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Abstract: Filamentous fungi exhibit remarkable adaptability to diverse substrates and can synthesize
a plethora of secondary metabolites. These metabolites, produced in response to environmental
stimuli, not only confer selective advantages but also encompass potentially deleterious mycotoxins.
Mycotoxins, exemplified by those originating from Alternaria, Aspergillus, Penicillium, and Fusarium
species, represent challenging hazards to both human and animal health, thus warranting stringent
regulatory control. Despite regulatory frameworks, mycotoxin contamination remains a pressing
global challenge, particularly within cereal-based matrices and their derived by-products, integral
components of animal diets. Strategies aimed at mitigating mycotoxin contamination encompass
multifaceted approaches, including biological control modalities, detoxification procedures, and
innovative interventions like essential oils. However, hurdles persist, underscoring the imperative
for innovative interventions. This review elucidated the prevalence, health ramifications, regulatory
paradigms, and evolving preventive strategies about two prominent mycotoxins, aflatoxins and
ochratoxin A. Furthermore, it explored the emergence of new fungal species, and biocontrol methods
using lactic acid bacteria and essential mustard oil, emphasizing their efficacy in mitigating fungal
spoilage and mycotoxin production. Through an integrative examination of these facets, this review
endeavored to furnish a comprehensive understanding of the multifaceted challenges posed by
mycotoxin contamination and the emergent strategies poised to ameliorate its impact on food and
feed safety.

Keywords: mycotoxins; outbreaks; mycotoxin prevalence; legislation; essential oils; lactic acid
bacteria; climate changes

1. Introduction

Filamentous fungi are widely distributed eukaryotic organisms capable of thriving
on various substrates by synthesizing diverse secondary metabolites. These metabolites,
produced in response to environmental cues, include beneficial substances like antibiotics
and industrially valuable compounds such as antioxidants [1]. However, they can also
produce harmful mycotoxins, posing significant health risks to humans and animals [2].

Mycotoxins, produced by fungi such as Alternaria, Aspergillus, Penicillium, and Fusarium,
are potent contaminants in food and animal feeds [3]. Due to their harmful effects, stringent
regulations have been implemented to control their presence, driven by both health risks
and economic impacts of contaminated batches [4].

Human exposure to mycotoxins occurs directly through contaminated food or indi-
rectly via animal products from mycotoxin-exposed animals [5]. Over 400 mycotoxins have
been identified, many of which are heat-stable, persisting even after food processing and
posing significant health risks [6].
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Cereals, crucial for animal nutrition, are highly susceptible to mycotoxin contamina-
tion. To reduce dependence on cereal-based feeds, researchers are exploring alternative
options such as crop by-products like barley and almonds, which provide valuable fibers
and proteins for livestock, particularly in dairy and beef cattle, swine, and pigs [7].

There is a direct relationship between the initial contamination levels of crops and
the subsequent contamination of derived by-products. Additionally, animals exposed to
mycotoxins can transfer these toxins to animal-derived food products through a process
known as carry-over, where mycotoxins from contaminated feed are found in edible animal
tissues or by-products [8]. The processing of cereals results in significant waste, with thirty
percent of cereal weight lost, accounting for 13% of global food waste [9]. The brewing
industry alone produces vast amounts of waste, including spent grain, yeast, wastewater,
skins, shells, and hulls, with 10,000 tons of liquid waste and 137–173 tons of solid waste per
1000 tons of beer [10].

Mycotoxins have diverse chemical and biological properties and can cause acute and
long-term health effects in humans and animals, including nephrotoxicity, hepatotoxicity,
teratogenicity, carcinogenicity, estrogenicity, and immunosuppression [11]. Despite these
risks, only common mycotoxins are regulated globally, with maximum tolerated limits
set for foodstuffs, including aflatoxins (AFs), deoxynivalenol (DON), fumonisins (FUMs),
ochratoxin A (OTA), patulin, and zearalenone (ZEN). Feedstuff regulations are less strin-
gent, with only a few nations, mainly in Europe and the US, setting limits for mycotoxins
like AFs [12].

While reviews often address the dangers of globally regulated mycotoxins like AFs
and OTA, they lack in-depth exploration of novel biocontrol methods. This review focuses
on AFs and OTA, establishing a foundational understanding and exploring biocontrol
approaches using mustard essential oil and lactic acid bacteria (LAB). Aflatoxin B1 (AFB1)
and OTA are particularly concerning due to their high prevalence in food products and
significant health impacts. Research indicates a strong link between these mycotoxins and
various health issues [13].

AFB1 has become a major focus of scientific inquiry and strict regulatory measures
due to its severe health and economic impacts. This prominence stems from their potent
carcinogenic properties and the associated economic losses (Figure 1) [14]. Classified as
a Group 1 carcinogen by the International Agency for Research on Cancer (IARC), it is
considered one of the most potent natural carcinogens known [15]. Exposure to AFB1
is linked to liver cancer and various other liver diseases in humans, including jaundice,
necrosis, cirrhosis, and hepatitis. Additionally, it can cause non-hepatic health problems
like immunosuppression and impaired growth [16]. It is important to remember that Group
1 carcinogens are confirmed to have harmful effects on both humans and animals.
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Figure 1. Chemical structure of AFB1 (a) and OTA (b). 
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OTA is a major concern due to its negative health effects (Figure 1). This mycotoxin
can damage the kidneys (nephrotoxic), suppress the immune system (immunosuppressive),
and potentially cause cancer (carcinogenic). The International Agency for Research on
Cancer (IARC) has classified OTA as a Group 2B carcinogen, indicating that it is possibly
carcinogenic to humans. For reference, IARC classifies mycotoxins based on the strength of
evidence linking them to cancer: Group 1 (confirmed), Group 2A (probable), and Group 2B
(possible) [17]. The most common and harmful mycotoxins, as well as the level of evidence
for carcinogenicity, are listed in Table 1 according to the IARC.

Table 1. Degree of carcinogenicity of mycotoxins according to IARC.

Mycotoxin
Degree of Evidence of

Carcinogenicity Overall Evaluation of
Carcinogenicity to Humans

In Humans In Animals

Aflatoxin B1 Sufficient Sufficient Group 1
Aflatoxin B2 Limited Group 1
Aflatoxin G1 Sufficient Group 1
Aflatoxin G2 Inadequate Group 1
Aflatoxin M1 Inadequate Sufficient Group 2B
Aflatoxin M2 - - Not classified
Ochratoxin A Inadequate Sufficient Group 2B

Group 1, carcinogenic to humans; Group 2B, possibly carcinogenic to humans.

The global prevalence of AFB1 and OTA requires the development of effective control
strategies to prevent their presence in food or minimize their harmful effects. Traditional
methods have relied on fungicides and pesticides to control toxigenic fungi. However,
concerns regarding their inherent toxicity have led to stricter regulations on their use [18].
Biological control using specific microorganisms like LAB and certain fungal strains has
emerged as a promising alternative [19]. Detoxification methods are also employed to
mitigate the effects of existing toxins [20]. Despite these efforts, challenges remain. Studies
continue to report high levels of mycotoxin contamination, particularly in regions conducive
to fungal growth [21,22]. This highlights the need for exploring additional solutions.

In recent years, there has been growing interest in natural alternatives like essential
oils (EOs) derived from plants and spices. Research suggests that EOs possess antifungal
properties and can inhibit the growth of harmful pathogens in food [23–25]. Essential
mustard oil is one such example with potential application.

This review will delve into the limitations imposed by AFs and OTs, including their
presence in raw materials and their byproducts, the associated health risks for humans
and animals, recent outbreaks, and current legislation regulating their levels in food and
feed. Additionally, the review will explore traditional methods of mycotoxin prevention,
biopreservation as an alternative to biocides, and the antifungal efficacy of EOs with a
particular focus on the potential of essential mustard oil.

2. AFs and Fungal Producers

AFs contamination in crops is a complex process triggered by fungal invasion and
toxin production within the affected crops. Several factors influence this process, including
environmental conditions, the type of crop, and the specific fungal strain involved. Not all
Aspergillus species are capable of aflatoxin synthesis, and their ability to infect crops varies.
Therefore, the extent of aflatoxin contamination depends heavily on the predominant fungal
strain in a particular region [26].

Extensive research has identified fungal species with aflatoxin-producing capabilities.
While modern molecular techniques have improved our understanding, significant gaps in
knowledge remain regarding specific members of the Aspergillus genus and their aflatoxin
production potential. As shown in Table 2, at least 24 Aspergillus species belonging to the
Flavi, Nidulantes, and Ochraceorosei sections are capable of producing AFs [27].
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A. flavus, A. nomius, and A. parasiticus are the primary responsible for aflatoxin produc-
tion, with other species like A. astellatus also contributing [28]. This toxin biosynthesis is a
complex process involving at least 27 enzymes, with genetic analysis revealing similarities
among aflatoxin-producing fungi [29]. Furthermore, around 30 genes are known to be
crucial for aflatoxin synthesis [30].

Fungi belonging to the Aspergillus genus thrive in warm and humid environments,
with optimal growth occurring at temperatures around 25 ◦C and a wide pH tolerance
range (2–11.2). Additionally, they require a water activity near 0.85 for optimal growth [31].
Cereals, fruits, nuts, and seeds are particularly susceptible to fungal infection during
storage, making them high-risk products for aflatoxin contamination.

Table 2. Fungal species that were previously identified as aflatoxin producers.

Species Aflatoxin Provenance Reference

Aspergillus flavus B1, B2, G1, G1 Nuts, cereals, and several other commodities [32,33]
A. parasiticus B1, B2, G1, G2 Peanut, maize [34]
A. bombycis B1, B2 [33]

A. pseudotamarii B1, B2 Cereals and soil [34,35]
A. nomius B1, B2, G1, G2 Wheat, Brazil nuts, and other substrates [36]

A. toxicarius B1, B2, G1, G2 Chestnuts [37]
A. parvisclerotigenus B1, B2, G1, G2 Maize [38]

A. columnaris B1, B2, G1, G2 Maize [33,39]
A. zhaoqingensis B1, B2 Cereals and soil [35,40]

A. novoparasiticus B1, B2, G1, G1 Maize [41,42]
A. mottae B1, B2, G1, G2 Cereals, Brazil nuts, almonds, figs, pistachio nuts [43]
A. sergii B1, B2, G1, G2 Cereals, oilseeds [15]

A. pseudocaelatus B1, B2, G1, G2 Maize [41]
A. transmontanensis B1, B2, G1, G2 Cereals [15]

A. luteovirescens B1, B2, G1, G2 Cereals [34]
A. minisclerotigenes B1, B2, G1, G2 Peanut [44]

A. arachidicola B1, B2, G1, G2 Maize, Arachis glabrata [41]
A. austwickii B1, B2, G1, G2, Cereals [44]

A. aflatoxiformans B1, B2, G1, G2 Cereals [34,44]
A. pipericola B1, B2, G1, G2 Cereals [15]
A. cerealis B1, B2, G1, G2 Cereals [15]

A. Togoensis B1, B2 cereals [15]
A. venezuelensis B1, B2 Cereals [15]

A. astellatus B1, B2 Cereals and other substrates [15,33]
A. miraensis B1 Cereals [15]
A. olivicola B1 Cereals [15]

A. ochraceoroseus B1, B2 Cereals [33,45];
A. rambellii B1 Cereals [45]

AFB1, aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), and aflatoxin G2 (AFG2) are the
primary aflatoxin contaminants, distinguished by their fluorescence under ultraviolet light
and chromatographic properties (Figure 2) [46]. These belong to the furanocoumarin group
and represent a fraction of the over dozen AFs identified. Many of these toxins are formed
through the breakdown of four main fungal-derived compounds found in food by the
liver [47]. For instance, AFB1 is metabolized by the liver’s cytochrome P450 enzymes
into various metabolites, with aflatoxin M1 (AFM1) being the most significant. AFM1 is
produced through the hydroxylation of a specific carbon atom within the molecule.

A key mechanism underlying their genotoxicity involves the formation of a reactive
AFB1 epoxide through the action of cytochrome P450 enzymes, which will be discussed in
a later section [48].
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3. OTs and Fungal Producers

OTA was first discovered in South Africa from a culture of A. ochraceus growing on
maize meal [49]. Since then, other fungal species have been identified as OTA producers,
including A. niger and A. carbonarius, which are commonly found on grapes and other fruits
exposed to sunlight and high temperatures [50]. Additionally, several Aspergillus species,
like A. tubingensis, A. westerdijkiae, and A. steynii, and Penicillium species, like P. verrucosum,
and P. nordicum, have also been linked to OTA production [51]. Table 3 summarizes the
currently known Aspergillus and Penicillium species capable of producing OTA in food.

OTA is the most prevalent and toxic among OTs [52]. Research has identified over
20 OTA metabolites produced by Aspergillus and Penicillium molds, including ochratoxin
B (OTB) and ochratoxin C (OTC). These mycotoxins belong to the pentaketide family
and share a similar structure—an isocoumarin molecule (sometimes chlorinated) linked
by an amide bond to an L-phenylalanine unit. While structurally similar, these OTs
have slight variations. For example, OTB lacks the chlorine atom present in OTA, and
OTC has a different radical group attached (phenylalanyl and ethyl ester) [53]. These
variations significantly impact their toxicity, with OTA being the most potent and frequently
encountered [52] (Figure 3).

Similar to aflatoxin-producing fungi, OTA-producing species are found globally in
various food products. Environmental factors like temperature and humidity significantly
influence OTA production. In colder climates, P. verrucosum and P. nordicum are the primary
species, while A. ochraceus dominates in tropical and subtropical regions [54,55]. It is
important to note that these fungi can often produce multiple toxins simultaneously. The
co-occurrence of OTA with other mycotoxins like OTB and OTC raises concerns about
potential synergistic toxic effects [56].
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OTA production is highest at a water activity (aw) of 0.98, regardless of temperature,
and further increases within the optimal temperature range of 25–30 ◦C [57]. OTA is an
organic acid with a pKa of 7.1 and a molecular weight of approximately 404 g/mol. It ap-
pears colorless to white in crystalline form and exhibits fluorescence under UV light—green
in acidic and blue in alkaline conditions. OTA shows good solubility in various organic
solvents like alcohols, ketones, and chloroform under acidic and neutral conditions. In
alkaline environments, it dissolves in aqueous sodium bicarbonate solution and other
alkaline solutions [58,59]. A notable characteristic of OTA is its high stability under acidic
and high-temperature conditions, making it difficult to eliminate once food is contaminated.
Even standard cooking processes and heating under various moisture conditions up to
200 ◦C have minimal impact on its structure or decomposition [60].

Table 3. Species of fungi reported as OTA producers in Genus Aspergillus and Penicillium.

Species Provenance Reference

A. affinis Decomposing leaves [61]
A. cretensis Soil [61]
A. elegans Bread, sponge [61]

A. flocculosus Grapes [61]
A. melleus Cereal [61]

A. muricatus Peanuts [61]
A. ochraceopetaliformis Sponge [61]

A. ostianus Pulses [61]
A. ochraceus Soya beans, nuts, red pepper, cereals, green coffee beans [62]

A. pseudoelegans Soil [61]
A. pulvericola Indoor house dust [61]

A. roseoglobulosus Decaying leaves [61]
A. sclerotiorum Apple [63]

A. steynii Barley, coffee, grapes [62]
A. subramanianii Shelled nuts [61]

A. sulphureus Soil [63]
A. westerdijkiae Decomposing leaves [62]

A. alliaceus [63]
A. albertensis [63]
P. verrucosum Cereals [54]
P. nordicum Cereals and meat products [54]
P. thymicola Canadian cheddar cheese [61]
P. radicicola Carrots and potatoes [54]

P. viridicatum [54]
A. carbonarius Grapes, red pepper, coffee beans [64]
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Table 3. Cont.

Species Provenance Reference

A. awamori [64]
A. awamori var. fumeus [64]

A. foetidus Grapes [64]
A. lacticoffeatus Coffee beans [63]
A. niger group [64]

A. niger Grapes, raisins, maize, coffee, beer [64]
A. japonicus [64]

A. sclerotioniger Coffee [62]
A. tubingensis Grapes [62]
A. welwitschiae Grapes, raisins, pistachio, walnuts [61]

P. expansum Pomaceous fruits and nuts [54]

Studies using radiolabeled precursors have shed light on the complex biosynthesis of
OTA. Experiments with A. ochraceus cultures employing 1-14C-phenylalanine demonstrated
that L-phenylalanine serves as the precursor for the toxin’s phenylalanine moiety [63].
Similarly, the isocoumarin portion of OTA primarily originates from acetate condensation,
as evidenced by the incorporation of 2-14C-sodium acetate.

Further confirmation regarding the precursors involved comes from precursor-feeding
experiments with P. verrucosum cultures. The addition of both 2-14C-sodium acetate and
2-14C-malonic acid into the liquid culture medium resulted in their incorporation into
OTA biosynthesis. While the entire OTA molecule could be labeled using 2-14C-sodium
acetate, only the isocoumarin moiety exhibited exclusive labeling with 2-14C-malonic
acid. These findings suggest that acetate serves as a precursor for both the phenylalanine
and isocoumarin moieties, while malonic acid is specifically involved in isocoumarin
biosynthesis [63].

4. Prevalence of Mycotoxins in Food and Feed

Food quality and safety are influenced by intrinsic factors (e.g., chemical composition,
water activity, pH) and extrinsic factors (e.g., environmental conditions during storage).
Molds thrive best at room temperature with sufficient oxygen but can also grow under
refrigeration [65]. Warm and humid climates, particularly in developing countries with
inadequate grain storage, significantly increase mycotoxin contamination risks [66]. The
FAO/WHO estimates that roughly 25% of global grain production exceeds permissible
mycotoxin levels, leading to an annual loss of about 1 billion tons of grains and flour.
Studies in Europe and the US highlight widespread mycotoxin presence, with significant
economic impacts [67,68].

Mycotoxin contamination can occur at various stages of the food chain, including
pre-harvest, harvest, drying, and storage. Inadequate agricultural practices, poor handling,
and improper storage conditions contribute to fungal growth and mycotoxin contamina-
tion [69]. Once produced, mycotoxins permeate the entire fungal colony, including hyphae,
mycelium, spores, and the surrounding substrate. Consumption of contaminated food is
the primary exposure route, though inhalation and skin contact also pose risks [70].

Human and animal consumers are often exposed to multiple mycotoxins simultane-
ously due to several factors: multiple fungal species producing the same mycotoxin, a
single fungus producing various mycotoxins concurrently, and food/feed mixtures con-
taining different toxins [71]. The global demand for cereals like barley, corn, soybeans, and
wheat is increasing, making food and feed safety paramount [72]. Mycotoxins represent a
growing threat in this context [73].

A comprehensive survey by Khodaei et al. [74] highlighted the prevalence of myco-
toxins in cereals like wheat, corn, and rice. AFB1 levels often exceeded EU limits. Climate
change is contributing to shifts in fungal populations and mycotoxin distributions, ne-
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cessitating practical control and management strategies to safeguard crop integrity and
consumer health.

Global data indicate significant mycotoxin presence in food. AFs were detected in 55%
of raw cereal grains, with the highest level reaching 1642 µg/kg. OTA was found in 29% of
samples, with a maximum level of 1164 µg/kg. FUMs, DON, and ZEN were also prevalent.
Recent surveys by Streit et al. and Kovalsky et al. reported mycotoxins in approximately
72% and 79% of feed samples, respectively, higher than the FAO’s 25% estimate [75].

A ten-year global survey of nearly 75,000 feed and feed ingredient samples from
100 countries (2008–2017) revealed that 88% contained at least one mycotoxin, with regional
variations influenced by climatic factors [76]. Another study (2004–2011) on agricultural
commodities found mycotoxins in 72% of over 19,000 samples, with a concerning rise in
aflatoxin contamination [77]. Furthermore, surveys on food grains suggest that the inci-
dence of mycotoxins can range between 60% and 80%, depending on various factors such
as the specific mycotoxin of concern, the type of food, the analytical methods employed,
and the equipment’s detection limits [68,75].

In the analysis conducted by Khodaei et al. [74], a comprehensive survey scrutinized
the most recent investigations pertaining to the prevalence of mycotoxins in various cereals,
namely wheat, corn, rice, oats, barley, rye, and sorghum, spanning from 2018 to 2020.
The findings underscore a notable emphasis on studies concerning corn, wheat, and rice
over the past three years. Particularly concerning are the results indicating a significant
hazard posed by AFB1 in these cereals, with levels surpassing the established EU limits in a
substantial portion of the examined studies. The seriousness of this issue is exacerbated by
the ongoing effects of climate change, which contribute to shifts in fungal populations and
mycotoxin distributions across different geographical regions and crops. Consequently,
urgent attention is warranted towards the development and implementation of practical
control and management strategies to safeguard crop integrity and consumer health.

Recent comprehensive surveys indicate that mycotoxin contamination might be even
more widespread than previously estimated. Studies by Streit et al. [78] and Kovalsky
et al. [79] reported mycotoxin presence in approximately 72% and 79% of analyzed feed
samples, respectively. These figures are considerably higher than the 25% reported by the
FAO, highlighting the need for further global investigation [74].

The increasing prevalence of mycotoxin contamination suggests a link to global climate
change rather than isolated climatic events [80]. Even after industrial food processing,
mycotoxins can persist due to their stability at high temperatures [81]. Research using
in vivo and in vitro models suggests potential interactions between different mycotoxins,
which can be antagonistic, additive, or synergistic depending on the specific mycotoxins
involved [71].

4.1. Aflatoxin Occurrence

AFs, particularly AFB1, are toxic and carcinogenic contaminants found in various food
and feed products [82]. These toxins are primarily associated with fungal growth during
pre- and post-harvest stages in crops like peanuts, maize, wheat, rice, barley, and spices,
as well as in commercial goods such as peanut butter, cooking oil, and cosmetics. Table 4
summarizes recent studies highlighting the prevalence of AFB1 contamination in diverse
commodities over the past decade.

Several factors influence a crop’s susceptibility to fungal infection and subsequent
toxin production. These factors can be broadly categorized into environmental and intrinsic
characteristics:

1. Environmental factors: Moisture content, temperature, and storage conditions signifi-
cantly impact fungal growth and toxin production [83,84].

2. Intrinsic crop characteristics: A crop’s inherent properties like nutritional content,
pH, and genetic makeup also play a crucial role. Cultivating crops adapted to their
specific environmental conditions can enhance their resistance to fungal spoilage [85].
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It is important to note that environmental and intrinsic factors often interact. For
instance, while the effects of environmental conditions on food susceptibility are well
documented, these factors work synergistically with a plant’s inherent characteristics to
influence fungal invasion and toxin production [86].

A crop’s nutritional composition can significantly impact its susceptibility to aflatoxin
contamination. Studies have shown that an increase in soluble sugar content within the
crop can lead to a substantial rise in AFB1 production by fungi [87]. Similarly, the presence
of maize oil has also been linked to increased aflatoxin levels.

Water activity (aw) is another critical factor [88–90]. Maintaining grain water activity
at or below 0.9 can significantly restrict AFB1 contamination post-harvest [91,92]. However,
it is crucial to remember that factors like water activity, temperature, and nutritional content
are interrelated and collectively influence aflatoxin synthesis [93].

In a study conducted by Keutchatang et al. [94], AFs and OTA were assessed through
the enzyme-linked immunosorbent assay (ELISA), while dietary exposure was appraised
using a deterministic approach. Out of the 900 households surveyed, chicken and eggs
emerged as the most frequently consumed items, with daily consumption rates reported at
41% and 69%, respectively. However, the study revealed a concerning lack of awareness
among the population regarding mycotoxins and their associated health risks, with only
18% displaying any significant knowledge on the subject. Analysis of poultry tissues
indicated that mean concentrations of AFs, AFB1, and OTA fell below the established
regulatory thresholds in feeds, which are set at 20 µg/kg for AFs, 10 µg/kg for AFB1,
and 5 µg/kg for OTA. However, these toxins were detected in chicken muscle and eggs at
average concentrations of 1800 and 966.7 ηg/kg for AFs and 1400 and 1933.3 ηg/kg for OTA,
respectively. Despite these concentrations being below regulatory limits, the estimated
daily intakes of AFB1 and OTA through poultry products tended to remain below the
respective thresholds of 1 and 100 ηg/kg bw/day. Margin of exposure (MOE) calculations
across different age groups within the population revealed that public health concerns
associated with mycotoxin presence in poultry products should not be disregarded [94].

Reducing and effectively managing aflatoxin contamination in food is essential. The
degree of contamination directly correlates with the level of human exposure. Therefore,
identifying and quantifying mycotoxins in food and animal feed is a crucial aspect of
ensuring global food safety, as these contaminants pose chronic health risks.

Table 4. Reports of AFs occurrence in food commodities over the last ten years.

Food Country
Percentage of
Contaminated

Samples
Mycotoxin Concentration

(µg/kg)

Method
of

Detection
Reference

Cereal-based baby foods Brazil 5% of 60 AFB1 2.8 LC-MS/MS [95]
Cereals Croatia 3.4% of 89 AFB1 9.0 HPLC-MS/MS [96]

Dried Fruits Iran 56.8% of 88 AFB1 0.3 to 8.4 HPLC-FLD [97]
Dry Fruits Pakistan 86.7% of 52 AFTotal 0.0242 HPLC-FLD [98]

Durum Wheat Tunisia 54.44% of 90 AFB2 0.12–0.58 HPLC-FLD [99]
Maize flour Iran 80.0% of 10 AFB1 <LOQ–1060 UHPLC-MS/MS [100]

Maize Brazil 25.7 and 7.4% of 148 AFB1 and AFG1 0.5 to 49.9 HPLC-MS/MS [101]
Maize Korea 13.6% of 66 AFB1 0.02 to 0.48 HPLC [102]

Maize flour Italy 26.0% of 50 AFB1 0.17 to 3.75 HPLC-FLD [103]
Maize Haiti 55.0% of 20 Sum of AFs 185.9 ± 303.9 HPLC-DAD [104]
Maize Zimbabwe 23.7% of 338 AFB1 0.57 to 26.6 ELISA [105]
Maize Ethiopia 8% of 100 AFB1 26.6 HPLC-MS/MS [106]
Maize Serbia 57.2% of 360 AFB1 1.3 to 88.8 HPLC-FLD [107]
Maize Uganda 25.8 (256) AFTotal 0 to 3760 TLC [108]
Maize Kenya 100% Sum of AFs 2.14 to 411 UHPLC-FLD [109]

Fermented meat products Croatia 8.3 and 58.3% of 180 AFB1and OTA <0.05–7.83 HPLC-FLD [110]
Infant formulae Mexico 20% of 55 AFM1 0.040 to 0.450 HPLC [111]

Milk China 80% AFM1 0.005 to 0.10 ELISA and
HPLC-MS/MS [112]

Milk Lebanon 58% AFM1 0.011 to 7.350 HPLC [113]
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Table 4. Cont.

Food Country
Percentage of
Contaminated

Samples
Mycotoxin Concentration

(µg/kg)

Method
of

Detection
Reference

Milk Nigeria 100% of 25 AFM1 0.081 LC-MS/MS [114]
Wheat China 6.2% of 178 AFB1 0.03 to 0.12 HPLC-MS/MS [115]
Nuts Zimbabwe 12.5% of 208 AFB1 0.7 to 175.9 HPLC-FLD [116]
Rice Ecuador 7.0% of 230 AFB1 4.9 to 47.4 HPLC-FLD [117]
Rice Pakistan 18.4% of 1027 AFB1 1.1 to 32.9 HPLC-DAD [118]
Rice Brazil 11.2% of 187 AFB1 63.32 HPLC-FLD [119]

Sorghum Ethiopia 94.4% of 90 AFB1 33.1 ELISA [120]

Spices, herbs, and nuts Lebanon 100, 20.4, and 98.6%
of 198 AFB1 0.97, 0.27, and

0.40 HPLC [121]

Vegetable oil Sri Lanka 34% Sum of AFs 4.0 HPLC-FLD [122]

4.2. OTA Occurrence

OTs represent another class of mycotoxins posing a significant threat to human and
animal health due to their widespread presence in various food commodities [123]. Cereals
like barley, rye, wheat, maize, sorghum, and oats serve as primary reservoirs for these
toxins. Additionally, OTs contaminate coffee beans and grapes, persisting even in their
processed forms such as wine and raisins [123]. For instance, de Andrade Silva et al. [124]
introduce a groundbreaking detection method for OTA in coffee samples utilizing a spoon-
shaped waveguide immunosensor. This innovative biosensor, featuring a surface covered
with a 60 nm layer of gold to facilitate the surface plasmon resonance (SPR) phenomenon,
demonstrated a linear correlation between SPR values and OTA concentration within the
range of 0.2 ppt to 5 ppt. Notably, the biosensor exhibited exceptional selectivity and
resistance to matrix interference when tested in coffee samples. The device, characterized
by its portability, simplicity, and suitability for onsite detection, represents a significant
advancement in coffee quality analysis. With a linear range spanning from 2 × 10−4 ppb to
5 × 10−3 ppb, the immunosensor demonstrated remarkable selectivity in OTA detection,
distinguishing it from structurally similar compounds like OTB, glycose, and caffeine.
Evaluation in soluble coffee samples further underscored the biosensor’s resilience to
matrix interference, reaffirming its potential as an indispensable tool for real-time quality
assessment in coffee production, devoid of the need for microfluidic systems. Moreover,
Kochman et al. [124] investigated the concentrations of OTA, DON, T-2, and HT-2 toxins
in dry red wines, sampling 19 wines from Spain, France, and Poland, representing both
conventional and organic viticulture. Using ELISA, they found all wines exceeded regula-
tory limits for mycotoxin levels, with OTA and DON contamination varying by country
of origin and farming method. Interestingly, T-2 and HT-2 toxin levels showed a negative
correlation with pH. These findings suggest wine may be a significant source of mycotoxin
exposure in the human diet, warranting further research to establish reference values and
implement effective control measures to mitigate potential health risks.

Contamination can also occur in cottonseed, nuts, dried beans, and specific meat
products, particularly those derived from porcine kidneys. Processed meats like sausages,
bacon, and ham may also harbor OTs [125].

Barley and dry-cured sausages warrant specific attention as scientific studies have
documented a high prevalence of OTA contamination in these food items [126,127]. Con-
tamination in barley can transpire during various stages: growth in the field, storage, or
subsequent processing (Table 5 is a compilation of recent studies on OTA contamination in
diverse commodities). Dry-cured sausages, on the other hand, can become contaminated
during the production process. Altafini et al. [128] conducted a comprehensive analysis
of 172 different salamis sourced from farms and small-scale salami factories across four
Italian regions, namely Piedmont, Veneto, Calabria, and Sicily, to assess the presence of
OTA. Utilizing HPLC-FLD, the study established a detection limit (LOD) of 0.05 µg/kg
and a quantitation limit (LOQ) of 0.20 µg/kg, with an average recovery rate of 89.1%.
OTA was identified in 22 salamis, with 3 samples surpassing the Italian guidance value
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for OTA in pork meat (1 µg/kg). Notably, a significant proportion of positive samples
were found among spicy salamis (68.2%), despite their relatively low representation in the
overall sample pool. This observation suggests a potential link between red chili pepper
contamination by OTA and the presence of the mycotoxin in these products. Consequently,
rigorous control measures for ingredients used in salami production, particularly spices,
are imperative. Therefore, while the occurrence of OTA in salamis remains relatively low,
the prevalence of positive samples among spicy varieties underscores the importance of
scrutinizing ingredient quality to mitigate mycotoxin contamination risks in meat products.

The extensive use of barley and dry-cured sausages as ingredients necessitates strin-
gent monitoring practices throughout the food chain to ensure acceptable OTA levels and
safeguard public health. Ochratoxin contamination exhibits a pronounced geographical dis-
tribution, with a higher prevalence observed in temperate regions. This can be attributed to
the optimal environmental conditions for fungal growth, which thrive in cool temperatures
around 24 ◦C and moderate moisture content ranging from 19–22% [129]. Consequently,
countries in Northern Europe, the Balkans, and Canada face a greater risk due to these
prevailing climatic conditions.

Table 5. Reports of ochratoxin A occurrence in food commodities over the last ten years.

Food Country Percentage of
Contaminated Samples

Concentration
(µg/kg)

Method
of

Detection
Reference

Baby foods Turkey 34.7% of 150 <0.5 HPLC [130]
Barley Egypt 20% of 15 1.13–2.15 HPLC-FLD [131]
Barley United States 6% of 60 0.16–185.24 HPLC-FLD [132]
Beers Czech Republic 81% of 132 0.001–0.195 UPLC-FLD [133]
Beer Portugal 10.6% of 84 <0.43–11.25 HPLC-FLD [134]
Beer Spain 20% of 40 0.24 to 54.76 HPLC-MS/MS [135]

Breakfast cereals Serbia 33.7% of 136 0.07–3.00 HPLC-FLD [136]
Cereals Uganda 8.3 to 100% of 105 0.1–16.4 ELISA [137]

Cocoa bean Brazil 22.8% of 123 0.25–7.2 HPLC-FLD [138]
Coffee Portugal 25% of 6 1.45–1031 HPLC-FLD [139]
Cheese Italy 26.3% of 57 1.7–7.2 HPLC-MS/MS [140]

Dried fruits Morocco 17.1% of 210 0.8–99.1 HPLC-FLD [141]
Dried grapes Iran 57.5% of 23 0.16–8.40 HPLC-FLD [142]

Dry-Cured Meat Croatia 19.2% of 250 0.24–4.81 HPLC-MS/MS [143]
Dry wine Serbia 52.2% of 113 0.026 HPLC-FLD [144]

Fermented coffees Brazil 21.4% of 14 <0.64–0.87 HPLC-FLD [145]
Pasteurized Milk China 25.8% of 120 >0.049–18.8 HPLC-MS/MS [146]

Maize China 1.6% of 426 0–5 UPLC-MS/MS [147]
Maize Pakistan 71.0% of 46 2.14–214 HPLC [148]
Milk Italy 36.4% of 33 <0.3–3 HPLC/FLD [149]
Rice Portugal 2% of 36 1.9–2.2 ELISA [150]

Rice Bran and Maize Southeast Asia 99% of 125 43.7 LC-MS/MS [151]
Raisin USA 93% of 40 0·06–11·4 HPLC [152]

Salamis Italy 12.8% of 172 0.07–5.66 HPLC-FLD [128]
Sorghum Tunisia 24 of 064 1.04–27.8 HPLC-FLD [153]

Wheat United States 13% of 58 0.17–14.94 HPLC-FLD [132]
Wine Croatia 92.8% of 110 0.003–0.163 HPLC-FLD [154]
Wine Italy 71.9% of 57 Mean of 0.13 HPLC-FLD [155]

Table 5 presents a diversity of data regarding the presence of OTA in a variety of foods
and beverages across different countries. First, it is observed that samples of alcoholic
beverages, such as beers and wines, showed a significant percentage of contaminated
samples, with values as high as 81% in the case of the Czech Republic and 92.8% in Croatia.
This finding suggests a potential food safety concern related to the presence of mycotoxins
in fermented products. On the other hand, cases such as pasteurized milk in China,
where 25.8% of samples showed contamination, raise questions about the effectiveness
of pasteurization processes in eliminating mycotoxins. Additionally, the presence of OTA
in staple foods such as cereals (including barley, maize, and wheat) and dairy products
(milk and salami) highlights the importance of continuous surveillance in the food chain.



Foods 2024, 13, 1920 12 of 41

The detection method used varies between HPLC, HPLC-FLD, HPLC-MS/MS, and ELISA,
reflecting the need for sensitive and specific analytical methods for the precise detection
of mycotoxins in different food matrices. Furthermore, the concentration ranges of OTA
found in the samples were quite wide, underscoring the variability in contamination and
the importance of regularly monitoring OTA levels in food to ensure food safety and
public health.

The occurrence of AFB1 and OTA in food shares both similarities and differences.
Both toxins are commonly found in various food products worldwide, including cereals,
legumes, nuts, spices, beers, wines, milk, and meats, due to inadequate drying and storage
practices [156–158]. They are also known to co-contaminate agricultural products, with
a significant proportion of samples reported to be concurrently contaminated with both
mycotoxins [157,158]. However, the specific environmental conditions and fungal species
responsible for their production may vary, leading to differences in their prevalence in
different food products and regions. Additionally, while both toxins are highly toxic and
carcinogenic, OTA is considered the most toxic of the OTs, with a chlorinated structure that
makes it more potent than AFB1 [157].

5. Effect of AFs on Human and Animal Health

AFs exert various detrimental effects on human and animal health, which can be
acute or chronic depending on the dose and duration of exposure [159]. Humans typically
ingest AFs through contaminated food, while animals are exposed through contaminated
feed [160]. Table 6 summarizes the common fungal species producing AFs and OTA, the
frequently contaminated food items, and their associated health effects.

The toxic potential of AFs, particularly AFB1, hinges on both dose and exposure
duration. Other factors such as age, sex, species-specific tolerance, and nutritional status
also play a crucial role. While the detrimental effects on animals are well-documented,
human cases typically arise from accidental acute exposures or chronic consumption in
regions with high levels of mycotoxin contamination [159].

Particularly in young chickens, studies have demonstrated that AFB1 exhibited the
most potent toxicity, causing liver damage (hepatotoxicity), liver cancer (hepatocarcino-
genicity), mutations (mutagenicity), and birth defects (teratogenicity) in various ani-
mals [161]. Furthermore, the flesh and other products derived from animals fed AF-
contaminated feed may harbor AFs and their metabolites, posing a potential health risk to
consumers [162].

The liver represents the primary target organ for AFs. Hepatic metabolism converts
AFs into highly unstable molecules, which interact with liver cell macromolecules. Exces-
sive interaction leads to cell death, manifesting as acute aflatoxicosis symptoms: jaundice,
hemorrhagic liver necrosis, and hepatic encephalopathy (often fatal) [163]. Adults exhibit
greater tolerance due to faster cell renewal rates [164].

AFs also suppress the immune system, increasing susceptibility to infections, which
is particularly concerning in regions with prevalent diseases like HIV and malaria. In
children, aflatoxin exposure can result in stunted growth and developmental issues due to
its impact on nutrition and immune function [165].

Table 6. Main associated fungi producers of AFs and OTA, the frequently contaminated foods, and
primordial toxic effects.

Mycotoxins Main Producers Food Toxicity Reference

Aflatoxins
B1, B2, G1, and G2

Aspergillus flavus
A. parasiticus

A. nomius

Maize, peanuts, wheat,
cottonseed, nuts, rice, dry fruits,

and spices.

Carcinogenicity
Genotoxicity

Hepatotoxicity
Immunotoxicity
Teratogenicity

[166]
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Table 6. Cont.

Mycotoxins Main Producers Food Toxicity Reference

Ochratoxin
A

Penicillium verrucosum
A. ochraceus

A. carbonarius

Cereals, cocoa, coffee beans,
wine, grape juice, beer, spices,

cured meat products.

Hepatotoxicity
Immunotoxicity
Nephrotoxicity
Teratogenicity

[167]

Aflatoxicosis in poultry manifests as mortality, reduced growth, poor feed conversion,
decreased egg production, lethargy, inappetence, fatty liver, and pigmentation issues [168].
Birds consuming contaminated feed become immunosuppressed and more susceptible to
stress and diseases.

Aflatoxicosis causes significant pathological changes: increased liver size, paleness,
enlarged bile ducts, and potential lesions in kidney and spleen tissues. Histopathological
examination reveals vacuolar degeneration, fatty changes, hepatocyte degeneration, along
with lymphocyte infiltration and bile duct hyperplasia [168]. Furthermore, aflatoxin exhibits
carcinogenic properties in poultry.

AFB1, the most potent aflatoxin, is metabolized in the liver to aflatoxin B1-8,9-epoxide,
which binds to DNA and forms mutagenic adducts. These mutations can lead to liver can-
cer, with a higher risk in birds exposed during early life stages [169]. Gholami-Ahangaran
et al. [170] investigated the use of a commercial nano-compound in feed to mitigate aflatox-
icosis in broiler chickens. While no performance improvement was observed with Nanocid
in a regular diet, its addition to an aflatoxin-containing diet (3 ppm) significantly increased
weight gain and feed intake, and improved feed conversion during the final two weeks.

While primarily affecting the liver, AFB1 can also impact other physiological processes
(Figure 4). However, its hepatotoxicity and the interaction of its epoxide derivative with
liver cell DNA remain the primary concerns. This interaction is linked to liver tumor
development following chronic exposure to low AFB1 levels.

Classified as a Group 1 human carcinogen by the IARC in 1993, AFB1 is the most potent
naturally occurring carcinogen. This classification is based on established links between
AFB1 exposure and the development of liver cancer (hepatocellular carcinoma—HPC)—the
most common global cancer and the third leading cause of cancer-related mortality [171].
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AFB1 undergoes liver metabolism by CYP1A2 and CYP3A4 enzymes, leading to the
formation of AFB1-8,9-endo-epoxide and the more prevalent and reactive AFB1-8,9-exo-
epoxide. The latter can intercalate between DNA bases, forming mutagenic AFB1-N7-Gua
adducts. In humans, p53 gene mutations (codon 249), activation of mitotic recombination,
and minisatellite rearrangements contribute to liver tumorigenesis and HPC develop-
ment [172].

Beyond its carcinogenic properties, AFB1 exhibits immunosuppressive effects, hin-
dering the body’s defense against microorganisms. It impairs B and T lymphocyte activ-
ity and suppresses inflammatory cytokine production, potentially leading to persistent
infections and posing a significant risk to immunocompromised individuals [69]. For
instance, aflatoxin-albumin adducts exacerbate immune system damage in HIV-positive
patients [165].

Aflatoxin exposure can also affect the gastrointestinal tract. Studies suggest a link
between AFB1 and developmental delays in infants [173]. The frequent occurrence of mal-
nutrition in developing countries may exacerbate aflatoxin’s effects, as protein deficiency
disrupts liver detoxification enzymes, promoting toxin accumulation. Aflatoxin exposure
is known to impair animal development and cause enterocyte damage, contributing to a
leaky gut [174].

6. Effects of Ochratoxin on Human and Animal Health

The similarity in toxic effects of OTA and ochratoxin C is significant, even though
OTA is more commonly found. In contrast, the potency of ochratoxin B is considerably
lower [175]. Human and animal exposure to OTs is notably high, with detections in serum,
plasma, and milk. Although concentrations of OTs in grains may vary, at times they can
reach levels capable of causing illness [176].

The process of OTA toxicity involves its attachment to plasma proteins, specifically
albumin, which helps transport it to the kidneys, liver, and other tissues [177]. OTA has
also been found to hinder protein synthesis and mitochondrial respiration, cause DNA
damage, and modify gene expression in various cell types such as renal cells, hepatocytes,
and lymphocytes [178].

OTA is well-known for its toxic effects, particularly on the kidneys. It primarily targets
the epithelial cells of the proximal tubules and can cause varying degrees of nephrotoxicity
depending on factors such as dose, duration of exposure, age, sex, and genetic suscepti-
bility. Research in animals has demonstrated that long-term OTA exposure leads to its
accumulation in the renal cortex, resulting in oxidative stress, inflammation, apoptosis, and
necrosis of renal cells with consequent dysfunction and fibrosis. Short-term exposure to
OTA can also induce acute renal failure [179].

Exposure to OTA has been associated with a specific form of chronic kidney disease
known as Balkan Endemic Nephropathy in humans. BEN is a progressive disease that
affects people living in certain regions of the Balkans, and it is believed to be caused by
long-term exposure to contaminated food and water sources [180]. In animals, OTA is
highly toxic to broilers, pigs, dogs, and rats; it primarily functions as a nephrotoxin leading
to severe nephrotoxicity. Among them all, pigs are the most sensitive to its effects. Other
toxicities include myelotoxicities in mice, hepatic lesions, and cardiac issues in rats [160].
Animals exposed to OTA may experience reduced growth, poor body weight gain, as well
as behavioral depression [181].

OTA also causes severe immunosuppression, resulting in teratogenic, mutagenic, and
immunotoxic effects that increase mortality [181]. In animal studies, OTA has been shown
to reduce the production of antibodies and the activity of immune cells such as lymphocytes
and macrophages [182]. In humans, this mycotoxin has been described as a modulator of
humoral and cellular immunity, inflammation, nitrosative stress, and gut immunity, which
can increase the risk of infections and cancer [183].

Regarding OTA carcinogenicity, animal studies have shown that long-term exposure
can increase the incidence of tumors, including kidney and liver tumors [184]. In humans,
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this mycotoxin has been associated with an increased risk of urinary tract tumors, as well
as other types of cancer such as breast cancer [185]. In pregnant mice, OTA contamination
levels of 20 ppm resulted in significant embryotoxic and teratogenic effects between day
7 and day 12 of pregnancy. A protective effect against these effects was observed with
phenylalanine at 20 ppm in the diet [186]. Additionally, OTA has been found to have various
adverse health effects including inhibition of protein synthesis, induction of DNA damage,
potential long-term neuronal effects leading to Alzheimer’s disease, as well as nephrotoxic,
hepatotoxic, immunotoxic, and carcinogenic impacts in animals and humans [187].

Investigations into the toxic effects of OTA on retinal ganglion cells have shown that
it can cause oxidative stress, mitochondrial dysfunction, and apoptosis, leading to retinal
damage. This includes an increase in reactive oxygen species and disruptions in the balance
of antioxidant defenses, ultimately affecting the survival of retinal ganglion cells and visual
function [187].

Microscopic alterations within organs due to OTA exposure include degeneration of
liver tissue and proliferation of epithelium of the biliary channel, resulting in individual cell
necrosis and DNA adduct formation. In kidneys, OTA causes necrosis of tubular epithelial
cells, glomerular infiltration, and distended glomerular spaces. OTA also causes atrophy
of follicles and a reduction in the lymphocytic mass present in the medulla within the
bursa. Within the thymus, OTA exposure results in the reduction of lymphocytic mass in
the parenchyma and localized congested areas [169].

In addition to the well-established nephrotoxicity, chronic exposure to OTA has been
linked to the suppression of the immune system, increased risk of cancer, and other toxic
effects, such as reproductive and neurological toxicity. While the mechanism of OTA
toxicity is not fully understood, it is thought to involve the inhibition of protein synthesis
in cells. Further research is necessary to better understand the detailed mechanisms of
toxicity of OTA in both human and animal health.

7. Recent Outbreaks

Populations most at risk of mycotoxin contamination come from regions with inade-
quate regulatory enforcement and primary prevention measures. Recent outbreaks have
predominantly occurred in tropical and subtropical areas, though climate change has also
increased vulnerability in Mediterranean regions, influencing mycotoxin patterns due
to changes in temperature, CO2 levels, and rainfall [188]. This global rise in mycotoxin
contamination has necessitated the development of more precise analytical methods, such
as advanced chromatographic and sensor-based techniques, to detect these toxins and aid
in outbreak prevention [189].

Significant mycotoxin outbreaks include:
Kenya (2004): A severe outbreak of aflatoxicosis in rural Kenya resulted in 317 cases

and 125 deaths, attributed to contaminated maize during a period of food scarcity exacer-
bated by drought [190].

Brazil (2011): An outbreak affected 65 dogs on 9 farms, leading to 60 deaths due to
aflatoxin-contaminated maize in their diets. This event highlighted the risk to both livestock
and pets from mycotoxin exposure [191]

Tanzania (2016): An unfamiliar disease affected various demographics, resulting in
68 cases and 20 deaths. Locally produced maize was identified as the source, emphasizing
the need for vigilant monitoring of food products [192].

These incidents underscore the ongoing challenge of mycotoxin management in food
safety. They reveal the critical need for comprehensive surveillance systems and effective
regulatory frameworks to mitigate risks, particularly in vulnerable regions. This section
highlights the importance of integrating modern detection methods with traditional food
safety practices to enhance global food security and prevent future outbreaks.
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8. Legislation

The frequent intake of AFs and OTA has led to serious health issues in both people and
animals. To protect consumers from these harmful toxins, regulations establish maximum
acceptable levels for OTA in various food categories. This global concern has prompted
many countries to impose strict regulations on these mycotoxins, aiming to enhance the
quality of commercial products and safeguard public health [193]. However, these stan-
dards can have a double-edged sword effect. While they enhance safety, they can also
restrict trade from regions prone to contamination and potentially decrease the economic
value of certain products if contamination is found [193]. It is important to recognize that
socio-economic factors, such as inadequate government policies, can also contribute to
conditions that favor mycotoxin contamination [194].

More than 100 countries have regulations on aflatoxin, with the primary goal of
protecting human and animal health. However, these regulations also bring economic
burdens to nations trying to export aflatoxin-contaminated products. It is important
to consider both the financial impact and the regulatory benefits of these laws. It is
crucial to note that even in countries with laws against mycotoxins, many people consume
uninspected crops, especially in areas with extensive subsistence farming. This situation
can lead to contamination, exposure, and lack of control, and consequently have adverse
effects on global trade and public health [195].

The allowable limits for AFs in food intended for human consumption worldwide
generally range from 2 to 30 µg/kg. The European Union has established stricter regulations
for AFB1 and total AFs in directly consumed products, permitting up to 2 µg/kg and
4 µg/kg, respectively. In contrast, the US sets a maximum level of 10 µg/kg for both
AFB1 and total AFs in all finished products. However, OTA is considered less toxic, with
permissible levels ranging from 2 to 10 µg/kg in these regions.

In Brazil, the ANVISA’s RDC nº 722, as of 1 July 2022, establishes the maximum accept-
able levels of mycotoxins in food. Similarly, regulations from the FDA in the US and those
from the European Commission (EC No. 165/2010 and 2022/1370) determine these limits
for maize and its derived products. Additionally, the maximum and recommended levels of
AFs and OTA in feeds in the European Union are stipulated by Directive 2002/32/EC and
Recommendation 2006/576/EC, respectively. While tolerable levels are generally higher in
Brazil, each new regulation leads to increasingly stringent legislation. Table 7 presents a
summary comparing the acceptable limits of AFs and OTA in foods between Brazil, the EU,
and the US. It is noteworthy that currently there are no specific regulatory guidelines for
OTA set by the FDA regarding its presence in food or feed within the US.

Table 7. Limit maximum tolerability of AFs and OTA in food commercialized in Brazil, the European
Union (EU), and the United States (US).

Region Food Category AFB1 (µg/kg) Sum of AFs
(µg/kg)

AFM1
(µg/kg)

OTA
(µg/kg)

Brazil Cereal-based for infant - 1.0 - 2.0
Cocoa beans - 10.0 - 10.0

Peanuts, Brazil nuts - 20.0 - -
Coffee - - - 10.0

Nuts, walnuts, pistachios, hazelnuts, and almonds - 10.0 - -
Cereals and cereal products - 5.0 - 10.0
Maize and maize products - 20.0 - 20.0

Dehydrated and dried fruits - 10.0 - 10.0
Cocoa and chocolate - - 5.0 5.0

Powdered milk - - 5.0 -
milk - - 0.5 -

Cheese - - 2.5 -
Grape juice, grape, wine, and its derivatives - - - 2.0
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Table 7. Cont.

Region Food Category AFB1 (µg/kg) Sum of AFs
(µg/kg)

AFM1
(µg/kg)

OTA
(µg/kg)

EU Cereal-based for infant 0.10 - - 0.5
Peanuts and tree nuts 2.0 4.0 - -
Brazil nuts, hazelnuts 5.0 10.0 - -

Coffee - - - 3.0 to 5.0
Almonds, pistachios, and apricot kernel 8.0 10.0 - -

Cereals and cereal products 2.0 4.0 3.0 to 5.0
Maize and maize products 5.0 10.0 - -

Dehydrated and dried fruits 2.0 4.0 - 2.0 to 8.0
Cocoa powder - - - 3.0
Powdered milk - - - -

Milk - - 0.05 -
Infant milk - - 0.025 -

Grape juice, grape, wine, and its derivatives - - - 2.0
Products for animal feeding 50 - - 250

Feed 5 to 50 - - 10 to 100

US Foods - 20.0 - -
Brazil nuts - 20.0 - -

Peanuts and Peanut products - 20.0 - -
Pistachio nuts - 20.0 - -

Milk - - 0.5 -
Animal Feeds - 20.0–300.0 - -

9. Methods for Avoiding or Mitigating the Presence of Mycotoxins in Foods

The most effective approach to reducing mycotoxins in the food chain is by preventing
the growth of fungi in food and inhibiting toxin production. Different physical, chemical,
and biological methods have been used at both industrial and laboratory levels to achieve
this goal [196].

Numerous steps can be implemented to reduce the risk of mycotoxin exposure and
related health and socio-economic challenges. These measures may involve preventing
contamination by limiting fungal growth or intervening after growth to eliminate or reduce
toxin availability. Pre-harvest treatments are primarily focused on controlling fungal
infection spread in the field, while post-harvest methods aim at decontaminating substrates
after toxin production or reducing toxin absorption by exposed organisms [123].

Cereal grains and feed are inevitably prone to contamination, with a lack of cost-
effective detoxification methods. Hence, it is crucial to regularly monitor the quality of
animal-derived foods, raw materials, and feed for the well-being of food animals, economic
sustainability, and consumer food safety [5].

9.1. Good Agricultural Practice

The first critical point in limiting the occurrence of Aspergillus or Penicillium isolates
and their mycotoxin contamination is the adoption of agricultural practices that can create
an unfavorable environment for the proliferation of fungal spores present in the soil. These
practices include plowing the soil before sowing, weeding, respecting the specific sowing
time for each type of crop and the optimal harvest time, manuring, soil amendment and
fertilization, irrigation management, and crop rotation with crops less susceptible to the
growth of Aspergillus spp. [197].

Mycotoxin contamination can be minimized by certain cultural practices, curing, dry-
ing, and storage methods. However, these techniques may be incompatible with small-scale
agriculture in emerging countries, particularly in tropical regions [198]. Thus, the devel-
opment of mycotoxin-resistant varieties is a multi-step process that may involve direct
selection for resistance to FG and aflatoxin formation, indirect selection for resistance or
tolerance to biotic factors or environmental stresses, or selection for morphological char-
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acteristics that inhibit or delay fungal invasion or growth [197]. Due to the scarcity of
resistance genes, the development of cultivars resistant to preharvest mycotoxin contami-
nation has been limited. Numerous efforts have been made to produce mycotoxin-resistant
cultivars, resulting in the creation of selected resistant types that have gradually been
released as improved germplasm in several regions of the world. However, complete resis-
tance to mycotoxin contamination has not been achieved and genetic efforts continue [199].

Similarly, mechanical damage should be avoided as it increases the grain’s suscep-
tibility to fungal and insect attacks. For example, it is preferable to harvest maize cobs
with their leaves intact and avoid damaging the leaves, as they are critical in protecting
the cobs from insects, particularly weevils such as Sitophilus zeamais, which are the most
common pests of maize crops. Not only can these insects increase the surface area of the
ear susceptible to fungal infection, but their metabolic activity can also wet the grain and
promote fungal growth [200]. Mechanical damage caused by milling should also be mini-
mized as it facilitates insect penetration. Even if climatic conditions are not optimal, grain
lesions caused by insect infestation can lead to mycotoxin contamination of the grain [201].
The fungi may then grow inside the grain, where they are isolated from environmental
conditions and in direct contact with nutrients, creating a micro-atmosphere [202].

Harvesting at the optimal time is also critical to avoid fungal growth. Harvesting
should occur shortly after physiological maturity to minimize mycotoxin contamination.
Crops harvested at immature stages, on the other hand, must be dried promptly and
effectively to achieve moisture levels that are no longer conducive to mold growth (10–13%
for cereals), thus preventing mold development throughout the storage period [203].

Climatic conditions in many developing countries, which often combine inadequate
early drying with excessive humidity, play a significant role in crop contamination and the
often-high mycotoxin levels observed in agricultural commodities. In addition, although
prolonged drying in the field may reduce grain moisture, this technique increases the
time exposed to insect attack, resulting in increased losses during storage [204]. Therefore,
unfortunately, the implementation of these storage and drying practices is often difficult
for farmers with small plots of land, especially when the general climatic conditions are
unfavorable (tropical and subtropical regions). To make matters worse, the effect of crop
rotation and most agricultural practices on toxicity is generally more limited than the effect
of environmental factors (temperature and humidity).

9.2. Chemical Approaches

Synthetic antifungal agents represent chemical compounds engineered to inhibit
fungal growth and proliferation. They find widespread application in the preservation
of food items, aimed at averting spoilage and enhancing their shelf life [205]. Despite
their evident utility, synthetic antifungal agents are accompanied by certain drawbacks
warranting critical consideration [205].

One primary advantage associated with fungicides lies in their efficacy. Engineered
to exhibit potent activity, they afford prolonged protection against a diverse spectrum
of fungal species. Notably, synthetic fungicides offer effective mitigation against food
contamination while also being relatively economical and user-friendly, rendering them
a preferred choice among food manufacturers. Consequently, their adoption has become
pervasive [206]. The utilization of fungicides for such purposes was most pronounced in
Europe during the period spanning 1990–2021, as depicted in Figure 5.

Moreover, fungicides offer greater convenience compared to their natural counterparts.
They can be produced in large quantities and transported and stored with ease, without
the threat of spoilage. This is attributed to their suitability for food producers, requiring
swift and efficient treatment of sizable food volumes, unlike biopesticides, which hinge on
the availability of plant sources [207].
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Despite their myriad benefits, synthetic antifungal substances are not devoid of draw-
backs. This approach appears to be nearing its thresholds due to several factors: environ-
mental contamination and adverse effects on animal and plant biodiversity, diminishing
efficacy owing to the development of resistance among microbial populations, and the
inevitable toxicity of these substances upon chronic exposure in animals. A primary con-
cern revolves around their potential repercussions on human health and the environment.
Certain synthetic antifungal substances have exhibited toxic effects, raising concerns about
residue persistence on treated food items [208].

The global population, projected to reach 9.2 billion by 2050 with an annual growth
of 70 million people, necessitates a 70% surge in food production demand. This surge
primarily stems from evolving dietary patterns in emerging economies, characterized by
heightened consumption of higher-quality foods such as meat and dairy products, and
increased utilization of grains for animal feed. Expanding agricultural land is a challenge,
with potential ramifications including damage to forests and natural ecosystems, which
serve as natural adversaries to wildlife, crops, and crop pests. Additionally, agricultural
land may be diverted towards the production of bio-based raw materials like biofuels or
fibers rather than food [209,210].

Hence, there is a pressing need to enhance food production efficiency by reducing land,
water, energy, fertilizer, and pesticide usage. This imperative assumes greater significance
given the constraints faced. To ensure sustainable production, it is imperative to address
the challenge of minimizing yield losses attributable to pests in agricultural settings [210].

When fungicides are applied to plants or products, they can disrupt the cell membrane
of fungal pathogens or impede crucial cellular processes. In some instances, fungicides
serve as preventive measures by establishing a protective barrier that immobilizes toxigenic
fungi, curbing or preventing their colonization of the plant [211]. However, exercising
caution in fungicide usage is paramount due to its potential impact on human health and
the environment, coupled with the risk of fostering resistant fungal strains [212]. Striking a
balance between the benefits and risks associated with synthetic antifungal substances in
food production is paramount.
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Regarding mycotoxin detoxification, various chemical agents, including acids, bases,
reducing agents, and oxidizing agents, have been employed to transform mycotoxins into
less toxic derivatives through structural alteration. Among these, ozone and ammonia
stand out as extensively studied chemical detoxification treatments [213].

Ozone finds application in disinfecting vegetables, fruits, cereals, and mycotoxin
detoxification processes [214]. The antifungal mechanism of ozone gas involves damaging
the fungal membrane, enhancing mitochondrial degradation, inducing cytoplasmic disinte-
gration, and promoting plasmolysis [215]. Furthermore, ozone has demonstrated efficacy
in degrading AFs and OTA [216,217]. Oxidizing agents interact with functional groups
within mycotoxin molecules, inducing changes in their molecular structures, resulting in
the formation of products with reduced double bonds, molecular weight, and toxicity [218].

In addition to ozone, other bases like ammonia have been utilized to reduce several
mycotoxins, including FUM, AFs, and OTs, to non-detectable levels [219]. However, the
use of certain bases such as potassium hydroxide and sodium hydroxide may lead to
undesirable and toxic reactions. Notably, seed treatment employing ammonia has been
found effective in suppressing the growth of mycotoxigenic fungi [220].

9.3. Detoxifying by Physical Methods

Traditional decontamination methods for mycotoxins in food and feed involve various
physical techniques utilized when preventive measures fail. These methods encompass
several procedures such as dehulling, heating, plasma treatment, sorting and separation,
radiation, immersion and washing, and adsorption. However, the efficacy of these tech-
niques hinges on the extent of contamination and the distribution of mycotoxins within
the product. Nevertheless, these methods may yield uncertain outcomes and can result in
significant product losses [219].

Sorting, dehulling, or washing are typically employed as pre-processing methods.
They serve as common approaches to eliminate low-quality particles from food and main-
tain food quality. For instance, cereal grains can be sorted based on various physical
attributes such as density, color, shape, and size, while also identifying broken grains
afflicted with fungal growth. Given the uneven distribution of mycotoxin contamination
among grains, sorting, washing, or separating damaged food can markedly reduce the
contamination levels [221]. Immersing and washing contaminated grains in water and
discarding the floating fractions can generally eliminate some amounts of AFs and FUM.
Furthermore, cleaning and scouring procedures, as highlighted by Milani and Heidari [222],
can substantially diminish ochratoxin contamination in grains.

Research indicates that ionizing radiation, including gamma radiation, electron beams,
or X-rays, presents a safe and effective alternative to chemical treatments for eradicating
microorganisms from food and feed or reducing mycotoxin levels [223]. This technology,
known as food irradiation, constitutes a physical-cold process widely adopted in the food in-
dustry across many nations. In particular, Khalil et al. [224] have demonstrated that gamma
radiation effectively curtails the growth of A. flavus and A. ochraceus, thereby significantly
reducing AFs and OTA levels by 33.3–61.1%, contingent upon the mycotoxin involved.

The efficacy of UV radiation varies depending on different conditions such as exposure
time and wavelength. While UV radiation can stimulate sporulation and fungal growth
in some cases, the incidence of shorter wavelengths has the opposite effect on biological
organisms. García-Cela et al. [225] demonstrated the effectiveness of UV-B and UV-A
against A. carbonarius and A. parasiticus, resulting in reduced production of OTA and AFs
in a time-dependent manner.

Chemical methods employed for mycotoxin reduction may yield negative conse-
quences, including alterations in nutritional value and palatability or the presence of toxic
residues. Conversely, biological methods may be constrained by factors such as prolonged
degradation time or incomplete degradation. Consequently, adsorption has emerged as a
promising option for mycotoxin treatment [226].
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Adsorption entails both chemical and physical forces, making it the most commonly
utilized method to safeguard animals against mycotoxins. By employing a range of adsor-
bents such as clay, activated charcoal, and other modified polymers, mycotoxins can be
effectively bound and immobilized, thereby reducing their toxic impact by preventing their
absorption from the gastrointestinal tract [227]. However, selecting efficient adsorbents
can be challenging since various mycotoxins may co-occur in foods, potentially amplifying
their toxic effects through synergistic interactions [226]. Some chemicals exhibit weak
interactions with mycotoxins due to their polarity, solubility, molecular size, shape, and
surface area, facilitating adsorption between adsorbents and mycotoxins [228].

Despite its efficacy, concerns persist regarding the safety of adsorbent materials, the
removal from feed, and the disposal of adsorption chemicals and adsorbent-mycotoxin
complexes. Consequently, some chemical adsorbents have been prohibited as detoxification
materials in the food industry by the European Union (EU) [229].

9.4. Biocontrol of Toxigenic Fungi and Biodegradation of Mycotoxins

In the literature, several conventional physical, chemical, and adsorption-related
technologies have been reported for the elimination or inactivation of mycotoxins [230].
Unfortunately, these approaches suffer from drawbacks such as safety concerns, loss of
nutritional value and palatability, limited effectiveness, and cost implications. Recent
research indicates promising prospects for using mycotoxin-adsorbing compounds to bind
mycotoxins in the gastrointestinal tract of animals, thereby reducing their bioavailability
and toxicities, particularly in the feed industry. However, the effectiveness of various
adsorption agents differs, with some being more beneficial in preventing aflatoxicosis than
others [70,230]. Consequently, there is a pressing need for decontamination technologies
that are efficient, practical, and environmentally friendly.

To address these challenges, biological control techniques have been developed to
manage foodborne pathogens more effectively and rapidly. Biocontrol involves controlling
pathogenic microorganisms or their derivatives using natural sources such as microorgan-
isms, plant-derived fungicides, and detoxifying enzymes. This approach has gained traction
due to its ease of application and cost-effectiveness, positioning biological management as
an eco-friendly alternative to synthetic compounds [231].

Currently, bio-protective crops, ferments, and purified molecules with antifungal
activity are being developed. Microbial strains with potential antifungal properties have
been isolated from various sources, leading to increased food shelf life and decreased fungal
contamination, particularly from Aspergillus and Penicillium as described by Salas et al. [205].
LAB are commonly employed for food biopreservation, while Trichoderma spp. plays a
significant role in plant biocontrol, promoting growth and inducing defenses against biotic
and abiotic stresses [232]. Additionally, microorganisms such as Debaryomyces hansenii yeast
and Penicillium spp. fungi combat meat product decay caused by fungi [233,234].

Biodetoxification techniques offer another viable solution for managing mycotox-
ins, involving the use of microorganisms or enzymes to break down mycotoxins into
non- or less harmful compounds [235]. This method may entail using live or dead mi-
croorganisms to bind toxins to their cell wall components or decompose them into less
harmful substances [236]. However, if mycotoxins are only adsorbed and not completely
degraded, there is a risk of their delayed release in the gastrointestinal tract [237]. Nu-
merous studies have identified fungal and bacterial strains capable of effectively breaking
down mycotoxins, although concerns about food quality and consumer acceptance of
meals enhanced with microorganisms persist. Consequently, microorganisms employed
in food and feed additives must meet specific criteria, including safety, nonpathogenicity,
production of stable and non-toxic metabolites, proficiency in mycotoxin degradation,
formation of irreversible complexes, activity during storage, absence of unpleasant odors
or tastes, retention of nutritional value, and minimal cultivation and production efforts.
While various microorganisms have been proposed as potential detoxifiers for food and
feed, only a few have undergone thorough testing to determine their efficacy [238]. The
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use of mycotoxin-degrading enzymes produced by bacteria and fungi may overcome some
of these constraints [239].

Recent advancements in computational biology and synthetic biology have signifi-
cantly enhanced the identification and understanding of mycotoxin-degrading enzymes,
crucial for biological control methods. According to Sandlin et al. [240], computational
tools are increasingly utilized to unearth strains and enzymes capable of detoxifying myco-
toxins, which are often underexplored due to the vast potential diversity and complexity
of biological systems. They elaborate on leveraging computational biology for searching
genomic databases to identify candidate organisms with potential mycotoxin detoxification
capabilities, which can be further enhanced via synthetic biology techniques to optimize
the expression and activity of these enzymes. For instance, Zhang et al. [241] utilized a
positive unlabeled deep learning approach to identify new enzymes capable of degrad-
ing mycotoxins such as OTA, demonstrating the potential of machine learning to predict
enzyme-substrate specificity in complex substrates traditionally challenging for experi-
mental approaches. This method, leveraging data from extensive biochemical databases,
underscores a shift towards rapid, high-throughput screening methods that could revolu-
tionize the discovery of biodegrading enzymes in synthetic biology frameworks. Similarly,
the work by Liu et al. [242], though primarily a correction notice, indirectly highlights the
importance of precise genetic tools like CRISPR/Cas for engineering industrial fungi to
degrade mycotoxins, reflecting the growing integration of synthetic biology in developing
practical applications for mycotoxin mitigation. These studies collectively illustrate the
cutting-edge integration of computational and synthetic biology techniques to accelerate
the discovery and functional analysis of mycotoxin-degrading enzymes, paving the way
for more effective biological control strategies.

9.4.1. LAB as a Potential Biocontrol Agent

LAB comprise a group of oxygen-tolerant, Gram-positive bacteria pivotal in the
fermentation of diverse food and beverage products. These bacteria are characterized by
their ability to metabolize carbohydrates during fermentation, yielding lactic acid as a
primary product, which contributes significantly to the sensory attributes such as flavor,
texture, and aroma unique to each fermented product [243].

Traditionally, the core group of LAB consists of four genera: Lactobacillus, Leuconostoc,
Pediococcus, and Streptococcus. Recent taxonomic revisions have expanded this group to
include several new genera, including Aerococcus, Alloiococcus, Carnobacterium, Dolosigran-
ulum, Enterococcus, Globicatella, Lactococcus, Oenococcus, Tetragenococcus, Vagococcus, and
Weissella [244].

Classification within LAB is based on their fermentation characteristics, growth condi-
tions, and ability to produce lactic acid. They can also be categorized as homofermentative
or heterofermentative organisms based on their carbohydrate fermentation abilities. Ho-
mofermentative LAB, such as Lactococcus and Streptococcus, produce two lactate molecules
from one glucose molecule, while heterofermentative LAB, such as Leuconostoc, Weissella,
and some lactobacilli, generate lactate, ethanol, and carbon dioxide from glucose [245].

Recent taxonomic revisions have led to a significant overhaul of LAB classification
due to the complexity within the original genus Lactobacillus. This complexity necessitated
the reclassification of the genus into 25 genera, including the original Lactobacillus, Paralac-
tobacillus, and 23 novel genera such as Amylolactobacillus, Acetilactobacillus, Agrilactobacillus,
Apilactobacillus, Bombilactobacillus, Companilactobacillus, Dellaglioa, Fructilactobacillus, Furfuri-
lactobacillus, Holzapfelia, Lacticaseibacillus, Lactiplantibacillus, Lapidilactobacillus, Latilactobacil-
lus, Lentilactobacillus, Levilactobacillus, Ligilactobacillus, Limosilactobacillus, Liquorilactobacillus,
Loigolactobacilus, Paucilactobacillus, Schleiferilactobacillus, and Secundilactobacillus [246].

Under the previous taxonomic classification, LAB species extensively studied for their
antifungal properties belong to the genera Lactobacillus, Pediococcus, and Leuconostoc [247].
The use of LAB as a biopreservation strategy is favored over other organisms, especially
considering their inclusion in the Qualified Presumption of Safety (QPS) list by the EU and
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their Generally Recognized As Safe (GRAS) status by the US Food and Drug Administration
(FDA) [248].

The inhibitory efficacy of LAB in food preservation is primarily attributed to the
synthesis of metabolites during the fermentation process, with nutrient and space compe-
tition also recognized as contributing mechanisms [249]. Throughout fermentation, LAB
produces a diverse array of antifungal metabolites, including organic acids, phenolic acids,
volatile acids, CO2, hydrogen peroxide, antimicrobial peptides (AMPs), fatty acids, ethanol,
and diacetyl, among others (Figure 6). These metabolites can exhibit synergistic or additive
effects, complicating the precise elucidation of LAB’s antifungal mechanisms [250].
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Organic acids such as lactic, acetic, and propionic acids exert antifungal effects pri-
marily by disrupting the proton gradient essential for fungal cellular processes. Lactic acid,
for instance, permeates the fungal cell membrane in a hydrophobic state, subsequently
hydrolyzing within the cell to release H+ ions, inducing cytoplasmic acidification. Acetic
and propionic acids similarly inhibit fungal amino acid absorption, albeit their efficacy is
contingent upon the low pH environment created by lactic acid [251].

Antifungal peptides (AFPs), a subset of AMPs, are small, cationic peptides synthesized
by LAB, capable of perturbing fungal membranes or interfering with proton gradients
across the cell membrane. Notably, lactoferricin B demonstrates an affinity for the fungal
surface, disrupting membrane integrity and exhibiting potent antifungal activity [252].
AFPs represent a focus of contemporary research into natural biological control agents,
sourced from plant, animal, and microbial origins, and composed of amino acids linked via
peptide bonds [253].

Numerous phenolic compounds have been identified in foods or media fermented
with LAB, boasting varied properties encompassing antioxidant, antifungal, and antitox-
igenic activities [254,255]. Key among the phenolic acids produced by LAB is phenyl-
lactic acid and its derivative, 4-hydroxyphenylactic acid, recognized for their contribu-
tion to the antifungal activity of LAB-fermented media, thereby enhancing food shelf
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life [254,256]. Other phenolic acids generated during LAB fermentation include succinic
acid, 4-hydroxybenzoic acid, vanillic acid, caffeic acid, p-coumaric acid, salicylic acid,
ferulic acid, and benzoic acid [257].

9.4.2. Detoxification of Mycotoxin by LAB

The process of mycotoxin detoxification in foods facilitated by LAB involves three
primary mechanisms: LAB enzyme degradation, adsorption by LAB cells, and interaction
between mycotoxins and LAB metabolites (Figure 7). Proteolytic enzymes produced by
LAB play a crucial role in this detoxification process [258]. Moreover, certain strains of
LAB are believed to adsorb mycotoxins in specific foods, attributed to the composition of
their cell wall containing polysaccharides, protein, and peptidoglycans [259]. However,
the precise mechanisms underlying mycotoxin removal and degradation by LAB cells
and metabolites remain elusive, with several hypotheses proposed, including degradation
facilitated by proteolytic enzymes and specific metabolite binding to mycotoxins [259].

Figure 7. Three potential mechanisms of mycotoxin detoxification in foods by LAB.

The study elaborated by Badji et al. [260] presented an insightful examination of the
detoxifying capacity of LAB against two significant mycotoxins, AFB1 and OTA, often
found in Algerian wheat products. Utilizing API 50 CHL and 16S rDNA sequencing
methodologies, eleven LAB strains were proficiently identified and subsequently tested
for their detoxification potential. The study’s findings revealed that both viable and heat-
inactivated LAB cells, including LAB strains Lab-L4/al and Lab-L1 as well as the reference
LAB strain Lactobacillus plantarum R1096, were effective in the reduction of AFB1 and OTA
in vitro, albeit with different removal efficiencies among the strains. Notably, nonviable
cells exhibited a superior capacity to detoxify AFB1. Furthermore, the detoxification
efficiency of viable cells from Lab-L4/al and LP R1096 demonstrated a dependence on
pH levels, with augmented removal at a lower pH; however, this pH sensitivity was not
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observable in the Lab-L1 strain. The study’s conclusions advocated the potential application
of the examined LAB strains as fortifying agents in the fermentation of wheat-based foods,
aiming to mitigate mycotoxin contamination and thereby enhance food safety.

Arun et al. [261] explored the capacity of LAB isolated from animal excreta to mitigate
AFB1. Notably, the authors discerned that three out of fifty-six LAB isolates demonstrated
over 50% sorption efficacy toward AFB1, highlighting the promising probiotic potential
inherent in these strains: Lactococcus lactis strain CF_6, Lacticaseibacillus casei strain CW_3,
and Lactobacillus acidophilus strain CE_4. The detoxification mechanism predominantly
relied on the surface binding properties of the LAB, a critical feature that varies among
strains, as elucidated through both biochemical analysis and Scanning Electron Microscope
imagery. The study’s results suggested that while some isolates possessed notable AFB1
binding capacities, the efficacy was strain-specific, with the top three isolates displaying
significant binding rates. Nonetheless, the authors’ findings were predicated on in vitro
assays, underlining the necessity for further research to substantiate the applicability
and scalability of such detoxification mechanisms within real-world food systems. These
results indicated that, although the study provided an innovative perspective on leveraging
probiotic LAB for AFB1 detoxification, thorough validation of in vivo conditions remains
imperative for evaluating their practical efficacy and safety.

The study by Escrivá et al. [262] investigated the potential of Lactobacillus strains,
specifically sourced from goat milk whey, on the biodegradation of two significant my-
cotoxins, AFB1 and OTA, during the bread-making process. Encouragingly, the research
demonstrated that certain Lactobacillus strains can effectively reduce the levels of these
mycotoxins, with L. plantarum B3 and L. paracasei B10 exhibiting the highest detoxification
capabilities. During controlled fermentation, the incorporation of these lyophilized bacteria
resulted in reductions of AFB1 and OTA by up to 27% and 32%, respectively, in the dough
stage and up to 55% and 34% in the final bread product. While this indicates a promising
biocontrol strategy for mitigating mycotoxin contamination in bread and bakery items,
the study does not fully explore the mechanisms underlying such biotransformation. The
findings suggested the potential for a cost-effective, large-scale detoxification protocol;
however, further elucidation of the detoxification pathways and their efficacy in diverse
bread-making environments would strengthen the application of this research to industry.

In another work, Dong et al. [263] undertook a rigorous examination of the detoxifying
capabilities of two rumen-derived Enterococcus species on mycotoxin-contaminated corn
silages. The authors adeptly characterized the mycotoxin degradation potential of E. faecalis
and E. faecium, illustrating their pivotal role in the fermentative transformation and subse-
quent hygienic improvement of silage. The study revealed that E. faeecium exhibits a marked
proficiency in reducing deoxynivalenol and AFB1 concentrations, outperforming E. faecalis
in the latter’s eradication, yet displaying a lesser capability in zearalenone detoxification.
Critically, the findings suggest that the inoculation of these Enterococcus species resulted in
a notable alteration in microbial community dynamics, favoring a reduction in toxigenic
fungal populations. Despite these promising results, the study failed to unravel the intri-
cate molecular interactions between the microbial inoculants and the mycotoxigenic fungi,
leaving a gap in our mechanistic understanding of the observed detoxification phenomena.
Nonetheless, the authors have put forth compelling evidence supporting the deployment of
these Enterococcus strains as a biologically based strategy to mitigate the health risks posed
by mycotoxin contamination in feedstocks. These studies have contributed a valuable
perspective to the field of bioremediation of food contaminants and underscore the need
for continued exploration into the mechanisms and practical applications of mycotoxin
detoxification by LAB.

9.5. Essential Oils

There is a current trend towards the utilization of natural compounds to enhance
food safety, leading to extensive research on natural fungicides for the management of
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postharvest fungal disorders in agricultural produce. These natural phytosanitaries can be
sourced from various origins, including microorganisms [264].

Zubrod et al. [211] highlighted that fungicides derived from plant-based products
offer reduced environmental impact and pose lower risks to human health compared to
conventional agrochemicals, largely due to their rapid degradation. Consequently, these
fungicides contribute to both environmental preservation and consumer safety. One ap-
proach involving plant-derived compounds focuses on harnessing bioactive secondary
metabolites, such as phenols, terpenes, aliphatic alcohols, aldehydes, ketones, and essential
oils (EOs), which have been extensively studied. EOs, complex mixtures of volatile and
lipophilic substances primarily obtained from plants via steam distillation [265], contain
diverse molecules like terpenes and hydrocarbons, exhibiting significant in vitro antimicro-
bial potential. However, the practical application of EOs is somewhat limited due to the
substantial doses required to achieve antimicrobial effects and potential flavor impacts on
food products [266].

In recent years, oregano, cinnamon, thyme, rosemary, fennel, clove, and eucalyptus
have emerged as the most utilized EOs in combatting mycotoxigenic fungi and their
associated mycotoxins. The inhibitory effects of EOs on fungal growth and mycotoxin
synthesis have been elucidated through various mechanisms, including modification of
fungal growth rates and extension of lag phases, disruption of cell permeability, and
modulation of gene expression patterns and metabolic processes linked to the electron
transport chain [257].

Mustard, an herbaceous plant belonging to the Cruciferae or Brassicaceae family, encom-
passes various varieties, including white or yellow mustard (Brassica hirta or Sinapis alba),
black or royal mustard (Brassica nigra), and oriental or brown mustard (Brassica juncea), all
of which exhibit significant potential against fungal growth [267,268].

These plants are distinguished by the presence of secondary metabolites called glu-
cosinolates (GTs), which emit a distinctive pungent odor upon hydrolysis [269]. GTs serve
a pivotal role in plant defense mechanisms. Upon physical damage, plants are vulnerable
to fungal infestations and other potential attacks, prompting the hydrolysis of these sub-
stances by the enzyme myrosinase, resulting in the production of isothiocyanates (ITCs) in
the presence of water, among other byproducts [270].

ITCs possess multifaceted properties, including biocidal activity against fungi, bacte-
ria, and insects [271], and their efficacy against fungal growth is well-documented [272].
Moreover, they exhibit herbicidal, antioxidant, and anticarcinogenic properties [273,274].

In the case of oriental mustard, the hydrolysis of glucosinolate sinigrin by myrosinase
yields allyl isothiocyanate (AITC). Similarly, in yellow mustard, the hydrolysis of glucosino-
late sinalbin by myrosinase produces p-hydroxybenzylisothiocyanate (p-HBIT). Both ITCs
have been evaluated, demonstrating their capacity to inhibit fungal growth, as evidenced
by studies on AITC [275] and p-HBIT [276].

Additionally, mustard contains other bioactive compounds, such as phenolic acids,
renowned for their potent antioxidant activity. Plants utilize these compounds for growth
promotion and resistance to pests and pathogens, among other functions [277].

AITC is a volatile compound associated with various beneficial effects on human
health, including antiangiogenic, anti-inflammatory, neuroprotective, and anticarcinogenic
properties [278]. AITC is the most studied and potent antimicrobial among ITCs, due to
its antimicrobial action at lower doses Among ITCs, AITC is the most extensively studied
and potent antimicrobial agent, exhibiting antimicrobial activity at lower doses [279].
Table 8 shows the antifungal activity of AITC against different fungal-toxigenic strains.
Several studies have demonstrated AITC’s ability to volatilize and inhibit the growth of
mycotoxigenic fungi, such as F. graminearum, A. parasiticus, P. expansum, and F. poae, with
effects dependent on dosage and mitigating mycotoxin production starting at 10 µL/L in
the gas phase [280–282]. Furthermore, AITC can directly react with mycotoxins, forming
new compounds and reducing their presence in food solutions and matrices [283].
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Table 8. Recent reports about the use of AITC Antifungal to prevent fungal growth and extend the
shelf life of foods.

Food or Primary
Commodity Application Mode Dosage

(µL/L) Fungi Evaluated Reference

Almonds
Hydroxyethyl-cellulose antifungal
device and a paper filter containing

AITC during storage (15d).

5.07, 10.13, and
20.26 mg/L A. flavus [284]

Barley Hydroxyethyl-cellulose gel disk 50 Penicillium
verrucosum [285]

Barley Paper filter containing AITC during
storage (90d) 50 P. verrucosum [286]

Blackberry 12h exposition to the compound in a
paper towel 0.5, 1, 2, 5, and 10 Natural fungal

growth. [287]

Bread Filter disk in Petri dishes with bread
slices (10d of storage) 1 µL Rhizopus

stolonifer [288]

Chicken breast
Multilayer carrageenan/chitosan

coatings containing AITC, applied by
immersion. Storage during 21d

20 and 200. Natural fungal
growth [289]

Corn Hydroxyethyl-cellulose gel disk 50 Aspergillus
flavus [285]

Grape Injection of gaseous phase AITC on the
first day (14d of total storage) 25 µg/mL A. niger [290]

Grape Injection of gaseous phase AITC in the
first day of storage (14d of total storage). 25 µg/mL A. carbonarius [290]

Grape Injection of gaseous phase AITC in the
first day of storage (14d of total storage). 25 µg/mL A. ochraceus [290]

Maize Paper filter containing AITC during
storage (30d) 0.125, 0.25, 0.5, 1, and 5 A. flavus [291]

Maize Paper filter containing AITC during
storage (30d). 30 and 300. A. parasiticus [292]

Maize Paper filter containing AITC during
storage (30d) 30 and 300 Fusarium

verticillioides [292]

Maize Paper filter containing AITC during
storage (30d) 30 and 300 F. graminearum [292]

Maize Paper filter containing AITC during
storage (15d). 25 µg/mL A. niger [290]

Maize Paper filter containing AITC during
storage (15d). 25 µg/mL. A. carbonarius [290]

Maize Paper filter containing AITC during
storage (15d). 25 µg/mL A. ochraceus [290]

Pita bread Active packaging system containing
AITC during storage (7d) 8, 16, 33 or 50 mg P. verrucosum [268]

Strawberry Modified polyvinyl formal (PVFM)
vibration-damping material 5% Botrytis cinerea [293]

Wheat Hydroxyethyl-cellulose gel disk 50 P. verrucosum [285]

To investigate the potential of allyl isothiocyanate as an effective antifungal agent
against Candida albicans, particularly its modes of action in combating drug resistance,
Patil et al. [294] aimed to assess the efficacy of AITC in inhibiting ergosterol biosynthe-
sis, inducing reactive oxygen species production, arresting the cell cycle, and affecting
gene expression related to virulence factors in C. albicans. Furthermore, evaluating the
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anti-infective capability of AITC in an in vivo model using silkworms to demonstrate an
increased survival rate against C. albicans infections. They examined a variety of potential
therapeutic agents, giving particular attention to their detoxification mechanisms against
the biofilms of C. albicans. Their investigation revealed that natural products, such as allyl
isothiocyanate, piperine, and honokiol, exhibited promising results in impeding the biofilm
formation and virulence of C. albicans by disrupting cell membrane integrity and inducing
apoptosis. These findings are significant, as they highlight the potential of alternative,
plant-derived compounds in addressing the challenges posed by fungal biofilms—an area
that has been a substantial hurdle in clinical settings. The research delineated the specific
modes of action of these agents, including the inhibition of ergosterol synthesis and the
attenuation of pathogenicity through virulence factors. However, the author’s critical
analysis underlines the necessity for further studies to better understand the clinical im-
plications of these mechanisms, with a cautious tone suggesting the need for a translation
from laboratory results to effective, safe, and clinically adopted antifungal therapies.

In the study carried out by Ren et al. [295], the authors explored the potential of
horseradish oil and a selection of isothiocyanates as natural preservatives for postharvest
tomatoes. The core investigation centered around the antifungal capacities of these agents
against several pathogens known to cause decay in stored tomatoes. In particular, AITC
demonstrated notable efficacy in suppressing mycelial growth on fungal agents such as
Botrytis cinerea, Alternaria alternata, Rhizopus stolonifer, and Geotrichum candidum. The study’s
results evidenced a commendable performance of certain ITCs in curbing tomato decay
rates, weight loss, and maintaining fruit hardness, as well as slowing the reduction of
acidity and total soluble solid content. However, the research does not explicitly investigate
the detoxification mechanisms. It is evident that the study presents significant insights
into alternative preservative methods and highlights the need for safer options to synthetic
chemicals. Yet, the scope for elucidating the detoxification pathways and the complexity of
interactions between these compounds and the biological system of the fruit remains an
avenue for further in-depth research.

In another context, Hareyama et al. [296] assailed the pervasive challenge of aflatoxin
contamination by investigating the antifungal efficacy of isothiocyanates. The study quan-
tified the inhibitory impact of benzyl, allyl, methyl, and phenylethyl ITCs on both the
growth of A. flavus and the production of the highly toxic metabolite AFB1. Among the
observations, benzyl ITC emerges as a particularly potent growth inhibitor in its dissolved
state, while AITC displayed its most pronounced impact in the gaseous state, underscoring
the volatility and state of matter as crucial factors in the detoxification strategies of afla-
toxigenic fungi. The persistence of benzyl ITC compared to the fleeting presence of AITC
further accentuates the complexity of applying these compounds in practical scenarios for
the effective mitigation of aflatoxin risks. This juxtaposition of efficacy across different
states of matter adds a nuanced layer to the current understanding of ITCs’ potential as
antifungal agents and begs a deeper exploration of application methods tailored to exploit
the specific chemical stability and volatility profiles of individual isothiocyanates.

In the study elaborated by Li et al. [275], the authors explored the toxicity mechanisms
of AITC on the soil-borne fungal pathogen Fusarium solani, implicating a molecular target
for potential fungicide development. The authors demonstrated that AITC induced rapid
fungal growth inhibition and morphological abnormalities while causing significant elec-
trolyte leakage from fungal cells. They identified that the STRPC family member, FsYvc1,
plays a critical role in F. solani response to AITC exposure. The genetic approach revealed
that the absence of FsYvc1 in the fungi led to a heightened sensitivity to AITC and an
increase in reactive oxygen species accumulation. The study further discussed the differ-
ential expression of glutathione-S-transferase, a detoxifying enzyme, noting that its levels
raised substantially in both wild-type and FsYvc1-deficient strains upon AITC exposure,
although no difference existed between these strains in the absence of AITC treatment.
These findings provided essential insights into AITC’s antifungal action and suggested
that targeting FsYvc1 could enhance the development of novel fungicides. However, the
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work would benefit from a broader examination of the potential ecological effects of AITC
use and its implications on microbial communities within agricultural settings. In general,
the previous works evaluated evidenced AITC as a good candidate as an alternative to
chemical antifungal compounds.

Evaluating the control methodologies reviewed in the literature reveals that no single
method effectively prevents and controls all mycotoxins; the most appropriate strategy
depends on the specific mycotoxin, its characteristics, and the context of contamination.
However, there are some general strategies and methods commonly used for controlling
mycotoxins such as AFB1 and OTA. For AFs, physical methods including cleaning, sep-
aration of screenings, and washing have proven effective to a certain extent in reducing
contamination levels. Additionally, biological methods that utilize LAB in food and feed
can also help reduce exposure to dietary AFs. Concerning physical adsorption, adsorbents
like activated charcoal, bentonite, and aluminosilicates have been researched for their
capacity to bind AFs and reduce their bioavailability. However, the effectiveness of these
adsorbents varies based on factors such as the type of adsorbent used, the concentration
of aflatoxin, and the food matrix involved. For OTA biological control, methods using
microorganisms like yeasts and LAB that can bind and adsorb OTA have been extensively
studied. Chemical methods, including ozone treatment, have also shown potential in
reducing OTA levels in various food commodities.

Overall, controlling mycotoxins typically involves a combination of physical, bio-
logical, and chemical methods, each tailored to the specific mycotoxin and the particular
scenario of contamination. This multi-faceted approach ensures a comprehensive strategy
for reducing the risks associated with mycotoxin contamination in food products.

10. Conclusions

AFs and OTs occur naturally in food and have detrimental effects on human and
animal health, as well as causing economic losses. They are known to have carcinogenic,
mutagenic, and estrogenic effects in humans. The main mycotoxins contaminating com-
modities are AFs and OTA to a degree of toxigenic significance, and most of them are
produced during storage due to inappropriate conditions. To prevent the proliferation of
mycotoxins, measures such as timely grain harvesting, proper drying, and good storage
conditions are essential. In addition, the use of natural fungicides such as AITC and other
biocontrol agents, together with grain processing methods, is important to reduce the
concentration of these mycotoxins in foodstuffs. In this context, the inclusion of LAB can
be beneficial, as their potential to inhibit the growth of mycotoxigenic fungi and reduce
mycotoxin levels in food and feed has been studied. Therefore, the incorporation of LAB
in storage and processing practices may be an effective strategy to mitigate the risk of
mycotoxin contamination in food and feed.

Looking forward, significant advancements are anticipated in the realm of mycotoxin
research and management, driven by technological innovation and interdisciplinary collab-
orations. The development of more precise and rapid detection methods remains a critical
priority even though computational biology has come to improve the branch of mycotoxin
detoxification. Innovations such as portable biosensors and machine learning-assisted di-
agnostic tools are expected to revolutionize the monitoring and management of mycotoxin
contamination, enabling real-time detection at lower costs and with greater accuracy. Fur-
thermore, there is a promising horizon for the development of genetically modified crops
that are inherently resistant to mycotoxin-producing fungi, potentially reducing reliance on
chemical fungicides and aligning with sustainable agricultural practices. The integration of
climate-smart agricultural techniques is also anticipated to play a pivotal role in mitigating
the impact of environmental changes on mycotoxin prevalence. These future developments
not only hold the potential to enhance food safety and security globally but also aim to
mitigate economic losses in the agriculture sector, thereby supporting the livelihoods of
farmers and communities worldwide. Additionally, strengthening global collaborations



Foods 2024, 13, 1920 30 of 41

and harmonizing regulatory standards can lead to more cohesive and effective international
responses to the challenges posed by mycotoxins.
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Serbia: The impact of weather conditions in 2015. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2017, 34,
1999–2010. [CrossRef] [PubMed]

108. Sserumaga, J.P.; Ortega-Beltran, A.; Wagacha, J.M.; Mutegi, C.K.; Bandyopadhyay, R. Aflatoxin-producing fungi associated with
pre-harvest maize contamination in Uganda. Int. J. Food Microbiol. 2020, 313, 108376. [CrossRef] [PubMed]

109. Nabwire, W.R.; Ombaka, J.; Dick, C.P.; Strickland, C.; Tang, L.; Xue, K.S.; Wang, J.S. Aflatoxin in household maize for human
consumption in Kenya, East Africa. Food Addit. Contam. Part B Surveill. 2020, 13, 45–51. [CrossRef]
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