure 1 in [202]). It was shown that the ribonucleoproteins also contribute
to phase separation, with some binding domains deciding the specificity of interactions
(known as “stickers”), while the intrinsically disordered regions (IDRs) that often intervene
have solvation properties that influence the density transition (known as “spacers”) [203].
Indeed, it was proposed that cells use RNAs and IDR proteins to separate multi-enzyme
complexes such as glycolysis into granular compartments that have a different phase than
the surrounding cytosol [208]. Other mitochondrial metabolons, such as the TCA cycle,
heme biosynthesis, urea cycle, respiratory chain, and breakdown of branched amino acids,
also require the efficient channeling of reaction intermediates, which are usually achieved
by tight subunit docking and by hydrophobic interactions [209]. Thus, these metabolons
might also be separated from the aqueous phase by the multivalent forces of associated
non-coding RNA.

In summary, the recently defined targets of CLPP and CLPX are all condensates where
phase separation or multi-enzyme assembly protect unstable reaction intermediates from
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the aqueous phase, and which frequently need a rapid repair of individual subunits while
these assemblies keep fulfilling their function. It seems plausible that CLPP and CLPX have
the ability to access these condensates and provide the necessary first aid.

4. Proposal

Altogether, it may be impossible to define consistent protein targets of CLPX and
CLPP across phylogenesis, given that each organism is adapted to a different environ-
ment, has specific metabolic needs, and has to protect other reaction intermediates inside
phase-separated multivalent or hydrophobic condensates from the aqueous phase. The
polypeptide sequences of degrons that are recognized by CLPX in E. coli might differ from
such sequences in mice, and the cleavage pattern of CLPP, while it fine-tunes multi-enzyme
complexes, may vary according to steric constraints. There could be no protein that is
exclusively the substrate of CLPXP-mediated proteolysis, and all matrix proteins might be
finally degraded by LONP1. This is exemplified by CLPX, which is certainly a prominent
example of a protein whose abundance depends on CLPP in all organisms studied [36],
and yet, its proteolytic destruction was observed to be executed by LONP1 [210]. Instead
of eliminating specific proteins in the mitochondrial matrix, CLPX and CLPP seem to have
unique access properties to granular compartments, where they can rescue a suboptimal
or stalled process, either by unfolding a protein or by the excision of a misassembled
component, so that the multi-enzyme complex can improve its performance (see Figure 1).
Overall, it is necessary to validate whether the Clpp-KO mouse evidence holds true in
other organisms, i.e., that the specific roles of CLPX and CLPP are defined by the granular
compartments that they are monitoring. This would be analogous to most other peptidases
in mitochondria, where MPP cleaves all precursor proteins at the import pore, m-AAA
and i-AAA are responsible for protein quality control at either IMM face, PARL cleaves
proteins within the IMM, and OMA1/HTRA2 performs surveillance in the intermembrane
space [211–214]. Our proteome identification of specific factors whose abundance depends
on CLPP will also be useful (more so than unspecific mitochondrial–respiratory assays) for
comparing the efficacy of drugs that activate or inhibit CLPP. This research area is rapidly
advancing and holds great promise for the treatment of cancer and infections. While the
authors are no experts in this field, we recommend several innovative reviews and articles
produced over the past 10 years on CLPP-modulating drug compounds [215–233] and
relevant structure/binding studies [45,234–244] for further reading. A better understanding
of CLPXP-dependent UPRmt will also help clarify how extra-mitochondrial signals (such
as extruded mt-dsRNA, perhaps mtRNA-G4, and associated ribonucleoproteins) trigger
responses of the nucleus and the endoplasmic reticulum UPR, a basic research field where
mechanisms are investigated in yeast and nematodes but are poorly defined in mammals
at present [41,245–250].
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Abbreviations

4Fe–4S iron–sulfur clusters consisting of two interleaved 4Fe- and 4S-tetrahedra

AAA+
ATPases Associated with diverse cellular Activities and
other ring-shaped P-loop NTPases

ABCB7 ATP Binding Cassette Subfamily B Member 7
ABCB10 ATP Binding Cassette Subfamily B Member 10
ALAS delta-Amino-Levulinic Acid Synthase
ALAS2 delta-Amino-Levulinic Acid Synthase 2, erythroid-specific

ALDH18A1
Aldehyde Dehydrogenase 18 family member A1, =P5CS,
delta-1-Pyrroline-5-Carboxylate Synthase

ANT2 Adenine Nucleotide Translocator 2, =SLC25A25
ATP Adenosine Tri-Phosphate
ATPase Adenosine Tri-Phosphatase
CAT-tail C-terminal alanine and threonine tail
cGAS cyclic GMP-AMP Synthase
CLPP Caseinolytic Mitochondrial Matrix Peptidase Proteolytic Subunit
CLPX Caseinolytic Mitochondrial Matrix Peptidase Chaperone Subunit X

CODAS
multiple anomalies syndrome with Cerebral, Ocular, Dental,
Auricular and Skeletal anomalies

Cox1 mitochondrially encoded Cytochrome C Oxidase I, mRNA
COX15 Cytochrome C Oxidase assembly homolog COX15
CPOX Copro-Porphyrinogen OXidase
D-foci degradosome granules in mitochondrial matrix
D-loop displacement loop within the mtDNA
DARS2 Aspartyl-tRNA Synthetase 2, mitochondrial
deltaALA delta-aminolevulinic acid
DNA Deoxyribo-Nucleic Acid
DNAzyme catalytically active DNA sequences
dsRNA double-stranded RNA
EF-G Elongation Factor G
EFG1 G Elongation Factor, mitochondrial 1
ERAL1 Era (E. coli) -Like 12S mitochondrial rRNA chaperone 1
Fe2+ divalent cation of iron, ferrous iron
FECH Ferrochelatase
Fe-S iron–sulfur
G4 Guanine quadruplex where RNA or DNA acquires four-stranded conformation
GFM1 G elongation Factor Mitochondrial 1
GRSF1 G-rich RNA Sequence-binding Factor 1
GSA Glutamate-5-Semi-Aldehyde
GTP Guanosine-5′-triphosphate
HARS2 Histidyl-tRNA Synthetase 2, mitochondrial
hsp-6 heat shock protein family B (small) member 6
hsp-60 heat shock protein family D (hsp60) member 1, =human HSPD1
HSPD1 heat shock protein family D (hsp60) member 1, =human HSP60, chaperonin
HTRA2 High-Temperature-Requirement A serine peptidase 2
i-AAA ATP-dependent zinc metalloprotease YME1 (S. cerevisiae) -Like 1
IDR Intrinsically Disordered Region
IMM Inner Membrane of Mitochondria
ISC iron–sulfur cluster
KO knockout
LARS2 Leucyl-tRNA Synthetase 2, mitochondrial
lncRNA long non-coding RNA
LLPS liquid–liquid phase separation
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LONP1 Lon Peptidase 1, Mitochondrial
LRPPRC Leucine-Rich Pentatrico-Peptide Repeat Containing

m-AAA
AFG3-like matrix AAA peptidase subunit 2 and SPG7 matrix AAA
peptidase subunit paraplegin

MEFs mouse embryonic fibroblasts
MFRN1 mitoferrin 1, =SLC25A37, Solute Carrier Family 25 Member 37
Mg2+ divalent cation of magnesium
MPP mitochondrial processing peptidase
MRPL12 Mitochondrial Ribosomal Protein L12
MRPL18 Mitochondrial Ribosomal Protein L18
MRPL37 Mitochondrial Ribosomal Protein L37
MRPL38 Mitochondrial Ribosomal Protein L38
MRPS15 Mitochondrial Ribosomal Protein S15
MRPS35 Mitochondrial Ribosomal Protein S35
mtDNA mitochondrial DNA
mtHSP75 mitochondrial heat shock protein 75, =human TRAP1
mtLSU mitoribosomal 39S large subunit
mtRNA mitochondrial RNA
mtSSB mitochondrial single-stranded DNA binding protein
mtSSU mitoribosomal 28S small subunit
mt-tRNA mitochondrial transfer RNA
NADH Nicotinamide Adenine Dinucleotide, reduced form
NDUFS2 NADH:Ubiquinone Oxidoreductase Core Subunit S2
NDUFV1 NADH:Ubiquinone Oxidoreductase Core Subunit V1
NDUFV2 NADH:Ubiquinone Oxidoreductase Core Subunit V2
NOA1 Nitric Oxide Associated 1
NTPase Nucleoside-Tri-Phosphatase
OAT Ornithine delta-Amino-Transferase
OGC 2-Oxoglutarate/Malate Carrier protein, mitochondrial
OMA1 Overlapping with the M-AAA protease 1 homolog, zinc metallopeptidase
OMM Outer Membrane of Mitochondria
PARL Presenilin-Associated Rhomboid-Like
PcG bodies polycomb bodies
PEO1 Progressive External Ophthalmoplegia 1 protein = TWNK
Phe phenylalanine
PLP Pyridoxal-5′-Phosphate
PLPBP PLP-binding protein
PNPase Polyribo-Nucleotide Phosphorylase/Nucleotidyl-Transferase 1 = PNPT1 in human
PNPT1 Polyribo-Nucleotide Phosphorylase/Nucleotidyl-Transferase 1 = PNPase
POLDIP2 DNA Polymerase Delta Interacting Protein 2
poly(A) tail poly(adenine) tail of messenger RNAs
poly(I:C) poly(inosinic:cytidylic) acid
PPOX Proto-Porphyrinogen OXidase
PRLTS3 Perrault Syndrome type 3
PRORP Protein-Only RNase P catalytic subunit
qPCR quantitative Polymerase Chain Reaction
RMND1 Required for Meiotic Nuclear Division 1 homolog
RNA Ribo-Nucleic Acid
RNA-G4 RNA, guanine-rich, in quadruplex conformation
RNase ribonuclease
RNAzyme catalytically active RNA sequences
RNF213 Ring Finger protein 213
rRNA ribosomal RNA
SFXN4 Sideroflexin 4
SLC25A37 Solute Carrier family 25 member 37, Mitoferrin 1
SLC25A38 Solute Carrier Family 25 Member 38, mitochondrial glycine transporter
STING STimulator of INterferon response cGAMP interactor 1
SUCLA2 Succinate–CoA Ligase ADP-forming subunit β
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SUPV3L1 SUV3, Suv3-like RNA helicase
TCA Tri-Carboxylic Acid cycle, =Krebs cycle
TFAM Transcription Factor A, Mitochondrial
TIGM Texas Institute of Genomic Medicine
TMEM14C transmembrane protein 14C
tRNA transfer RNA
TWNK Twinkle mtDNA helicase, =PEO1
UPR unfolded protein response
UPRmt unfolded protein response in mitochondria
Val valine
VWA8 von Willebrand Factor A domain containing 8
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